

FEBRUARY 19, 2014

A New Multi-Tier Approach to Measuring Energy Access

Agenda

MULTI-TIER MEASUREMENT OF ENERGY ACCESS

- INITIAL RESULTS FROM PILOT SURVEYS
- TABLET BASED SURVEY TOOL (GIZ)
- TECHNICAL ASSISTANCE PACKAGE

WHY AND HOW TO MEASURE ENERGY ACCESS

MULTI-TIER MEASUREMENT OF ACCESS TO ENERGY

NICOLINA ANGELOU, ENERGY ECONOMIST (ESMAP)

CONTEXT

SUSTAINABLE ENERGY FOR ALL (SE4ALL) INITIATIVE

Achieve 'universal access to modern energy services by 2030'

But what does 'access to modern energy services' mean?

CURRENT APPROACH

DEFINITION AND MEASUREMENT

Current definition of access

'having electricity or not having electricity' 'cooking with non-solid fuels or cooking with solid fuels'

• Binary metric (Access or No access)

5

2/19/2014

NEW APPROACH

NEW DEFINITION

New definition of energy access based on the performance of the energy supply

Access to energy is the ability to avail energy that is adequate, available when needed, reliable, of good quality, affordable, legal, convenient, healthy & safe, for all required energy services across household, productive and community uses

Attributes of the energy supply
1. Capacity
2. Duration/ Availability
3. Reliability
4. Quality
5. Affordability
6. Legality
7. Convenience
8. Health & Safety

MEASURING ENERGY ACCESS

NEW MULTI-TIER MEASUREMENT

New multi-tier approach measuring energy access as a continuum of improvement, based on the performance of the energy supply

7

WHY MEASURE ENERGY ACCESS

ASSESSING THE ENERGY ACCESS STATUS EX ANTE

- Detailed baseline data
 - Inform policy formulation
 - Facilitate investment planning
 - Improve project design
 - Better targeting of resources
 - Estimate the likely energy access impact of projects ex ante

WHY MEASURE ENERGY ACCESS

ASSESSING THE ENERGY ACCESS STATUS EX POST

- Ongoing data collection
 - Evaluate the contribution of projects to improving energy access
 - Improve accountability of energy providers and policy-makers
 - Better assess the linkages between energy access and poverty
 - Track progress towards achieving the SE4All goal

HOW ENERGY INTERVENTIONS INFLUENCE ENERGY ACCESS

ENERGY ACCESS WITHIN THE ENERGY RESULT CHAIN

HOW ENERGY INTERVENTIONS INFLUENCE ENERGY ACCESS

ALL ENERGY INTERVENTIONS CAN IMPROVE ENERGY ACCESS

Project Type	Grid Connections	Legality	Peak Capacity (W)	Duration (Hrs)	Evening Supply	Quality (Voltage)	Reliability (Outages)	Affordability
Grid Electrification								
Mini-Grid Electrification								
Off-Grid & Solar Lanterns								
Generation & X-Border T/M								
Transmission & Distribution								
Rural Feeder Segregation								
Energy Efficiency								
Regulations & Market Reform								

OBJECTIVE

- Develop a measuring method that:
 - Is technology and fuel neutral
 - Has energy applications at its core
 - Can be applied to household, but also productive & community uses
 - Enables calculation of an over-arching index of access to energy, as well as disaggregated analysis

MULTI-TIER MATRIX MEASURING ACCESS TO HOUSEHOLD ELECTRICITY

	Tier 0	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5	
Capacity	No electricity	1-50W	50-500W	500-2000W	>20	00W	
Duration	<4hrs	4-8	3hrs	8-16hrs	16-22hrs	>22hrs	
Reliability		Unschedu	led outages		No unscheduled outages		
Quality	l	ow quality			Good quality		
Affordability	Not affor	dable		Afford	able		
Legality		Not legal			Legal		
Health & Safety		Not cor	venient		Convenient		

MULTI-TIER MATRIX MEASURING ACCESS TO HOUSEHOLD COOKING SOLUTIONS

	Tier 0	Tier 1	Tie	er 2		Tier 3	3	Т	ier 4	Tier 5		
Capacity	P	rimary solutior	n not a	dequa	te*				Adeq	uate		
Availability	Р	rimary solutio	n not a	ot available*					Available			
Quality		Low quality					(Good quality				
Affordability	Pr	imary solution	not af	fordat	ole*				Afford	lable		
Convenience		Not con	venien	nt					Conve	nient		
Health &	Self-made	Manufactured		Biog	;as/L	.PG/El	ectri	city/I	Natural (Gas		
Safety**	stove	stove					Stov	es				
			Tier 0	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5				
	k	Indoor air pollutior	י ר									
		Overall pollution		Baso	don	tost ros	ulte					
	/	Efficiency		Dased		LEST TES	suits					
	V	Safety										

*When the the primary is deficient, a secondary solution is regularly used.

**If the cook stoves have been tested, the tier is based on results for indoor air pollution, overall pollution, efficiency and safety.

INDEX OF ENERGY ACCESS

Index of Access to Energy Σ(P_i x K)

P_i = Proportion of households at the kth tier K = Tier number {0,1,2,3,4,5}

- Can be aggregated across geographies Village, district, province, country or region
- Can be tracked over time

INDICES BY DIMENSIONS OF ENERGY USE

TOOLS AND RESULTS

APPLYING THE MULTI-TIER FRAMEWORK

ELISA PORTALE, ENERGY ECONOMIST (ESMAP/SEGEN)

Where and how the multi-tier can be applied

ENERGY ASSESSMENT IN THE COUNTRIES

Household Energy survey questionnaire:

- CORE questions (multi-tier assessment): 12 for electricity, 13 for cooking
- Non-Core modules

The CORE questionnaire for energy assessment can be integrated in the following survey:

- A stand-alone energy survey
- Part of an ongoing survey linked to a project
- Part of a broader scope survey (LSMS...)

Important characteristics for the survey:

- Representative sample: composition and size (national/project level, rural/urban/peri-urban).
- Transparency in sample selection: information on the geographic location and project purpose
- Information on the periodicity of the survey (ontime survey or baseline and monitoring process)

Current situation of pilots

ONGOING AND PIPELINE PILOTS

Survey Status	Country	Area	Dimensions	Survey sample size
Completed	DRC	Kinshasa area	Household cooking Household electricity	2,500 HH 2,500 HH
Completed	Uganda	National	Household Cooking	3,000 HH
Completed	Ethiopia	Amhara Region	Household cooking Household electricity	100 HH
Ongoing	Rwanda	Northern, Western and Southern provinces	Household cooking	N/A
Pipeline	India	Jharkhand Region	Household cooking Household electricity	1,800 HH

Measuring access to Electricity

Data yet to be validated. Not to be quoted.

KINSHASA AREA (DRC)

Multi-tier measure

AMHARA REGION (ETHIOPIA)

Multi-tier measure

Data yet to be validated. Not to be quoted.

Disaggregated analysis: access to Electricity

KINSHASA AREA (DRC)

Duration:Hours of electricity per		<4 HO	JRS		4-8 H	IOURS		8-16 H	OURS 16-	22 HOURS > 22	HOURS
dayHours of electricity during		Less than 2	hours				2 hours or	more			
the evening	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Reliability: • Number of unscheduled		1	More than 3					Less than 3			
 Duration of each interruption 			More than 3	30 mins				Less than 3	30 mins		
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Quality: • Voltage problems					Inadequa	te				Adequat	te
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Affordability:	No <mark>t Afford</mark> a	able				Affordable					
HH income >= 10*365kWh*tariff	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Legality/Formality:	Notlegal					lenal					
Legality of grid connection						Legal		7.00/			
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%

Disaggregated analysis: access to Electricity

AMHARA REGION (ETHIOPIA)

 Duration: Hours of electricity per day Hours of electricity during the evening 	0%	<4 HOURS Less th 10%	4-8 HOURS han 2 hours 20%	8-16 HOURS	40%	16-22 HOURS	2 hour 60%	rs or more 70%	> 22 H 80%	OURS 90%	100%
 Reliability: Number of unscheduled interruptions per week Duration of each 		M	ore than 3	Moret	20 min		Le	ss than 3	Loss	than 20 mins	
interruption	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Quality: Voltage problems 	0%	Yes 10%	20%	30%	40%	50%	No 60%	70%	80%	90%	100%
Legality/Formality: Legality of grid connection		Not Leg	al				Legal				
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%

Measuring access to Modern Cooking

Data yet to be validated. Not to be quoted.

KINSHASA AREA (DRC)

Multi-tier measure

AMHARA REGION (ETHIOPIA)

Binary measure

Multi-tier measure

Disaggregated analysis: access to Modern Cooking

KINSHASA AREA (DRC)

Data yet to be validated. Not to be quoted.

Capacity												
 Use of secondary 			Second	ary Stove			No Secor	idary stove				
cookstove	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
Availability/Afford		availabi	lity			afl	affordabilty				capacity	
ability/Capacity:	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
Quality: Poor fuel combustion 												
• Fuel collection: less than	>7 ho	urs				<7 hc	our					
7 hours per week												
Stove preparation: less than 15 minutes per	;	>15 minute	S			<	15 minutes	i				
meal	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	1009	
 Adequacy in the cooking time speed 												

Disaggregated analysis: access to Modern Cooking

AMHARA REGION (ETHIOPIA)

Data yet to be validated. Not to be quoted.

Capacity Use of secondary 			Secor	ndary Stove		No Secondary stove					
cookstove	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Availability/Afford		availal	bility	affordab	ilty			capacity			
ability/Capacity:	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Quality:											
Poor fuel combustion					Yes					No	
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Convenience:											
 Fuel collection: less than 7 hours per week 	>7 hc	ours				<7 h	nour				
 Stove preparation: less than 15 minutes per meal 			>1	5 minutes				4	15 minutes		
Adequacy in the cooking			No					Yes			
time speed	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%

Take home messages

Going beyond the binary measure and using a new definition of access with multi-tier measurement :

- is the way ahead to track energy access status across country and over time => will be used under SE4ALL, SREP, Lighting Africa and many other programs
- 2. provides more nuances information on different dimension of energy supply => better informed policy formulation/investment planning/project design
- 3. shows how any energy intervention can be an access project => to evaluate the contribution of any energy project in improving attributes of energy
- 4. Under Multi-tier, countries can set their own targets => by specific attributes, minimum tier of access or improvement in index

Pilot household energy survey Ethiopia

- using a tablet based survey tool -

Tim Raabe

Energising Development (EnDev)

General Information

24/02/2014

Pilot household energy survey Ethiopia

Tablet-App

Analysis: SE4ALL Ethiopia 2013

Survey Dashboard Histogram Pie Chart Bar Chart Bubble Chart Heatmap Geographic View

Change to View Mode

In this page you get to analyze all the results gathered from the questionnaires. Analysis does not include the questions with answers that are not numeric or a list of values. You can select to analyze the number of results with a histogram chart, specific values of variables with a pie chart; show a variable against another in a bar chart or more variables in a bubble chart.

Type presentation title nere

TECHNICAL ASSISTANCE PACKAGE

ESMAP WILL PROVIDE SUPPORT FOR:

- 1. The implementation of household energy surveys by providing standardized household energy questionnaires, and assistance with survey administration
- 2. Diagnostic assessment of the energy situation of selected areas by applying the multi-tier measurement of energy access for household, productive and community uses of energy. The report will include disaggregated analysis, highlighting deficiencies of the performance of the electricity as well as other fuels.
- An approximate estimation of cost for a household survey ranges from \$50,000-200,000 per country, depending on the sample size.

33

For any further questions, please contact:

Nicolina Angelou <u>nangelou@worldbank.org</u> Elisa Portale <u>eportale@worldbank.org</u> Tim Raabe <u>Tim.Raabe@giz.de</u>

Thank You.

The World Bank | 1818 H Street, NW | Washington DC, USA www.esmap.com | esmap@worldbank.org

