How Fit are Feed-in Tariff Policies?

Fan Zhang Energy Economist, World Bank September 2012

Outline

- Production-based renewable incentives
- Design of feed-in tariffs (FiT)
- How to set the right level of FiT support?
- Policy implications
- Q&A

Production-based Renewable Incentive Policies

Price-based

- Feed-in tariffs (FiT)
 - Guaranteed price premium above the electricity market price
 - Guaranteed purchase by utilities

Quantity-based

- Renewable portfolio standards (RPS)
- Competitive bidding

FiT is the most popular RE incentive policy

46 European countries from 1991-2010

Design of Feed-in Tariffs (I)

Price differentiation

- Installation type
 - Residential vs. utility
 - > PV rooftop vs. ground-mounted
 - Biomass type of feedstock
- Location
 - > Greece offers separate rates for mainland vs. island
- Size
 - Restrict FiTs to installations below a certain size (e.g. <20MW)</p>
 - Size-specific rates

German 2004 Biogas Tariffs			
Generator Size	Generator Size FiT (€/kWh)		
< 150 kW	0.117		
> 150 kW, <500 kW	0.092		
> 500 kW, < 5 MW	0.083		
> 5 MW, < 20 MW	0.078		

- Resource intensity
 - German and French FiTs are differentiated by resource intensity

Design of Feed-in Tariffs (II)

Time trends and cost containment

- Digression rates
 - German wind FiT rates decrease by 2% annually
 - > Germany PV FiT degression rates are determined by the amount of new installation

Indexing to inflation

- Many FiT policies are not indexed to inflation
- French FiTs raises rates annually by 60% of inflation on new contracts and 70% on existing contracts

• Capacity/generation caps or triggers

Italy's solar program limits the total capacity at 1,200 MW.

Croatian FiTs for Hydro > 1 MW, ≤ 10 MW				
Plant's Cum. Annual Gen.	FiT (HRK/kWh)			
≤ 5 GWh	0.69			
> 5 GWh, ≤ 15 GWh	0.55			
> 15 GWh	0.42			

- Funding triggers
 - > Swiss FiTs have a budget constraint

Types of Feed-in Tariffs

Standard FiT

• FiT rates are fixed over the contract

Variable FiT

- FiT rates vary annually according to electricity market changes
- Example: Germany's pre-2000 FiT
- Premium FiT
 - A fixed premium on top of a variable electricity price

How to set the "right" level of FiT

- The Policy Questions
 - How responsive is investment to the level of FiT?

Europe's Largest Solar Power Plant in Ukraine

Higher wind installation under FiT

A glance at the data (I)

1. Renewable policies are effective in stimulating clean energy deployment

		-	
Variable	FiT		No Policy
Annual wind installation (MW)	301	298	3.33
Annual wind generation (TWh)	2.73	1.93	0.024
FiT rate / TGC price (euro cents/kWh)	6.67	6.03	-
Avg. end-use electricity price (euro cents/kWh)	7.88	9.04	5.74
Avg. industrial natural gas price (euro/GJ)	5.32	5.74	4.5
Total electricity output (TWh)	119.65	217.15	48.9
Wind power potential (TWh)	1433	3021	1156.4
Competitive wholesale market (0/1)	0.51	0.73	0.06
Obs.	301	41	545

* Differences between "No Policy" and "FiT" and "TGC" in all variables are statistically significant at

2. Many factors affect the political appeal of a renewable policy: renewable endowment, electricity demand and prices

A glance at the data (II)

Variable	Standard FiT	Variable FiT	Premium FiT
Annual wind installation (MW)	325	102.60	85.86
Annual wind generation (TWh)	4.16	0.71	1.89
FiT rate / TGC price (euro cents/kWh)	6.69	6.62	4.22
FiT contract length (years)	14.01	9.07	6.88
Grid access	0.99	1	0.5
Avg. end-use electricity price (euro cents/kWh)	7.79	7.86	8.23
Avg. industrial natural gas price (euro/GJ)	5.61	4.97	4.9
Total electricity output (TWh)	152	88.04	70.46
Wind power potential (TWh)	1522	1042	1836
Competitive wholesale market (0/1)	0.58	0.24	0.77
Obs.	165	88	48

3. Policy certainty is an important determinant of renewable development

The level of feed-in tariffs is a poor predictor of deployment

Econometric Analysis

Estimation Model

 $W_{it} = \beta_0 + \beta_1 F i T_{it} + \beta_2 E_{it} + X_{it} \gamma + c_i + v_t + u_{it}$

Methodology

- Dynamic panel data model
- System Generalized Methods of Moments
- Instrumental variables: lagged variables and natural gas prices

Results

- Higher FiT rates do not necessarily lead to higher levels of wind installation.
 - Non-economic barriers
 - Overly generous subsidies may have driven up investment costs by allowing inefficient investment in low wind-speed sites or rent-seeking
- The contract length and guaranteed grid access have a positive and statistically significant effect on wind capacity growth.
 - A 1% increase in contract length increases annual wind installation by 0.3%
 - Providing grid access almost doubles wind installation
- The higher the electricity prices the lower the wind installation; but with a competitive wholesale market, the higher the electricity prices, the higher the wind installation
- The higher the variable FiT rates, the lower the wind generation after controlling for wind capacity
 - High FiT rates allowed inefficient investment in low-wind-speed sites.

Policy Implications

- FiT policies are effective in promoting RE but may not be cost-effective.
- Market structure and the length of the FiT are equally important in determining policy effectiveness.
- To maintain a predictable and stable policy environment can enhance policy effectiveness at lower costs.

References

- Fischer, Carolyn and Preonas, Louis. 2012. "Feed-in tariffs for renewable energy: Effectiveness and social impacts." Background paper for ECA green growth study.
- Zhang, Fan. 2012. "How FiT are Feed-in Tariff Policies? Evidence from the European Wind Market." World Bank Policy Research Working Paper.