Transport electrification

きょうままったのにおは言語化を

Impact on the power system from the planners side

ESMAP REPORT LAUNCH Electric Mobility & Power Systems

Impacts of e-mobility on power system: considerations for planners

- Transport electrification (like other end use electrification) leads to two main changes for system balance :
 - Higher energy and peak demand
 - Modification of the load curve
- Need to be able to identify what those impacts will be for the development of the power system
 > EV tool + EPM

EV tool: translating transport strategies into power demand

- Mileage, Fuel efficiency, EV by type, vehicle fleet growth, share of EVs Projected Total EV load
- **Assumptions on charging behavior:** Plug in probability profiles, types of vehicles are associated with one or several PPPs
- And charging speeds Projected hourly load

ESMAP

THE WORLD BANK

Type of EV: Car, Use: Private (home charging)

EV tool

Source: UK Charging Behaviour Study Element Energy (2018)

Assessing which impact matters for decarbonization

In recent long term capacity expansion plans and decarbonization analyses, we tried to assess:

> The impact of EV deployment on power generation investment needs and emissions

> Strategies that would limit the additional costs

CCDR application

The case of Costa Rica: EV fleet

Nb of EVs per type

Case : Costa Rica

ise (2050)	Moderado (2050)	Agresivo (2050)
80,589	578,166	1,156,331
764	5,421	10,843
309	2,088	4,176
62	421	842
27,054	211,157	422,314
15,675	115,209	230,418
1	1	1
126,031	919,466	1,838,932

Transport mode

7.5%

Transporte de Carga

Liviana

2035	2050
30%	85%
30%	95%
Continua adopción	85%

The case of Costa Rica: Load

ESMAP

THE WORLD BANK

Peak demand 7% lower

Case : Costa Rica

Peak demand 11% lower

The case of Costa Rica: Impact on the power system

Case : Costa Rica

Where next?

• Extending the analysis to the grid

• Analyses with EPM and the EV tool:

- > This FY, improvement of the EV tool,
- Include seasonality of EV load variation (e.g. tourism)
- Co-optimize the power system and coordinated charging

7