EV transition potential and techno-economics in Maldives

Submitted to World Bank Group under contract no. 7202581

April 2023

Power sector analysis for VRE and EV integration	 Load Forecast and Network Analysis Least Cost Generation Expansion Operational Simulation - Dispatch Analysis 	Stakeholder	Engagement role
	 Capacity Impact of EV Load on Network 	World Bank Group	SRMI - ASPIRE - ARISE
Assessment of Electric Mobility Potential *Bat *Roo	 Techno-economics of EV transition Potential adoption scenarios Policy framework & financing strategy 	Ministry of Environment, Climate Change and Technology (MECCT)	Nodal agency for WBG investment plans
	 Electric bus Solar electric ferries Diesel-electric hybrid ferries Micro-mobility Grid impact 	Maldives Transport and Contracting Company (MTCC)	Public transport services - buses, ferries etc.
	 Public EV charging infrastructure Battery swapping Rooftop PV generation for EV charging 	STELCO	State owned integrated utility providing energy services in greater Male region
Scenario		FENAKA	State owned integrated utility providing energy services in Addu
planning to achieve Net Zero by 2030	 Scenario modelling with baseline and RE capacity additions through 2030 		

Background: Maldives primary energy mix and sectoral breakdown of GHG emissions

- Updated Maldives NDC (2020) aims to reach net-zero by 2030 with support and assistance from the international community
- Transportation and electricity generation accounted for 60% and 34% of energy use vis-à-vis emissions respectively in 2019
- Renewable power generation, energy storage and electric mobility are the principal pathways for achieving net-zero emissions in Maldives

Unit: Terajoules

ce:	UNSD	

Retail price of electricity	Min. (USD / kWh)	Max. (USD / kWh)
Domestic	0.10	0.28
Commercial	0.21	0.43
Government Institutions	0.21	0.28
Solar PPA price	~0.10 (ASPIRE)	

Source: STELCO; 1 MVR = 0.065 USD; World Bank

Summary: Financing potential for supporting EV transition in Maldives

Integrated approach towards EV and energy transition investments will drive long term value and netzero emissions

Item	Unit	Solar electric ferries	Diesel electric Hybrid ferries	Electric buses	Rooftop PV generation at MTCC terminals	Micro-mobility pilot
Fleet size	No.	13	3	53		300 electric bikes
No. of routes	No.	3	3	12		15 hubs
Solar PV installed capacity for zero emission operations	kWp	1307	94	1763	776	
Loan component	USD Million	9.77	1.10	12.08	0.94	0.69
Subsidy/grant component	USD Million	1.29	0.13	4.79		
Total investment potential	USD Million	11.07	1.23	16.87	0.94	0.69

1. Key findings and learnings for SIDS: Charging strategy for public EV fleets must ensure minimum disruption in operations and minimum curtailment of peak solar generation

2. Key findings and learnings for SIDS: Techno-economics must consider route specific attributes to derive energy profile and technical design parameters for EV transition planning

	Values	Unit
Route	<u> Male - Villingili</u>	-
Trip length	3.35	km
Total trips/ferry	17	#
Speed of E-ferry	<u>18.5</u>	km/hr
Trip time	<u>11</u>	min
Docking time	variable	min
Motor power	<u>106</u>	kW
LFP Battery capacity	<u>200</u>	kWh
Generation by Solar PV on average solar day	<u>86.7 (23%)</u>	kWh/day
Generation by Solar PV on low solar day	<u>37.5 (10%)</u>	kWh/day
Avg. energy per trip	<u>17</u> - <u>19</u>	kWh/trip
Grid energy requirement on average solar day	<u>294</u>	kWh
Grid energy requirement on low solar day	<u>320</u>	kWh
LFP Battery C-rating	<u>0.5</u>	С
LFP Battery Round trip efficiency	<u>85%</u>	%
Lower SoC limit	<u>20%</u>	%
LFP Battery energy density	<u>100</u> Wh/kg	

Low solar generation Route-2

NOTE: Battery annual charge/discharge cycles: 730

Page 6 29 May 2023

3. Key findings and learnings for SIDS: Grid impact from charging solar electric ferries is a factor of daily total distance travelled and solar resource availability

	Route-1	Route-2	Route-3	Total
Total Ferries	3	8	2	13
Total annual grid energy (kWh)	5,29,769	9,15,255	3,11,908	17,56,932
Peak load on grid (kW)	428	800	200	1,228
Solar DC capacity required to meet the excess demand (kW)	332	574	196	1,102

4. Key findings and learnings for SIDS: Coordinated charging induced from time-of-day tariff incentives can help optimise battery storage requirement in power system capacity expansion

Greater Male: BAU case dominated by home charging

Addu: BAU case dominated by home charging

Greater Male: Coordinated case dominated by public charging

Addu: Coordinated case dominated by Public charging

5. Key findings and learnings for SIDS: Cumulative grid impact from EV transition planning in Greater Male and Addu grids

6. Key findings and learnings for SIDS: Rooftop PV generation at bus/ferry terminals can support affordable access to renewable energy for EV fleet charging

MTCC Site description	AC capacity (kWp)	Annual Generation Potential (Million kWh)
Keyligematha Bus Terminal	60	0.11
Henveyru Ferry Terminal	100	0.20
Hulhumale Ferry Terminal	150	0.26
Mafaanu Bus terminal	120	0.22
Mafaanu Ferry Terminal	40	0.08
Minibus Parking	120	0.22
Thilafushi Ferry Terminal	30	0.05
Villingili Ferry Terminal	50	0.10
Total	670	1.25

- Access to affordable round the clock solar / hybrid electricity is fundamental to accelerated zero-emission EV transition
- Grid banking of solar power generation can complement any coincidence mismatch in PV generation and EV charging patterns

3. Hulhumale Ferry Terminal Design Studio (thesolarlabs.com)

4. Mafaanu Bus Terminal Design Studio (thesolarlabs.com)

6. Minibus Parking Design Studio (thesolarlabs.com)

2. Henveyru Ferry Terminal Design Studio (thesolarlabs.con

Keyligematha Site 1.

8. Viligilli Ferry Terminal 5. Mafaanu Ferry Terminal Design Studio (thesolarlabs.com) Design Studio (thesolarlabs.com)

Design Studio (thesolarlabs.com)

Page 10

Ernst & Young LLP

EY | Building a better working world

EY exists to build a better working world, helping to create long-term value for clients, people and society and build trust in the capital markets.

Enabled by data and technology, diverse EY teams in over 150 countries provide trust through assurance and help clients grow, transform and operate.

Working across assurance, consulting, law, strategy, tax and transactions, EY teams ask better questions to find new answers for the complex issues facing our world today.

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients. Information about how EY collects and uses personal data and a description of the rights individuals have under data protection legislation are available via ey.com/privacy. EYG member firms do not practice law where prohibited by local laws. For more information about our organization, please visit ey.com.

Ernst & Young LLP is a Limited Liability Partnership, registered under the Limited Liability Partnership Act, 2008 in India, having its registered office at 22 Camac Street, 3rd Floor, Block C, Kolkata - 700016

© 2023 Ernst & Young LLP. Published in India. All Rights Reserved.

This publication contains information in summary form and is therefore intended for general guidance only. It is not intended to be a substitute for detailed research or the exercise of professional judgment. Neither EYGM Limited nor any other member of the global Ernst & Young organization can accept any responsibility for loss occasioned to any person acting or refraining from action as a result of any material in this publication. On any specific matter, reference should be made to the appropriate advisor.

