Overview of Solar Guidebook and Knowledge Management Project
Sustainable Business Advisory

April 2012
Knowledge Management Project - the Aim

“to build capacity, capture lessons learned and disseminate and share knowledge on the Indian PV market with the aim of supporting future solar PV projects by IFC and other market players”
Utility Scale Solar Power Plants

- The guidebook can help!
- For example:
 - Interface risks? See:
 - Section 9.2 Interface Management
 - Appendix C - EPC heads of terms
- www.ifc.org/publications/
Outline

• Presentation 1: Introduction and project overview
• Presentation 2: Completion / Technology Risks and Mitigation
• Presentation 3: Operating Risks and Mitigation
Utility Scale Solar Power Plants - a guide for developers and investors

- Solar PV technology
- The solar resource
- Project development
- Site selection
- Energy yield prediction
- Plant design
- Permits and licensing
- Construction
- Commissioning
- Operation and maintenance
- Economics and financial modelling

- Financing PV projects
- CSP annex
- EPC contract heads of terms
- O&M contract heads of terms
Risk Identification, Mitigation & Removal

<table>
<thead>
<tr>
<th>Category</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Risks</td>
<td>- Ground, weather, access and resource</td>
</tr>
<tr>
<td></td>
<td>- How does resource vary monthly and annually? What is the confidence level?</td>
</tr>
<tr>
<td>Completion Risks</td>
<td>- Issues that could affect construction milestones, particularly energisation</td>
</tr>
<tr>
<td>Technology Risk</td>
<td>- Is the technology proven? Is it suitable for the site?</td>
</tr>
<tr>
<td>Operating Risks</td>
<td>- Issues that could affect project revenue over the project life</td>
</tr>
<tr>
<td></td>
<td>- Are there contractual or physical mitigants?</td>
</tr>
<tr>
<td>Financial Risk</td>
<td>- Assess the volatility of cashflow</td>
</tr>
<tr>
<td></td>
<td>- Are mitigants in place?</td>
</tr>
</tbody>
</table>
Completion risks

- Participant capabilities
 - One of the most critical aspects
 - Sponsors/Contractors
 - Expertise
 - Experience
 - Managerial support
 - Technical support
 - Financial strength
 - Team or single person

- Site Investigations (remove unwanted surprises)
 - Foundation requirements
 - Soil type and consistency
 - Seismic zones
 - Former use of land
Former use of land
Completion risks

- Permitting
 - All required licences
 - Compliance with permit conditions for all phases of the project’s life
 - Environmental restrictions
 - No build periods
 - Buffer zones & screening
- Grid Connection
 - Timing of connection
 - Capacity and strength of grid
 - Is it contestable - who’s doing it?
 - Interfaces
 - Access routes to grid connection point (permits/way-leaves/road opening licences)
Completion risks

• Contract strategy (EPC or Multi-contract)
 ▪ Both have benefits & drawbacks
• Interfaces
 ▪ Design
 ▪ Construction
 ▪ Who handles them?
• Programme
 ▪ Realistic
 ▪ Lead times
 ▪ Critical path
 ▪ Weather delays
• Adequate liquidated damages
 ▪ Supply contracts
 ▪ EPC contract
Supply chain

<table>
<thead>
<tr>
<th>Module</th>
<th>Inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module supply eased since 2008, but quality tightening</td>
<td>Talk of quality inverters become issue</td>
</tr>
<tr>
<td>Range of quality</td>
<td>Range to types & quality/suitability</td>
</tr>
<tr>
<td>Bankability</td>
<td>Bankability</td>
</tr>
</tbody>
</table>

Supply chain problems lead to:

- Technology risks
- High prices / poor contract terms
- Extended project schedules
Completion

- **Trial Operation** (10 days - 4 weeks)
 - Reliability of:
 - Inverters
 - Tracking
 - Whole System
 - Performance Ratio Tests

- **Acceptance**
 - Provisional Acceptance
 - Final Acceptance (12-24 months later?)
Sapphire - construction / completion issues
Technology Risks - Modules

Reliability Issues

- Quick connector reliability
- Corrosion
- Improper insulation
- Delamination
- Glass discolouration
- Moisture ingress
- Bypass diode failure

loss of grounding

Physical degradation
IEC Certification?

Is IEC 61215 or 61646 proof that a product is durable and reliable?

- No
- Not intended, or capable of showing long term performance

- Some Accelerated Life Testing
 But not representative of real field conditions

IEC Proves that the module meets certain standards.
IEC Certification

Accelerated Life Testing with combinations of weather/climate
Suitable for location

- Salt mist corrosion testing
 - Within 3km of the shore
 - IEC 61701

- Snow loading
 - Testing to the higher load 5400Pa
Inverters - very important component!

Quality counts
Reliability
Suitability
Maintenance response
Inverters

- Temperature factors
 - Derating
 - Shutdown
- Enclosure ratings
 - Indoor / outdoor
- Cooling
 - Forced or natural
 - Fans - dusty environments
- Matched to the modules and strings
- Efficiency (Eu η%)
- Lifetime
 - Mid term replacements
Mounting systems

- Security of foundations
- Security of modules
Mounting systems

• Soil Consistency and Stability
• Domino effect
• Module bending stress
Tracking systems
Tracking systems

- Storm mode
 - Loss of tracking bonus
- Increased module temperature
- Tracking error (mismatch)
- Faults in moving parts
- Regional differences
- Operability in harsh climates
Key Messages
Risk Identification, Mitigation & Removal

Site Risks
• Ground, weather, access and resource
• How does resource vary monthly and annually? What is the confidence level?

Completion Risks
• Issues that could affect construction milestones, particularly energisation

Technology Risk
• Is the technology proven? Is it suitable for the site?

Operating Risks
• Issues that could affect project revenue over the project life
• Are there contractual or physical mitigants?

Financial Risk
• Assess the volatility of cashflow
• Are mitigants in place?
Post Construction Risk and Related Risk Mitigation
Sustainable Business Advisory

April 2012
Risk Identification, Mitigation & Removal

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Risks</td>
<td>• Ground, weather, access and resource</td>
</tr>
<tr>
<td></td>
<td>• How does resource vary monthly and annually? What is the confidence level?</td>
</tr>
<tr>
<td>Completion Risks</td>
<td>• Issues that could affect construction milestones, particularly energisation</td>
</tr>
<tr>
<td>Technology Risk</td>
<td>• Is the technology proven? Is it suitable for the site?</td>
</tr>
<tr>
<td>Operating Risks</td>
<td>• Issues that could affect project revenue over the project life</td>
</tr>
<tr>
<td></td>
<td>• Are there contractual or physical mitigants?</td>
</tr>
<tr>
<td>Financial Risk</td>
<td>• Assess the volatility of cashflow</td>
</tr>
<tr>
<td></td>
<td>• Are mitigants in place?</td>
</tr>
</tbody>
</table>
Energy Yield Prediction Accuracy

- Document Control (design version)
- Site characterisation
 - Tilt and orientation
 - Shading
 - Horizon
 - Near shading
 - Inter-row
- Solar Resource
 - Source of data
 - Period of data
 - Uncertainty in data
Energy Yield Prediction Accuracy

- **Losses**
 - Mismatch
 - Soiling
 - AC/DC cable
 - Temperature
 - Inverter
 - MPP Tracking
 - Transformer
 - Downtime

- **Module degradation**
- **Total prediction uncertainty**
Operating Risk

An experienced O&M contractor required to carry out maintenance tasks (both preventative and unscheduled)

- Regular inspections
- Module cleaning
- Hot spot detection
- Repairs
- Data collection and reporting
- Site security
- Maintaining a stock of spares

Inefficiencies in the operation and management of the project may reduce the cash-flow
Mounting Structures

Expensive remedial work can be avoided by checking for:

- Erosion of foundations
- Tightness of bolts (torque wrench)
- Changes in geometry
- Signs of corrosion
- Defects in galvanisation
Modules

- Check for:
 - Delamination
 - Glass fracture
 - Moisture ingress

- Clean modules
- Tighten bolts

- Check cable connectors
Inverters

- Cleaning
 - Air intake
 - Heat sink
 - Fans
- Tighten cable connections
- Check for:
 - Unusual noise
 - Discoloration
- Fuses
- Refurbish/replace
 - Mid term replacements?
 - Depends on site temperature factors
 - Mechanical ventilation? natural? aircon?
O&M contract

Operational risk mitigated by a robust O&M contract

- Clauses to mitigate plant underperformance
- Availability guarantee?
- Performance Ratio guarantee?
- Penalties for not achieving targets?
- Liquidated damages capped at 100% of contract price?
- Bonuses for exceeding targets?
Financial Risk

- Can the project generate sufficient revenue to cover annual debt payments and operating costs?
- To assess the financial risk carry out a “sensitivity analysis” i.e. modify financial model input parameters according to stress test scenarios
Financial Risk

• Stress test scenarios:
 ▪ Annual module degradation 0.3% - 0.5% - 0.8%
 ▪ O&M costs ±10%
 ▪ Inverter replacement- once over project life?
 ▪ Module soiling losses: 2% , 3%, 4% (O&M dependent)
 ▪ Unavailability: 99%, 98% and 97% (dependent on grid strength)

• Reduce the likelihood or impact of the risk
 ▪ Module cleaning linked to performance monitoring
 ▪ Include a maintenance reserve account

• Yield is often skewed to the summer months
 ▪ Include additional financial reserves to ease financial strain
Sapphire Industrial Infrastructures 5 MW PV Project, Tamil Nadu, India

- **Energy yield prediction**
 - Only one resource database considered
 - Uncertainty and confidence in prediction not considered (P90)

- **Operation and Maintenance**
 - Site found to suffer from extreme soiling - cleaned continuously
 - String level performance monitoring not undertaken
Key Messages

Resource risk:
- Uncertainty in energy yield prediction is dominated by resource uncertainty
- Use several resource datasets
- Understand the uncertainty and probability of exceedance in energy yield prediction (P90)

Operating risk
- Use experienced O&M contractors
- Have a well defined O&M contract with performance targets

Financial risk
- Carry out appropriate stress tests
- Reduce the likelihood or impact of stress scenarios
• **Leading independent engineering consultancy**

• **International**
 - Glasgow (UK Head Office)
 - Portland, Maine (America)
 - Paris (France)
 - Beijing (China)
 - Pune (India)
 - Wexford (Ireland)
 - Vancouver (Canada)

• **Experienced**
 - Over 100 responsive engineers and consultants

• **Professional**
 - Triple accreditation to British quality standards
Leading position by experience

We have consulted on over 65,000 MW of renewable energy in over 30 countries covering both project development and due diligence

Europe
- Belgium
- Bulgaria
- Estonia
- France
- Germany
- Greece
- Ireland
- Italy
- Malta
- The Netherlands
- Poland
- Portugal
- Russia
- Romania
- Slovakia
- Spain
- Sweden
- UK

Asia
- China
- India
- Korea
- Pakistan
- Sri Lanka
- The Philippines
- Turkey
- Vietnam

North America
- Canada
- USA

South America
- Brazil
- Chile
- Galapagos Islands (Ecuador)

Africa
- Angola
- Kenya
- South Africa

Oceania
- Australia
- New Zealand
Any questions?

ben.lumby@sgurrenergy.com
IFC Advisory engagement in India to support new markets and business models in Solar energy

Ongoing Activities

<table>
<thead>
<tr>
<th>Projects</th>
<th>Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sivaganga Project- 5MW Solar Project: Project operational (Advisory Services and Concessional Financing)</td>
<td>Trial of Thin Film technology under Indian conditions, Power performance validation, Resource Validation, Replication in Market</td>
</tr>
<tr>
<td>Green Telecoms - India: Expansion of new and existing business models for ‘greening telecom towers’ and ‘community power’</td>
<td>Regulation, Technology development, Business model development Replication in Market</td>
</tr>
<tr>
<td>Solar Manufacturing Project : Support to current Investment Climate efforts in Rajasthan (3GW+)</td>
<td>Business model, Economic model, Manufacturing, Technology</td>
</tr>
<tr>
<td>Solar Rooftop - Gujarat: PPP transaction being supported</td>
<td>Business model, Commercial model, Standards/guidelines, PPP Transaction, Replication in Market</td>
</tr>
</tbody>
</table>

Activities under development

<table>
<thead>
<tr>
<th>Projects</th>
<th>Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated Photo Voltaics</td>
<td>Facilitate pilot trials to validate financial and technical feasibility of business models Status - Help create business model for Solar CPV to have the technology adopted in India</td>
</tr>
<tr>
<td>Lighting Asia</td>
<td>Expand the usage of Solar Lanterns and the concept of micro grids through supporting business models and industry standards Status - Evaluating the market and the business models</td>
</tr>
<tr>
<td>Rooftop Solar expansion</td>
<td>Scale-up PPP business model Expansion into creating business models for private home owners to own and operate rooftop solar projects Status - Evaluating the different potential PPP transactions</td>
</tr>
</tbody>
</table>
Case Study - Thin Film 5 MW Solar Plant in India

• Client Need

✓ Financing support and advisory services for the largest grid connected solar thin film plant in India (at the time of completion). Supported replication of similar projects in the Indian market following construction of the power plant in Tamil Nadu, India, and managed QA for project management.

• Support provided

✓ Advisory support on project management, ESS and quality management and documented lessons learnt for dissemination
✓ Funds provided under IFC / GEF PVMTI program to support PV in India - IFC $4 million loan to Sapphire Industrial Infrastructures Limited, to support the build, completion, operation and connection of the plant to the Tamil Nadu grid; loan converted into a grant at the completion and grid interconnection of the plant

• Status/Expected Impact

✓ The project is the first large scale, thin film solar plant of its kind in India
✓ Help scale development of the solar power sector and the thin film technology on a utility scale in India
✓ Lessons learnt and knowledge shared from this project to support the sector as a whole