

VRE Integration: The Journey of India

Satyaki Bhattacharya

Senior Energy Consultant World Bank, Delhi

June 26th,2023

Indian Power Sector – A Snapshot

Source: POSOCO

Battery Storage revenue streams-India

A Case Study from an Innovative RE in Chhattisgarh

LCC at Bid Design Stage

- Technology Agnostic Technical Specifications
- Price Bid for Full DSI (incl NPV of 10 years of O&M)
- Battery Supplier kept open (to avoid technology bias)

LCC for Tariff Calculation with Regulators

- Inverter Replacement cost (Every 4200 cycles or 7 Years)
- BESS components replacement cost (10th Year).

LCC while formulating QR for the Bidders

- DSI/EPC experience of similar sized/ specifications project in the last 5 years.
- Battery supplier as pure OEM at a later stage to prevent technical cartelization

A Case Study from an Innovative RE in Chhattisgarh

- 1. The Oversized Solar field (160 MW DC) charges the BESS during the day while delivering cheap solar power to the state grid- capped at 100 MWAc at the transformer level.
- The stored solar power is discharged during the evening peak hours 1900 2200 hours.
- 3. The BESS output of 40 MW/ 120 MWhr replaces a coal thermal PPA.
- 4. This project demonstrates 3 big technical solutions.
- > Energy arbitrage of Solar power.
- ➢ Replacement of a coal PPA.
- > Increased penetration of RE in a coal –heavy state grid, helping meet RPO.

Project Brief- Repurposing a 40 year old Thermal power plant:Summary

SI No	Repurposing Options	Feasible / Not Feasible	Remarks
1	Synchronous Condensers	Feasible	U#8 & U#9 are recommended for conversion to SYNCON based on analysis
2	Solar PV Based Generation	Feasible	Total 300 MW Generation Potential with 230 MW ground mounted;69 MW Floating and 1 MW Rooftop
3	Battery Energy Storage	Feasible	Total recommended rounded off capacity is 440 MWHr
4	Small Hydro Electric Plant	Feasible	3 x 5 MW to be installed on the Dam Toe
5	Biomass Firing	Not Feasible	Considering existing boiler type and modification required and lack of availability of biomass in bulk amount in vicinity – Not Feasible
6	Green Hydrogen	Not Feasible	Considering nonavailability of Off Take infra and lack of local demand – Not Feasible
7	Wind Power	Not Feasible	Low wind Power Density and speed – Below minimum technical threshold for feasibility

Battery Energy Storage

Charging Source	Purpose / Duty	BESS (MWHr)
Unit # 10	To improve flexibility of Generation	212
Unit # 11	To improve nexionity of deneration	
Solar: 40 MWp		245
Solar: 60 MWp	To Reduce Variability of Solar Generation	
То	457	
Commerc	440	

Thank You!

