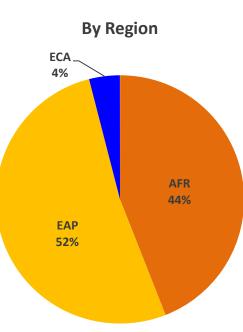
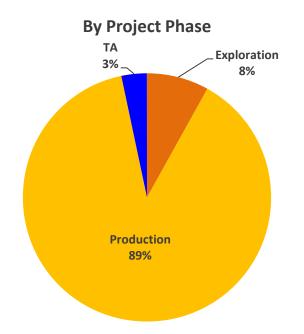


MAGNUS GEHRINGER AND VICTOR LOKSHA ESMAP/WORLD BANK GEOTHERMAL TRAINING DAYS JUNE 2012

Geothermal Handbook: Planning and Financing Power Generation A Pre-launch

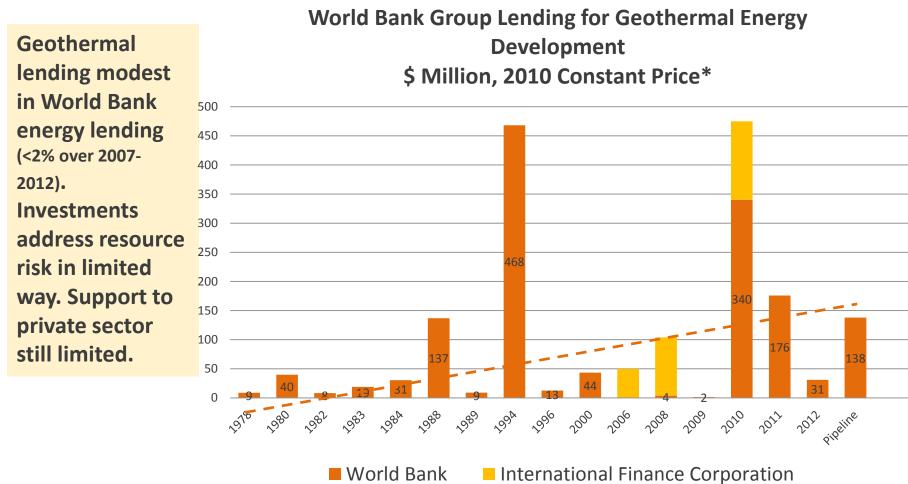

Agenda


- ESMAP AND WORLD BANK GEOTHERMAL PROJECTS IN PAST AND PRESENT
- What is geothermal?
- GEOTHERMAL RESOURCES AND POWER GENERATION
 GLOBALLY
- RISKS, COSTS AND FINANCING OPTIONS
- Accelerating geothermal power generation in developing countries by a Global Geothermal Development Plan (GGDP)

The WBG: Three Decades of Financing Geothermal...

Investment concentrated geographically and in development phase

AFR : Djibouti*, Ethiopia, Kenya EAP: Indonesia, Philippines ECA: Armenia, Lithuania, Poland (low temperature)


*Grouped under MENA countries within the World Bank

	Exploratory phase	Production phase	ТА	Total
AFR	73.72	557.66	22.15	653.53
EAP	44.75	701.64	25.54	771.93
ECA	1.50	56.40	1.50	59.40
Total * (US\$ millions)	119.97	1,315.70	49.20	1,484.86

*IBRD, IDA, GEF only.

... Growing Slowly

* Do not include recent financing from Climate Investment Funds through the World Bank (Indonesia, Ethiopia, Kenya, Turkey)

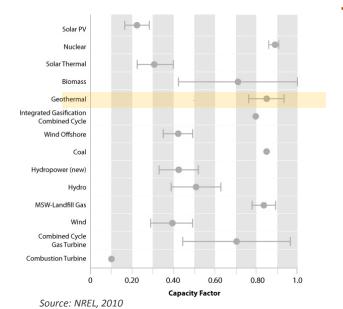
ESMAP

- The Energy Sector Management Assistance Program (ESMAP) is a global, multi donor technical assistance program aimed at promoting environmentally sustainable energy solutions for poverty reduction and economic growth.
- ESMAP's product lines include targeted technical studies, strategic advice, best practice dissemination, and pre-investment work.
- ESMAP provides technical assistance (TA) in the field of geothermal power generation to Kenya, Ethiopia, Djibouti, Malawi, Rwanda, Central-America, Indonesia and Vanuatu.
- Iceland has recently offered to assist our East-African Client countries in geothermal resource mapping and exploration.

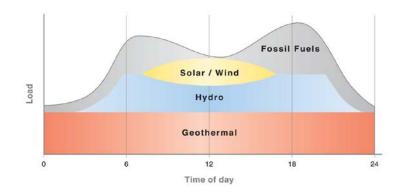
Handbook on Geothermal Power Generation

ESMAP publication by Magnus Gehringer and Victor Loksha

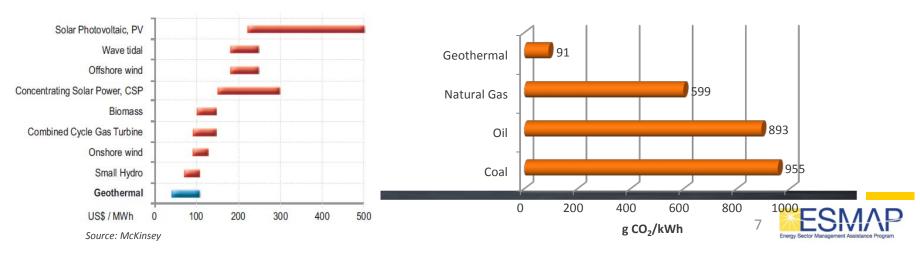
Provides advice to developing country Governments & WB staff working on geothermal projects

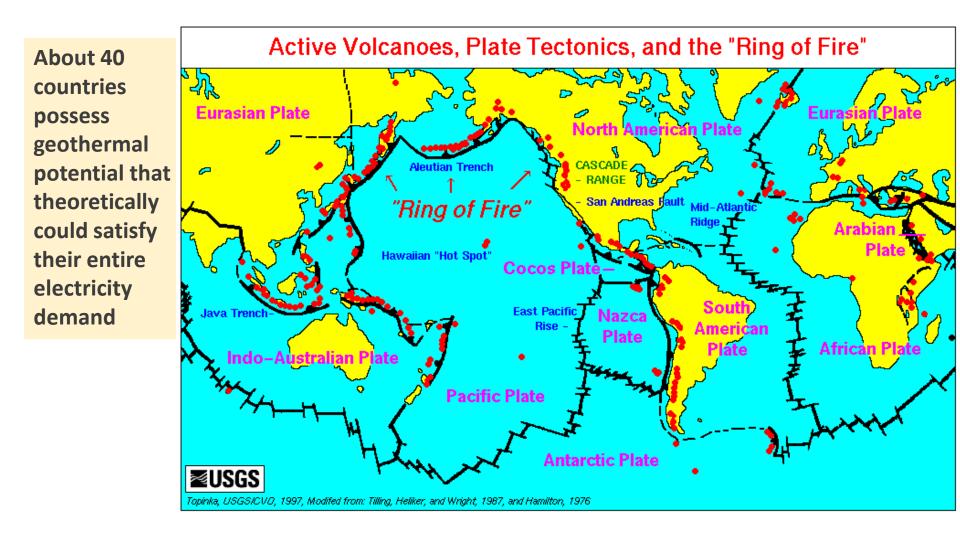

Includes basic issues of geothermal, economic and financial discussions, risks during all project development phases

Discusses the role of the public and the private sector

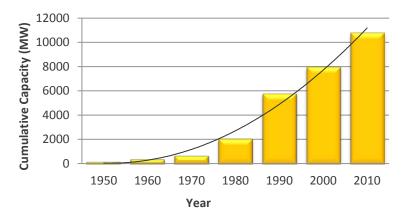


Why Geothermal Energy?


2. Low levelized cost of generation


1. Highly reliable electricity

3. Low CO₂ emission factor

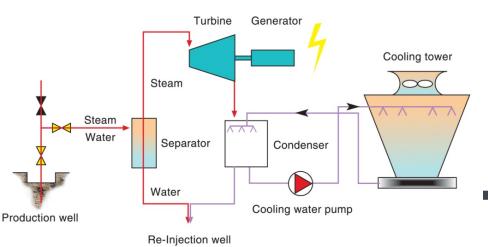

Where is Geothermal Energy Found?

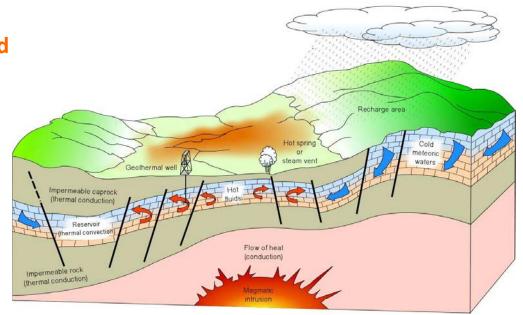
Where is Geothermal Energy Utilized?

Geothermal energy is underdeveloped. The exploitable geothermal energy potential in several areas is far greater than the current utilization

Global geothermal capacity 1950 to 2010

	Installed in 2010	Country total	Geothermal	Share of geoth.	Population (2008)	MWe inst. per
	MWe	power gen. GWh	gen. GWh	in total gen. %	million	million inhabitants
United States	3093	4,369,099	17,014	0.4	307	10
Philippines	1904	60,821	10,723	17.6	90.3	21
Indonesia	1197	149,437	8,297	5.6	227.3	5
Mexico	958	258,913	7,056	2.7	106.4	9
Italy	843	319, 130	5,520	1.7	59.8	14
New Zealand	628	43,775	4,200	9.6	4.3	146
lceland	575	16,468	4,038	24.5	0.3	1917
Japan	536	1,082,014	2,752	0.3	127.7	4
El Salvador	204	5,960	1,519	25.5	6.1	33
Kenya	167	7,055	1,180	16.7	38.9	4
Costa Rica	166	9,475	1,131	11.9	4.5	37

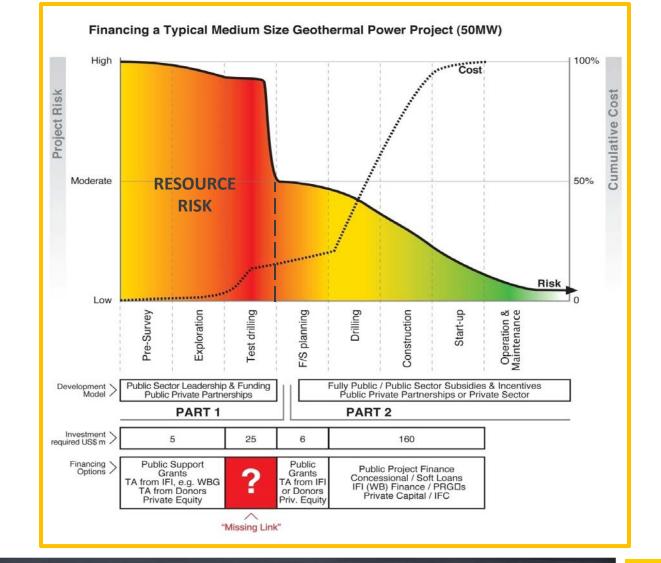

What is Geothermal Energy? – "Mining Heat"


Main components of a volcanic-related system:

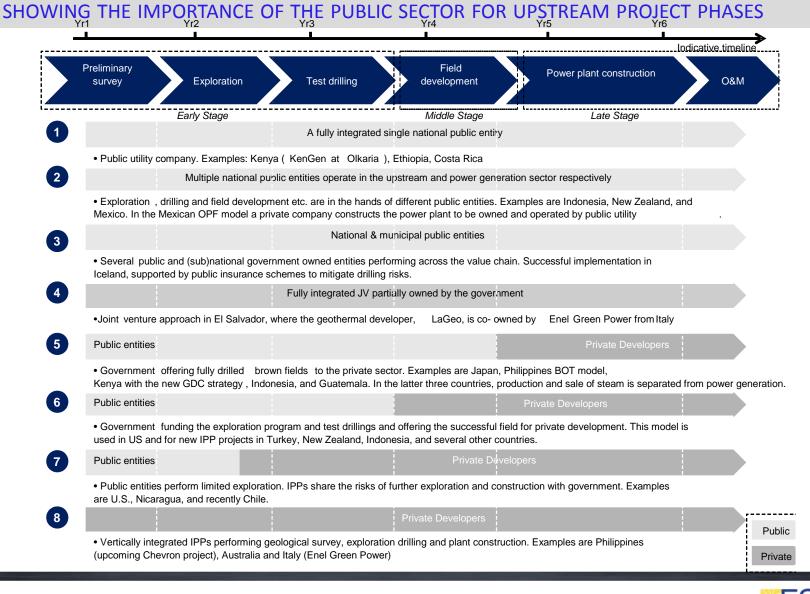
- magmatic intrusion
- geothermal reservoir
- fresh water/ precipitation
- geothermal wells

Power plant

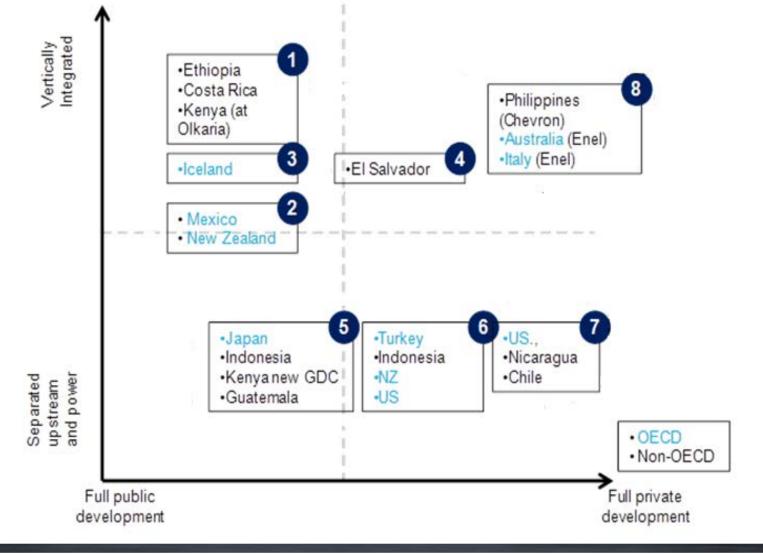
High Up - Front Investment Costs


 \bigcirc

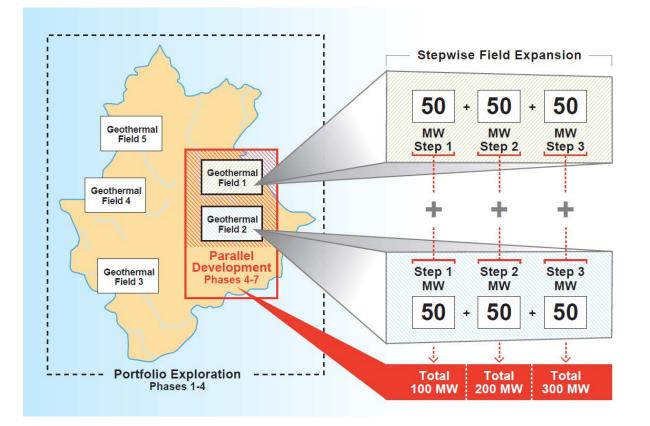
About 10% of the		Investment costs for geothermal (50 MW plant)						
capital costs				Medium				
are at risk	P	hase / Activity	Low Estimate	Estimate	High Estimate			
as they are	P 1	Preliminary survey, permits, market analysis	1	2	5			
incurred up-	r 2	Exploration	2	3	4			
front to	т з	Test drillings, well testing, reservoir	11	18	30			
validate the	1	evaluation						
resource	4	Feasibility study, project planning, funding, contracts, insurances, etc.	5	7	10			
	P 5	Drillings (20 boreholes)	45	70	100			
	A 6 R	Construction (power plant, cooling,	65	75	95			
	T 2	infrastructure, etc.) Steam gathering system and substation, connection to grid (transmission)	10	16	22			
	7	Start- up and commissioning	3	5	8			
		TOTAL	142	196	274			
		In million US\$ per MW installed	2.8	3.9	5.5			


Financing Gap in the Test Drilling Phase

The "missing link" creates a bottleneck which normally only high-middle-income countries are able to overcome


Models of Geothermal Development,

13


Application of Financing Models in Countries

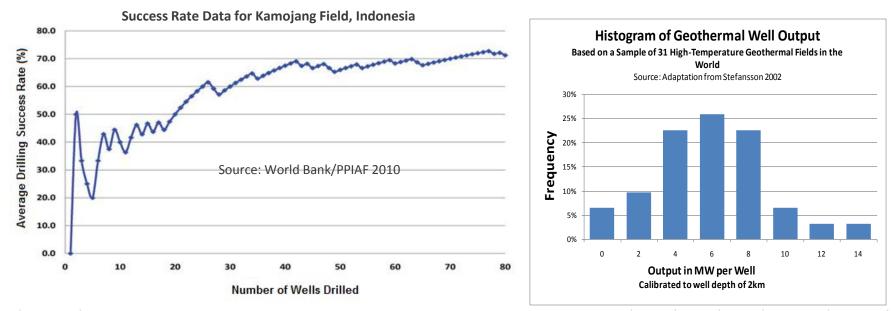
Investment Portfolio to Reduce Risk

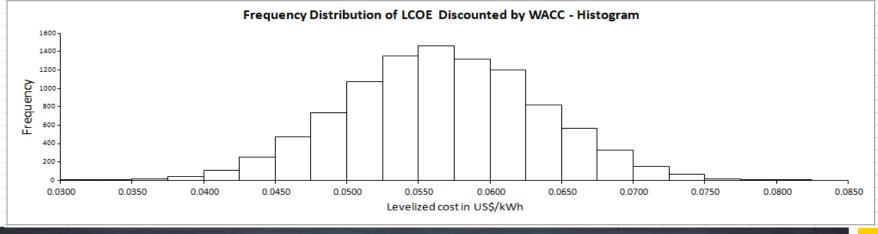
- Portfolio approach to reduce risk
- Multi-country global approach to ensure volume
- Strict selection criteria to limit exposure within single projects
- Identifying options for parallel development of two or more fields to reduce resource risks

Geothermal Power Generation Costs Observed Internationally, 2010

Country	Project and / or size	US\$ cents per kWh	Comments
Costa Rica	4 projects total 200 MW	4 – 5	Figures from ICE
Philippines	Existing total 2,000 MW	4 – 5.5	Privately owned, but mostly built by public companies and then privatized. Own estimate built on utility power purchase price
Indonesia	Total 1,000 MW	4.5 – 7 <9.7	Estimate built on study Tariff ceiling set by government
Ethiopia	Planned 35 MW plant	5 – 8	Estimate
Kenya	Existing 130 MW units Planned 280 MW in 4 units	4.3 - 6.4 < 8	KenGen's Expansion Plan 2008 Tariff ceiling set by government, but 10- 20% lower according to Kenyan sources
Iceland	500 MW in large units	3 - 5	Estimate. Power sold to aluminum companies for contract price.
Mexico	960 MW in total	8	Average costs for all units

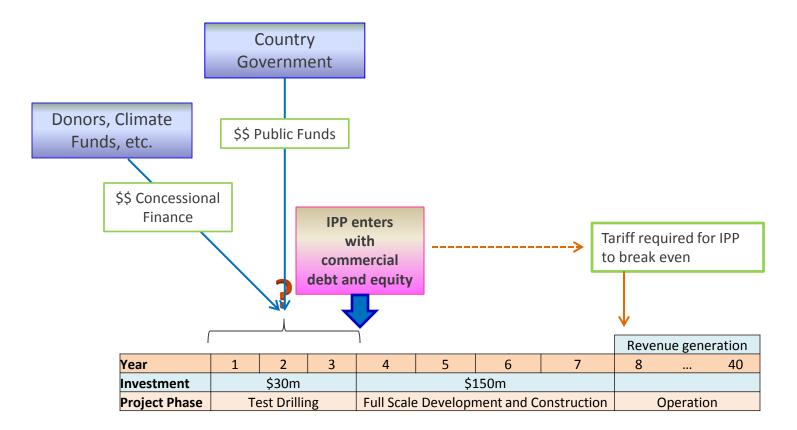
Generation Costs are Competitive...


WHAT IS THE DOWNSIDE?


- Resource/Exploration Risk
- Financing Risks
 - High Upfront Cost
 - Long Lead Time
- Completion/Delay Risk
- Operational Risks
- Off-take Risk and Price Risk
- Regulatory Risk
 - Institutional Capacity Constraints
- Other Risks

Risks Lead to Uncertainty in Generation Costs

Levelized Cost of Energy (LCOE)


... DOES NOT TELL FULL STORY ABOUT INVESTOR'S RISK

- Discounting at public or weighted average cost of capital (WACC) understates required return for an equity investor
- Projects with long lead time (such as geothermal) are especially vulnerable to inadequate discounting of cash flows
- LCOE takes economic cost perspective disregarding financial cost components relevant to equity investor (taxes, depreciation)

- Levelized tariff (LT) calculation based on required return to equity better serves a private investor's purposes
 - LT is the break-even tariff generating required rate of return for an equity investor
 - Free cashflow to equity is the basis for calculation
 - The required rate of return on equity (Re) is the discount rate which may be as high as 25% or more due to high risk premium

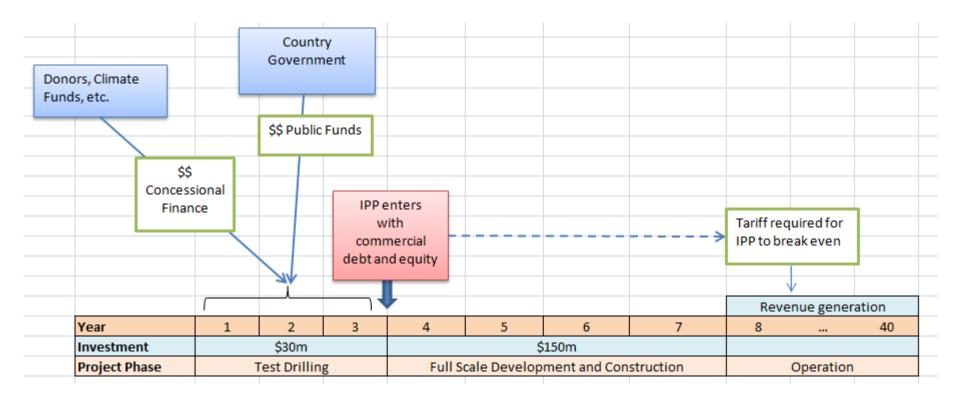
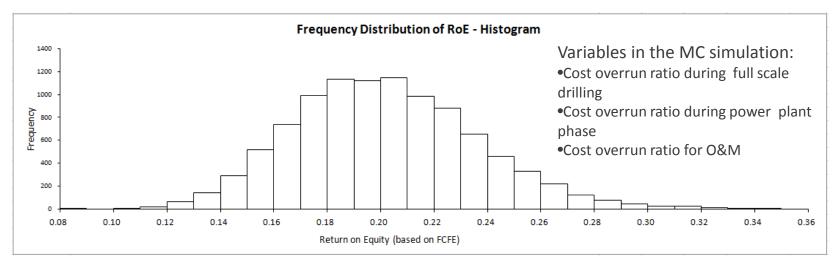


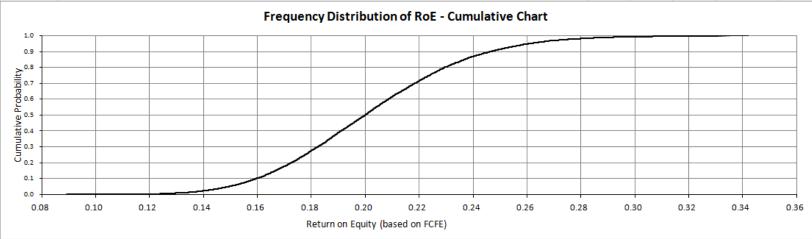
Illustration: An Independent Power Producer (IPP) Entering Project After Test Drilling

Illustration: An Independent Power Producer (IPP) Entering Project After Test Drilling

Illustration: An IPP with Re = 25% Entering After Test Drilling

A	В	С	D	E	F	G	Н	l.
Cashflow Model: Hotland Geot	hermal Exploratio	n Drilling Proje	ect					
2 Real terms (constant 2012 dollars)								
Government Support Case: Grants and S	Soft Loan for Explorate	ory Drilling						
1	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year
5	2012	2013	2014	2015	2016	2017	2018	201
Target installed capacity, MW	50.00							
7 Total investment cost, US\$ million	181							
Total capital costs in US\$ million per MW	3.62							
Required return on equity	25.0%				25.0%			
0 Interest rate of First Loan	2.75%							
1 Interest rate of Second Loan	6.00%				6.00%			
2 After-tax Interest rate of the loan	4.50%							
3 First Loan maturity period, years	15							
4 Second Loan maturity period, years	15							
5 Corporate income tax rate	25%				25%			
6 WACC	10.376%				10.650%			
7 Depreciation period, years	20							
8 Equity share in after-grant capex		9/////////////////////////////////////			0.300	0.300	0.300	0.30
9		/ Tip: Set this	to bring					
0 Installed capacity, MW	50.00	/ <mark>to zero the</mark>	<u>-</u>					
1 Plant capcity factor	90%	calculated u						
2 Number of hours per year	7,884	cashflow to	equity.					
3 Power output, GWh		2	in the second					
4 Tariff, US\$/kWh	0.1112		-					
← ► ► Timeline and Players Diagram Full p	roject CF model / LCOE	MCarlo Discounted by	WACC / LCOE MC					




Illustration: An IPP with Re = 20% Entering After Test Drilling

A	В	С	D	E	F	G	Н	1
1 Cashflow Model: Hotland Geoth	ermal Exploratio	n Drilling Project	t 👘					
2 Real terms (constant 2012 dollars)								
3 Government Support Case: Grants and So	oft Loan for Explorato	ory Drilling						
4	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
5	2012	2013	2014	2015	2016	2017	2018	2019
6 Target installed capacity, MW	50.00							
7 Total investment cost, US\$ million	181							
8 Total capital costs in US\$ million per MW	3.62							
9 Required return on equity	25.0%				20.0%			
10 Interest rate of First Loan	2.75%							
11 Interest rate of Second Loan	6.00%				6.00%			
12 After-tax Interest rate of the loan	4.50%							
13 First Loan maturity period, years	15							
14 Second Loan maturity period, years	15							
15 Corporate income tax rate	25%					Tariff, US\$/k	Nh	
16 WACC	10.376%			Re = 25%	6	0.1	112	
17 Depreciation period, years	20			Re = 20%	6	0.0	962	
18 Equity share in after-grant capex				Re = 15%	6	0.0	327	
19								
20 Installed capacity, MW	50.00			Compari	ing results of F	Re = 25% and Re	= 20%	
21 Plant capcity factor	90%			Comparing results of Re = 25% and Re = 20% Tariff difference, US\$/kWh			0.0149	
22 Number of hours per year	7,884							
23 Power output, GWh					e difference, l			5,891,911
24 Tariff, US\$/kWh	0.0962			NPV of revenue difference, US\$ 53,974				53,974,806
	ject CF model LCOE	MCarlo Discounted by W/						

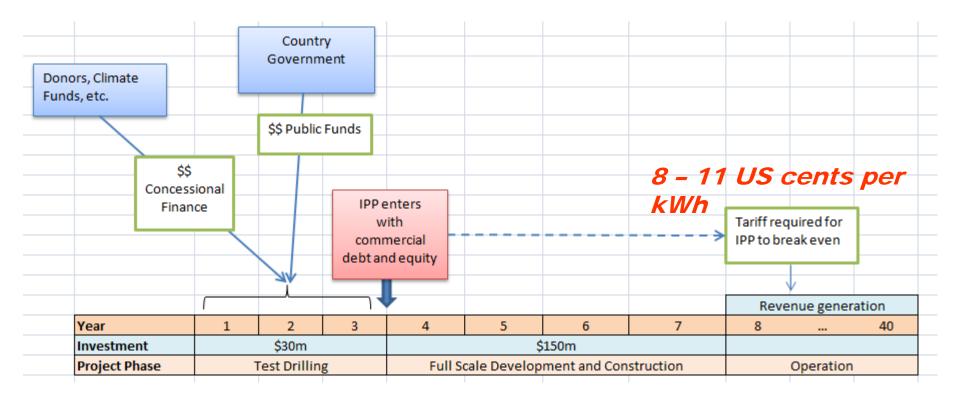
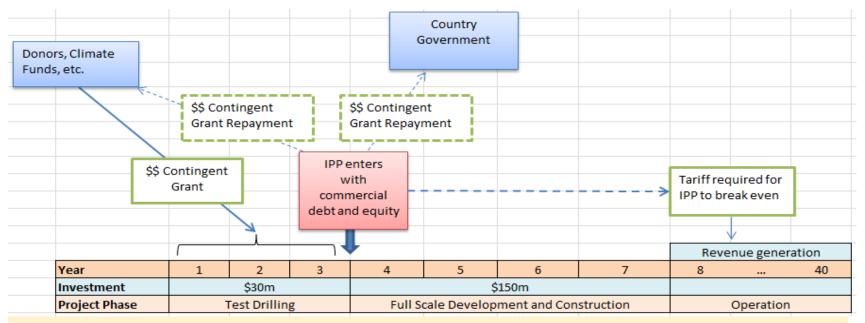

Illustration: Expected Return on Equity (RoE) for an IPP at Tariff of 9.62 US cents/kWh



Illustration: An IPP with Re = 15 - 25% Entering After Test Drilling


Hypothetical: An IPP with Re = 25% Entering BEFORE Test Drilling

- Much higher levelized tariff (LT) is required because:
 - Lead time is longer by 3 years
 - Required rate of return on equity (Re) is higher (25%) due to high risk premium of early entry
 - The \$30m cost of exploration is still ahead
 - Result: LT >14 US cents/kWh!

Possibilities for Innovative Concessional Financing from Donors

•Required levelized tariff (LT) is reduced because:

- Lead time is shorter by 3 years
- Required rate of return on equity (Re) is lower than 25% and equal to 20% or 15% due to reduced risk
- Multi-year amortization of contingent grant is possible
- Some of the \$30m cost of exploration may have been pure grant financed making it a sunk cost for the IPP.

Possible Designs for a Donor-supported Geothermal Development Facility

Possible designs for a donor-supported geothermal development facility include:

- a direct capital subsidy/grant facility;
- a contingent grant facility;
- a loan (on-lending) facility; and
- a risk guarantee/insurance facility.

Any of these designs can reduce the private investors' risk and thus reduce the risk premium for the return on equity and the overall cost of capital, opening up new opportunities for scaling up geothermal power.

MAGNUS GEHRINGER: MGEHRINGER@WORLDBANK.ORG VICTOR B. LOKSHA: VLOKSHA@WORLDBANK.ORG

Thank You.

The World Bank | 1818 H Street, NW | Washington DC, USA www.esmap.com | esmap@worldbank.org

