3rd International Hydrogen Congress

Bogota, Colombia 9-11th April 2024

CLEAN HYDROGEN IN ASIA: LESSONS LEARNED FROM INDIA

Chandrasekar Govindarajalu

Practice Manager, Energy Sector Management Assistance Program

SNAPSHOT ABOUT JAPAN

- Japan aims to develop not only the domestic market but also expand into overseas market on both hydrogen and facilities/infrastructures to produce, transport and consume it.
- In addition to the **direct use of hydrogen** to decarbonize hard-to-abate industries, like steel or chemical products and for hydrogen-fueled vessels, Japan's includes hydrogen **derivatives**: **ammonia**, **e-methane and e-fuel**.
- The country has an **objective** of expanding **consumption** of hydrogen to around **3 million tons** per year by **2030.** About **12 million tons** per year (including ammonia) for **2040**, and about **20 million tons** per year by **2050.**
- Japan-related companies' global water **electrolysis capacity** target is set at **15 GW for 2030**.
- The Japanese government wants to secure 6 million to 12 million tons of annual CO2 storage by 2030.
- The government has issued a Hydrogen National Strategy and includes hydrogen within its LT-LEDS.
- Japan has **technological strengths in consumption and transportation technology, including fuel cells.** The country aims to establish Japan's position as a platform **provider** by ensuring that Japanese fuel cells are available anytime and anywhere in the world.
- Over the **next 10 years**, the purpose is to develop about **three large-scale hydrogen/ammonia clusters**, mainly in metropolitan regions, and about five medium-scale hydrogen/ammonia clusters that will take advantage of their industrial characteristics to **accumulate hydrogen/ammonia demand**.

SNAPSHOT ABOUT CHINA

- ✓ China is the world's largest hydrogen market. Three large renewable hydrogen projects achieved FID.
- Of the 34 Mt hydrogen that China produced in 2021, 80.3% was produced from fossil fuels, 18.5% was industrial by-product (coke oven gas) and 1.2% was from electrolysis
- The country is aiming to produce 5 **Mt of renewable hydrogen by 2030**, **20–25% of total EMDC** production.
- Currently, China's clean hydrogen supply ambitions do not foresee **massive exports**.
- The government has issued a Hydrogen National Strategy (both national and subnational-province level) and includes hydrogen within its LT-LEDS.
- China's share of investment for clean hydrogen projects represents18% of the global pipeline (in terms of value).
- China's largest renewable hydrogen project in Songyuan— a \$4 billion, 640 MW ammonia/methanol facility—has started construction.
- BloombergNEF reported that Chinese electrolyzers are already being sold for 75% less than Western equivalents. Three Chinese electrolyzer makers Longi, Peric and Sungrow are leading the global market in terms of annual manufacturing capacity.

FOR NET-ZERO BY 2070 IN INDIA: GREEN ELECTRICITY AND GREEN HYDROGEN WOULD MEET BULK OF DEMAND

Clean Hydrogen in Asia: Lessons learned from India

THE WORLD BANK

- The first and most important step is to electrify end-use sectors as much as possible, and decarbonize the power sector 10-15 years ahead of economy-wide net zero targets
- The share of electricity would increase from 18% in 2020 to over 50% by 2070 to meet the final energy demand, most which would be from RE
- Green hydrogen (GH) would provide an additional 30% to meet the final energy demand from RE
- Decarbonizing the industrial sector would require green hydrogen (particularly in fertilizer, refineries, and steel production) and the use of CCS
- 2/3 of solar PV and wind would be used to generate electricity, and 1/3 to produce green hydrogen by 2070

INDIA'S JOURNEY TOWARDS A GREEN HYDROGEN ECOSYSTEM

Clean Hydrogen in Asia: Lessons learned from India

NATIONAL GREEN HYDROGEN MISSION

		Mission component	Amount (USD in M)	Amount (USD in M)
Outlay recommended till 2029-30	↑	Strategic Interventions for Green Hydrogen Transition (SIGHT)	2,101.67	2178.92 (2.18 B)
		Support for low-carbon Steel Projects	54.67	
		Human Resource Development	4.2	
		Public Awareness & Outreach	8.41	
		Programme Management	9.97	
Outlay recommended till 2025-26		Support for Shipping and Ports project	13,82	
		Support for Mobility project	59,6	
		GH2 Hubs	48,07	193,59
		Research & Development	48,07	
		Testing Facilities & Development of Standards	24,03	

*Exchange rate of April 9, 2024 1 crore ₹=120164 USD

NATIONAL GREEN HYDROGEN MISSION

At least 5 Million Metric Tonnes per annum of Green hydrogen production

60 - 100 GW of domestic electrolyzer capacity

Leveraging investment of at least USD 100 Billion

125 GW of RE Capacity for Green Hydrogen generation & associated transmission network

Create 600,000 jobs

Reducing the dependency on imported fossil fuels by US\$ 12.5 billion

Strategic Interventions for Green Hydrogen Transition (SIGHT)

 Introduces two distinct financial incentive mechanisms. These mechanisms target incentivizing domestic manufacturing of electrolyzers and green hydrogen production.

Incentives for manufacturing electrolyzers	Incentives for green hydrogen production
Objective: Targeting the establishment of 1,500 megawatts (MW) of electrolyzer manufacturing capacity in India	Objective: Green hydrogen production capacity was distributed with 450,000 metric tonnes a year (MTPA)
US\$541 million ~ \$36/KW	US\$1.59 billion ~ .5\$/kg

INDIA LOW-CARBON ENERGY PROGRAMMATIC DPO: \$3B SUPPORT

- **PDO:** To accelerate the development of low-carbon energy in India
- Programmatic two-phase Development Policy Operation (DPO):
 - First phase of the DPO: \$1.5 billion approved by the Board in June 2023.
 - To support the approval of the NGHM, RE scale up and grid integration, and climate financing
 - Second phase of the DPO: \$1.5 billion to be submitted to the Board in Q4 FY2024
 - To support the implementation of NGHM to reduce costs and increase domestic demand, improving RE grid integration, and carbon market
 - Policy support and technical assistance at national and state level
- **Results:** 75 GW of RE enabled, 450,000 tons of GH incentivized, and 40 million tons of GHG emissions avoided

INDIA LOW-CARBON ENERGY DPO-1: PRIOR ACTIONS

Pillar 1: Promoting Green Hydrogen

- Approve the NGHM
- Issue GH safety regulations, standards, codes, best practices, and procedures
- Extension of the waiver of the inter-state transmission charges towards RE for GH
- Pillar 2: Scaling Up Renewable Energy
- Issue a government order on RE Purchase Obligations and Energy Storage Obligations
- Issue and notified the Ancillary Services Regulations
- Issue a regulation to guide the bidding of 50 GW of RE capacity each year FY23-28
- Adopt an offshore wind strategy; and extend the waiver of the inter-state transmission charges for offshore wind
- Policy to provide production-linked incentives to high-efficiency solar PV

Pillar 3: Enhancing climate financing for low-carbon energy investments

- Amend the Energy Conservation Act that provide the legal framework for the launch of a national carbon market
- Issue amendments to the existing regulatory framework for GDS issuance
- Issue a transparent Sovereign Green Bond Framework

INDIA LOW-CARBON ENERGY DPO-2: PRIOR ACTIONS

Pillar 1: Promoting Green Hydrogen

- Incentive schemes for GH production and electrolyzer manufacturing, and appointed SECI as the implementing agency to manage the incentive schemes
- Issue guidelines for transparent and competitive bidding process on the demand aggregation model to increase the domestic consumption of GH and green ammonia in key demand sectors
- Notify a GH standard

Pillar 2: Scaling Up Renewable Energy

- Amend the Indian Electricity Grid Code
- Approve an incentive scheme for battery energy storage system

Pillar 3: Enhancing climate financing for low-carbon energy investments

- Notify the Carbon Credit Trading Scheme
- Issue regulatory framework for Environment, Social and Governance Disclosures, Ratings, and Investing

INDIA'S GREEN HYDROGEN ECOSYSTEM EMBRACING THE FEDERAL STRUCTURE AS WELL

Clean Hydrogen in Asia: Lessons learned from India

SEVEN SIGNPOSTS OF SCALE-UP TOWARDS GH2: INDIA

Clean Hydrogen in Asia: Lessons learned from India

Standards governing hydrogen use are harmonized and regulatory barriers removed

Stringent heavy transport emissions are set

\sim	
	C

Industrial decarbonization policies and incentives are put in place

Net-zero targets are legislated

Targets with investment mechanisms are introduced

Mandates and markets for low-emission products are formed

GI

Hydrogen ready equipment becomes commonplace

LESSONS LEARNED

- Focus on both supply side to reduce GH costs and demand side to increase domestic market uptake for GH
- Strong and effective inter-ministerial coordination for GH
- Provide certainty to the market
- Issue the GH standards and safety standards together with the GH incentive scheme
- Large programmatic DPO is an effective way to support clean energy financing with scale and speed
- Early engagement and analytical work are critical and paid off

Thank you

