Principles: **Subsidy Design for Private Sector Mini-grids**

Subodh Mathur

Adjunct Economics Professor, American University, Washington, DC mathur@american.edu

Nairobi, Kenya May 23-27, 2016

Take account of three participants

- Private sector mini-grids have three participants:
 - ✓ Developers/Operators, who may be private firm or local authorities or NGOs
 - ✓ Target beneficiaries, who will get power from the mini-grid
 - ✓ Subsidy providers, who may taxpayers (Government budget), ratepayers (who pay electricity bills), or development partners.
- Subsidy design and values must take account of the financial needs of all three participants

Developers: Pre-investment Subsidies

- Provided before financial close
 - ✓ Catalytic and risk-sharing designed to cast wide net
 - ✓ Many subsidy recipients will finally not undertake projects
- Elements
 - ✓ General market and resource assessments
 - o at no cost to developers
 - ✓ Pre-feasibility and feasibility studies
 - o cost-shared to be conducted with 'approved firms'
 - ✓ Technical and financial information assistance.
 - at no cost to developers at least in early years

Developers: Investment Subsidies -1

- Key need is to build financing package that will finance capital costs
 - ✓ Crucial for capital-intensive renewable mini-grids
 - No revenues until production and sales take place
- Elements
 - ✓ Subsidies
 - ✓ Equity
 - ✓ Debt

Developers: Investment Subsidies -2

- Extent of subsidies needed depends upon availability of other elements of financial package
 - ✓ Subsidy needed depends upon development of debt and equity markets
 - ✓ Critical to develop these markets
 - Possibly provide partial guarantees
- Post-result carbon finance payments cannot be used to finance capital costs
 - ✓ Some upfront payment would be useful

Developers: Investment Subsidies - 3

- Apply Results-Based Finance schemes carefully
 - ✓ Relying exclusively on final output makes it difficult to finance capital costs
 - ✓ Some "intermediate" results should be accepted as basis for payments.
- Avoid implicit subsidies via low-interest loans
 - ✓ Market-rate loans keep pressure to minimize capital costs
 - ✓ Market-rate loans allow development of commercial markets

Users: Affordability Subsidies - 1

- Financial sustainability required revenues to cover:
 - ✓ Operational costs
 - Likely to be low for renewable energy mini-grids
 - ✓ Debt service
 - ✓ Equity dividends
 - Above two are reduced by capital cost subsidies
 - Equity payments possibly reduced by "patient" capital
 - ✓ Depreciation
 - Essential to not forget this
 - ✓ Any taxes, license fees

Users: Affordability Subsidies - 2

- This calculation provides Average Revenue required,
 - ✓ AR = Total Revenue Required/ Expected kWh sales
- If this calculated AR seems too high, then consider:
 - ✓ Increasing capital cost subsidy and/or "patient" capital
 - ✓ Getting someone else to promote (additional) productive uses
 - Higher ability to pay
 - Daytime usage, which does not stress the system
- If nothing works, then scheme is not financially viable

Users: Affordability Subsidies - 3

- Tariff regulator should be flexible in not enforcing uniform national tariff
 - ✓ Politically and difficult to charge rural households more
- Special case of poorer households
 - ✓ Be sure to have separate subsidy fund to subsidize household connection costs
 - ✓ Some form of lower tariff, such as lifeline tariff
 - Take account of this in Average Revenue calculations

Subsidy Providers - 1

- Total subsidy requirement must be affordable
 - ✓ For taxpayers, ratepayers and development partners
 - ✓ Determines how many mini-grids can be subsidized in a period of time
- Need for some type of exit policy
 - ✓ Over the years, need for subsidies should decline
 - Greater availability of debt finance reduces need for subsidies in financial package
 - Some expectation of cost reductions over time.