

HYDRO

THE FUTURE OF HYDROPOWER

FROM A TECHNOLOGY PROVIDER'S VIEW

DIEGO VILANOVA

JULY, 9^{TH} , 2023

ENGINEERED SUCCESS

IT ALWAYS SEEMS **IMPOSSIBLE** UNTIL IT'S DONE. -NELSON MANDELA

THE FUTURE OF HYDROPOWER / D.VILANOVA / JULY 2023

HUMAN WELL-BEING IS A DIRECT FUNCTION OF POWER CONSUMED

Electricity – blood stream for human development

Source: Dr. Bruce Dale, Michigan State University

Technically feasible hydropower potential (GWh/year)

Power generation from hydropower (GWh/year)

Source: Hydropower & Dams World Atlas 2022

Hydropower generation by region in 2022 (TWh)

South and Africa Central Asia

Source: IHA, 2023 World Hydropower Outlook

4

Hydropower remains the continent's primary renewable resource at over 40 GW of installed capacity

9

Ranking by total installed hydropower capacity

Rank	Country/Territory	Installed capacity (MW)*	Rank	Country/Territory	Installed capacity (MW)*	Rank	Country/Territory	Installed capacity (MW)*
1	Ethiopia	4,824	16	Kenya	837	31	Lesotho	73
2	Angola	3,836	17	Cameroon	822	32	Burundi	72
3	South Africa	3,600	18	Tanzania	562	33	Tunisia	66
4	Zambia	3,153	19	Malawi	391	34	Sierra Leone	64
5	Egypt	2,876	20	Mali	360	35	Mauritius	61
6	Democratic Republic of the Congo	2,760	21	Namibia	347	36	Eswatini	61
7	Mozambique	2,216	22	Gabon	331	37	Togo	49
8	Nigeria	2,111	23	Algeria	269	38	Mauritania	48
9	Sudan	1,923	24	Congo	218	39	Burkina Faso	34
10	Morocco	1,770	25	Madagascar	214	40	Benin	33
11	Ghana	1,584	26	Reunion	134	41	Central African Republic	19
12	Guinea	1,156	27	Equatorial Guinea	128	42	Sao Tome And Principe	2
13	Uganda	1,095	28	Rwanda	117	43	Comoros	1
14	Zimbabwe	1,081	29	Liberia	93			
15	Cote D'Ivoire	879	30	Senegal	81	*includ	ling pumped storage	

7 THE FUTURE OF HYDROPOWER / D.VILANOVA / JULY 2023

"Considering Africa's high potential for hydropower development and a need to rapidly increase electricity to meet demand, accelerating access to financing and sustainable construction is crucial for the region."

Source: IHA, 2023 World Hydropower Outlook

Source: Andritz

HYDROPOWER SYSTEM ADVANTAGES

Large range of low-carbon capacity available

- From kW to GW in a single project
- Option to export electricity in regional grids

Operational flexibility and efficiency

- Fast start-up and shut-down
- Highly efficient and adjustable output

Storage and back-up

- Rapid availability, and ancillary services
- Option to absorb surplus (pumped storage)

Multiple freshwater services

- Water supply, irrigation, navigation, tourism
- Climate-change adaptation (flood and drought mitigation)

Source: IHA, International Hydropower Association, R. Taylor

RENEWABLES DEVELOPMENT

Capacities (GW)

World

Generation (TWh)

World

Source: IEA, Renewables 2022 - Analysis and forecast to 2027

RENEWABLES DEVELOPMENT

Capacities (GW)

Africa

Generation (TWh)

Africa

Source: IEA, Renewables 2022 - Analysis and forecast to 2027

FLEXIBILITY NEEDS ARE INCREASING

IEA categorizes the integration of VRE into a "phase assessment framework" of six different phases

IEA VRE integration phases

- Phase 1: No noticeable impact from VRE at the system level
 - 2020:, 84 countries at phase 1, whereas it is expected that by 2025, only 50 will remain
- Phase 2: 5-10% VRE share
 - Integration challenges begin to emerge
 - Differences between load and net load become noticeable
 - but VRE still have a minor impact on the system as a whole

• Phase 3: ~15-30% VRE share (annually) and beyond

- VRE determine the operating pattern of the whole power system
- and additional flexibility options are needed
- Phase 4: periods where VRE make up almost all or all generation
 - currently only 6 countries
- Phase 5: growing amounts of VRE surplus or deficit compared to total electricity demand
 - for days to weeks
- Phase 6: growing amounts of VRE surplus or deficit compared to total electricity demand
 - for days to weeks
 - and seasonal or inter-annual imbalances

Evolution of countries' VRE integration phases

Note: Bubble size reflects the share of VRE in total electricity generation.

VRE.....Variable Renewable Energy

Source: IEA, June 2021, Hydropower Special Market Report

THE KEY DRIVERS

· Growing electricity demand

- Emerging Countries (both residential and industry)
- Decarbonization > Electrification of industries
- Decarbonization / sector coupling > Powering green hydrogen production

• Flexibility and storage for integrating wind & solar PV

- Flexible and firm capacity as a backup
- Growing demand for reservoir and pumped storage > the "water battery"
- Hybrids and integrated systems

Ageing hydropower fleet / optimization of O&M

• Rehabilitation, Upgrade, Digitalization

Climate Change Resilience and Adaptation

- Change of flow regimes, extreme weather events, ...
- Resilience of Equipment and Infrastructures
- Prevention from floods and droughts, freshwater management

• Impact on nature and local communities

- Water quality, river connectivity and other environmental impacts
- net-positive benefits on society

HYDROPOWER – INTEGRATED POWER PLANTS KIDSTON RENEWABLE ENERGY HUB - AUSTRALIA

The World's first dispatchable renewable energy plant

New energy concepts based on hybrid solutions balancing the energy before stressing the grid

 combination of a solar and wind power station with a pumped storage plant

Kidston / Australia 2 x 125 MW reversible pump turbines Main focus: supply balanced energy into the grid!

"FLEXI"- HYBRIDS

Hydropower + X

Hydropower – Battery Hybrids

- Improve fast and dynamic frequency response by coupling hydropower and batteries
- Significantly reduce turbine wear and tear

PSP – Wind – PV Hybrids

Balancing the energy before stressing the grid

Hydropower – floating Solar PV Hybrids

- Co-locating with existing hydro sites can double power output while reducing variability and utilizing existing transmission infrastructure
- Huge potential ("Floating solar panels on 1% of reservoirs 'could double' Africa's hydropower capacity")
- Europe's largest floating PV plant; EDP / Alqueva reservoir / 5MWp / online in mid 2022
- Recently announced: Endesa / Alto do Rabagao dam / 42MWp / online 2026

FLEXIBILITY AND GRID STABILITY

New Generator Technologies

- Variable Speed DFIM (Double Fed Induction Machine): approx. +/- 7 % speed range
- Variable Speed (full size converters): ≈ 50% speed range, other base frequency
- Synchronous Condenser: Providing reactive power and inertia to the grid, new customers

Why Variable Speed?

- Regulation of pump input power
- Speed adjustment for optimum operation (efficiency, stability)
- Needed for large head variation and special grid services

FAST REACTION TO GRID INSTABILITIES +/- 500 MW WITHIN 20-30 SECONDS

KOPS II / Austria

- 3 x 180 MW (Tu) 150 MW (Pu)
- Full load: 20-30 s (Tu and Pu mode)
- Head: 826 m
- Unique Ternary concept
- Pressurized downstream chamber

ENVIRONMENTAL PERFORMANCE

Oil-free design / Fish friendliness / Dissolved Oxygen

TARGET

• Continue R&D efforts in environmental questions

MARKET POTENTIAL FOR PRODUCTS AND RELATED SERVICES

- Oil-free design
- Fish friendliness
- Dissolved Oxygen via Runner downstream oxygen content will be

raised to the ecologically favorable range via turbine operation

Aerated runner blade

Methods to assess fish mortality properties

MAKING MOST OF THE EXISTING REFURBISHMENT, UPGRADE, DIGITALIZATION, CYBER SECURITY

20 THE FUTURE OF HYDROPOWER / D.VILANOVA / JULY 2023

FIT FOR THE NEXT 50 YEARS

Additional renewable energy

• For each 30 GW upgraded per year and for each 5% of increase of performance, rehabilitation programs will create 1.500 MW of renewable and predictable energy

DIGITAL O&M AND ASSET MANAGEMENT

11 Digital Operation & Maintenance

CUSTOMER CENTRIC O&M SUPPORTED BY DIGITAL SOLUTIONS

Operation & Maintenance Predictive Maintenance Metris DiOMera digital platform

21

ISO 55001:2014

THE OPPORTUNITY

Green hydrogen production to grow from 0.7 Mt/a in 2020 to 300 Mt/a in 2050

Main drivers for green hydrogen scale up:

- Decarbonization of industries (refineries, chemicals, steel), transportation and energy storage, e.g. EU Green Deal
- Reducing price of renewable energy (down to < 20 €/MWh)
- 3. Money in the market (funding and investors) for sustainable investments

Info:

1 Mt/a Hydrogen = 12 GW installed Today's costs for Green H2 is between 3 to 6 \notin /kg. The aim would be to reach 2 \notin /kg And you need 9 liter water per kg H₂ Exhibit 5 – Announced clean hydrogen production volume by pathway

Cumulative production capacity, MT p.a. As of May 8, 2022

¹ Preliminary studies or at press announcement stage

² Feasibility study or front-end engineering and design stage

³ Final investment decision has been taken, under construction, commissioned or operational

Source: Hydrogen Council, Hydrogen Insights 2022

POWER GENERATION FROM HYDROPOWER IN THE FUTURE - SCENARIO 2050

1) Annual storage reservoir

- 2) Short-term storage reservoir
- 3) Conventional river power plant
- 4) Small hydropower plant
- 5) Ecological Flow
- 6) Urban river power plant
- 7) Low head hydropower plant
- 8) Tidal power plant
- Pumped storage power plant (fresh water); energy storage for solar power plant
- 10)Pumped storage power plant (salt water); energy storage for wind park
- 11)Energy island; off-shore pumped storage power plant for wind/solar/tidal
- 12) Tidal stream power array
- 13) Irrigation system
- 14) Desalination plant
- 15) Flood control pump station

The future depends on what we do in the present

Mahatma Gandhi