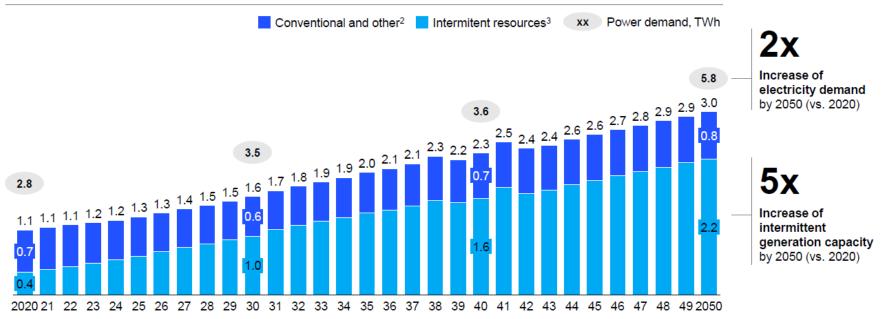
EPFL

# How can hydropower contribute to flexibility?

### Dr. Elena Vagnoni

EPFL Technology Platform for Hydraulic Machines

 École polytechnique fédérale de Lausanne


Grande Dixence Dam, Switzerland Lac des Dix 400-10<sup>6</sup> m<sup>3</sup> capacity March 20, 2025

## EPFL Context

Wholesale decarbonisation of electricity is happening: paradigm changes in the power system

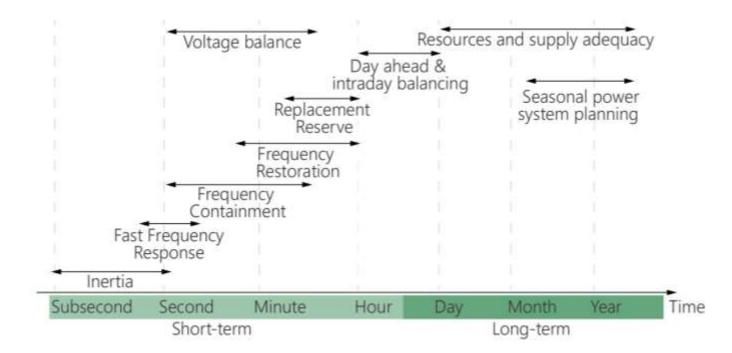
#### European power installed capacity<sup>1</sup>,

TW



1. EU27+UK, 2022 Current Trajectory scenario

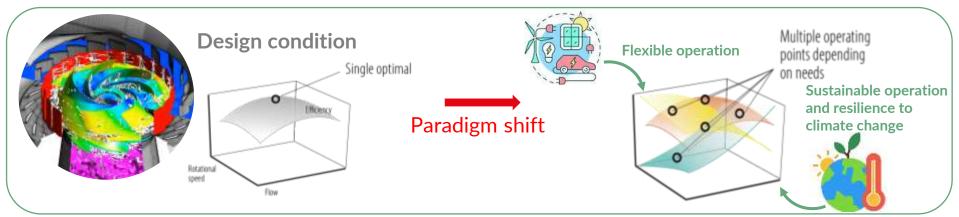
2. Gas, nuclear, oil, coal, biomass, hydrogen, geothermal, storage


3. Solar PV, CSP, wind onshore and offshore

**Endorsement of flexibility** and **reliability** from dispatchable energy sources is necessary



International Energy Agency (IEA) (2021). Hydropower Special Market Report. Analysis and forecast to 2030.


3



Hydropower is key in providing these grid services over all time scale

## EPFL Context

### Flexibility implications on hydropower operations



### New operational requirements:

- Extended operating range
- More frequent transient operations, i.e. start-up and stops
- Efficient water management

### Industrial needs:

- Optimisation of power plants operation, monitoring and maintenance taking into consideration multiple factors: *Efficiency, wear & tear, water management, vibrations...etc*
- Novel technologies, designs and materials

#### **XFLEX HYDRO** EPFL XFLEX HYDRO Hydropower extending power system flexibility With increasing levels of variable renewables in the energy system, a consortium of partners collaborate on a four-year EU-funded project (XFLEX HYDRO) to enhance hydropower's flexibility services and potential impact in modern power Vogelgrür markets. **19 project partners** Alto Grand Lindoso Maison EPFL PSL\* Canicada Hes-so (E) Diha CEDF INESCIED Frades 2 Algueva Z'Mutt VOITH zobala SuperGrie POWER RISIO Interaction CHRISTING 2019 2024 INNOVATION DEMONSTRATION DEPLOYMEN Market uptake Dissemination Flexibility Matrix Smart Power 6 demonstrators and roadmap 1 follow-up

### EPFL INNOVATIVE FLEXIBLE TECHNOLOGIES: HYDRAULIC SHORT CIRCUIT

### Benefits

- Extended operating range and regulations in pump mode
- Provision of frequency control services in pump mode
- Faster switch from Pump mode to Turbine mode

### **Grid Services provision**

### Improved

• Synchronous inertia

### Enabled

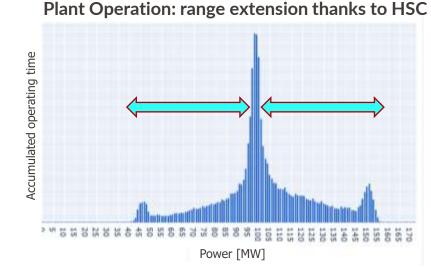
• Primary, secondary and tertiary frequency control while pumping

#### **Demonstrated** at

Grand Maison (France), Frades and Alqueva (Portugal)








### **DEMONSTRATOR: Grand Maison**



Hes.so

ENGINEERING



Since Sept 2021, demo is operated daily
Full remote operation and automatic selection of units to be started
Balancing power up to +/-57MW
HSC mode accounts for 55% of pumping time

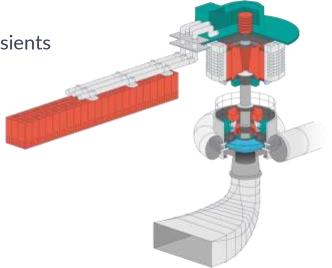
### EPFL INNOVATIVE FLEXIBLE TECHNOLOGIES: VARIABLE SPEED

### **Benefits**

- Extended operating range and regulations in pumping mode
- Faster regulation
- Improved operations at partial load
- Minimized fatigue accumulated during start-up transients

### **Grid Services provision**

### Improved


- Primary frequency control (FCR)
- Blackstart capabilities
- Voltage/VAR control

### Enabled

• Primary, secondary and tertiary control in pumping

**Demonstrated** at Z'Mutt and Frades pumped-storage plants

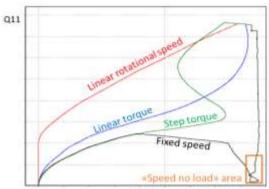








Hes-so


ENCINEEDING





### **Key Outcomes:**

- **Optimized use of a 5 MW variable speed pump-turbine**, equipped with full size frequency converter (FSFC).
- New start-up trajectories for damage reduction thanks to the variable speed technology: up to 15 time damage saving while shortening three times the start-up duration



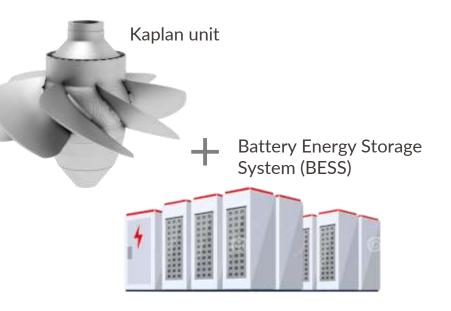
#### Start-up trajectories

### EPFL INNOVATIVE FLEXIBLE TECHNOLOGIES: HYBRIDISATION WITH BATTERY

### Benefits

- Reduced wear & tear on hydraulic components
- Fast provision of frequency control services
- Enhanced regulating margin

### **Grid Services provision**


#### Improved

- Primary & secondary frequency control (FCR, a/mFRR)
- Blackstart capabilities

### Enabled

- Synthetic inertia
- Primary control (FFR)

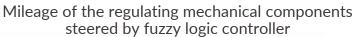
### Demonstrated at Vogelgrun RoR in France










**Key Outcomes:** 

•





UPC



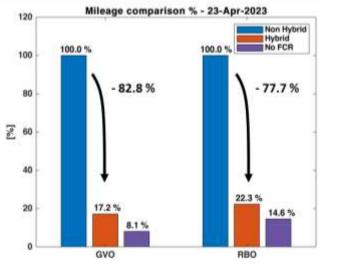
system and reduces turbine wear and tear.

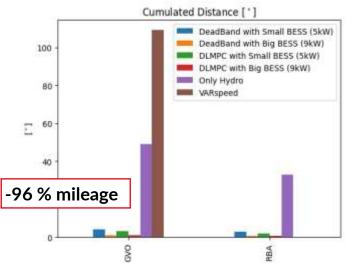
**DEMONSTRATOR: Vogelgrun** 

and reduced risk of turbine failure (and consequent lower operational losses).

Mileage of the regulating mechanical components steered by model predictive control (MPC)

1959


**39MW** 


**RUN-OF** 

RIVER

x4

XFLEX HYDRO





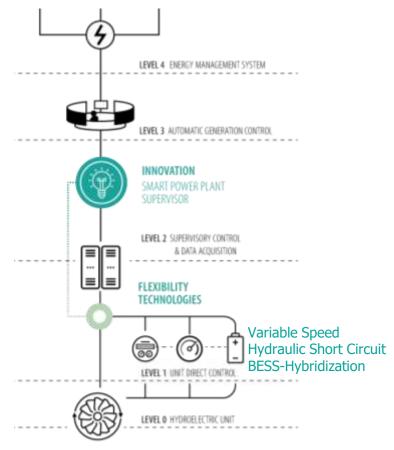
ponents Mileage of t

Hybridisation of the turbine unit with a battery improves fast and dynamic frequency response of the combined

Battery hybridisation CAPEX payed back in 4 years thanks to revenue from FCR, reduced maintenance costs

### EPFL INNOVATIVE FLEXIBLE TECHNOLOGIES: Smart Power Plant Supervisor SPPS

The SPPS brings the turbine dynamics and conditions knowledge into advanced control unit operation and predictive maintenance


### **Benefits**

- Real time optimisation of power plants operations taking into consider multiple factors: *Efficiency, wear & tear, water consumption optimisation, unit start and stop...etc*
- Optimised integration of other technologies
- Extended operating range
- Extended components life

### **Grid Services provision**

#### Improved

- Primary frequency control (FCR)
- Secondary frequency control (FRR)
- Tertiary frequency control (RR)



XFLEX HYD



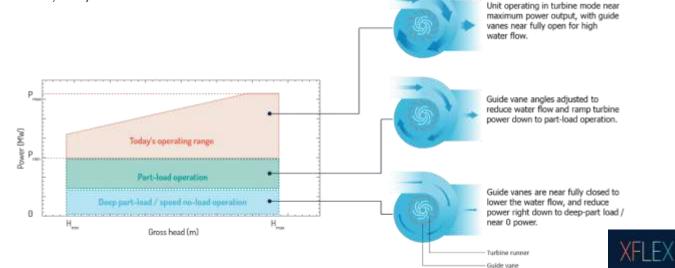


### Extension of the operating range and optimal dispatch Demonstrated at Alto Lindoso and Alqueva



es.sc

### Key Outcomes:


Low CAPEX solution to enhance services at an existing reservoir storage plant with high head Francis turbines. In particular, extend the operating range targeting an almost continuous power output from near zero to rated power.

1992

317MW

STORAGE

• Use **advanced control** to adapt and **optimise plant dispatch** under various criteria (efficiency, wear and tear, maintenance, etc.).



# EPFL Optimization of operations including HSC

### **Demonstrated at Grand Maison PSP**

How to optimally steer operation of multiple units considering power dispatch plan and reserve to maximise efficiency and minimize start-up/stop cycles?

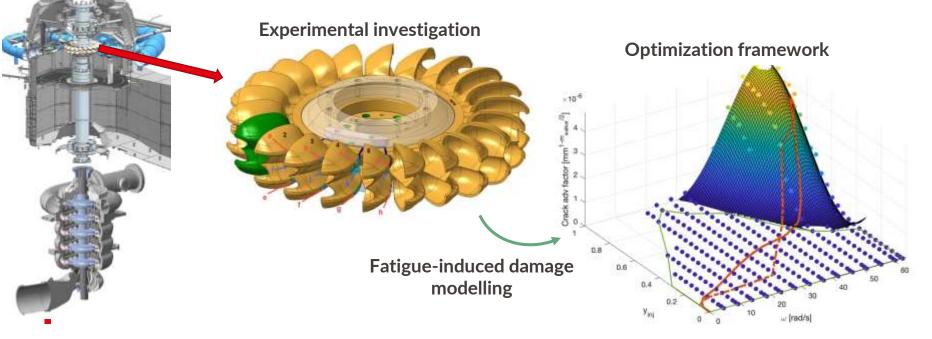
#### Results

| Algorithm           | Efficiency (%) | SUSD          | Computational Time (s)                                                                              |      |      |  |
|---------------------|----------------|---------------|-----------------------------------------------------------------------------------------------------|------|------|--|
|                     |                |               | Mean                                                                                                | Std  | Max  |  |
| Measurement         | 85.75          | 15508         | -                                                                                                   | -    | -    |  |
| Algorithm (No Cost) | 86.36 (+0.61%) | 16809 (+8.3%) | 0.93                                                                                                | 0.88 | 6.00 |  |
| Algorithm (Cost)    | 86.30 (+0.55%) | 14651 (-5.5%) | 1.02                                                                                                | 0.86 | 7.02 |  |
|                     |                |               |                                                                                                     |      |      |  |
|                     |                | Pre-Filtering | Pre-Filtering                                                                                       |      |      |  |
|                     |                |               | · 3 <sup>8</sup> ≈ 105'000 combinations.<br>ering the problem would be computational<br>infeasible. |      |      |  |

### CONSESUS software licensing

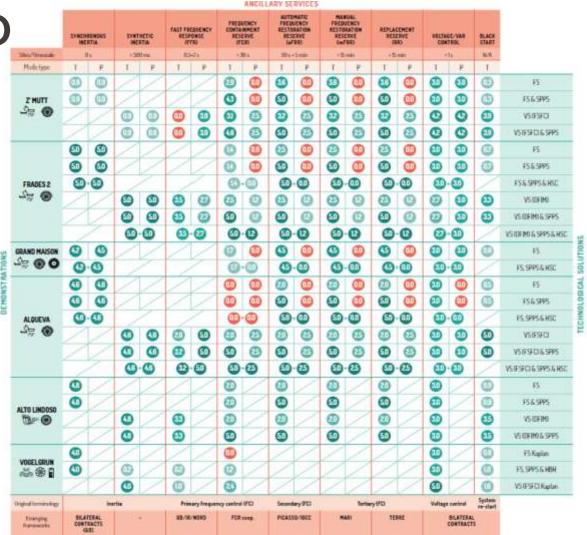
### Main contributions:

 Multi-parameter modeling method for multi-units PSP.


XFLEX HYDRO

• Low computational time algorithm for real-time operations optimization.




F. Gerini, **E. Vagnoni**, R. Cherkaoui, M. Paolone, "Optimal Short-Term Dispatch of Pumped-Storage Hydropower Plants Including Hydraulic Short Circuit".





### EPFL XFLEX HYDRO Hydropower flexibility matrix

- ✓ Detailed study of the today and future ancillary services markets
- ✓ Simulations including grid codes requirements
- Extensive 1D simulations for all hydropower plants for technical flexibility assessment



# EPFL CONCLUSION AND OUTLOOK

- Flexibility and digitalization are keys to boost the role of hydropower in the energy transition.
- Flexibility technological solutions rely on the optimal implementation, advanced control methods and monitoring systems.
- Innovative technologies for refurbishments are needed:
  - Increasing operating range of the units considering also harsh operations (sedimentsladen flows, waste water)
  - Optimized management of water resources
  - New and improved pumped-storage capacity and installations
  - Innovative electro-mechanical equipment, hybrid solutions and new hydraulic machines design to overcome the existing challenges: premature aging, performance degradation, reaction time

XFLEX HYDRO

Deliverable D10.3 Technical White Paper

and that index features which intern panel representation has

XFLEX HVDRO

RECOMMENDATIONS TOWARDS INDUSTRIAL DEPLOYMENT OF HYDROPOWER FLEXIBILITY TECHNOLOGIES



## **THANK YOU!**

귀

 École polytechnique fédérale de Lausanne

XFLEX HYDRO

HydroLEAP