

Planning and Prospects for Renewable Power in Africa

Insights from IRENA and CMP (Continental Power Sector Masterplan) for Africa

26 March 2024

Asami Miketa, Head Energy Transition Planning and Power Sector Transformation **Larissa Pinheiro Pupo Nogueira**, Programme Officer - Energy Planning Support **Bilal Hussain**, Associate Programme Officer, Modelling Global Energy Transition

- 1. Overview IRENA's support for African energy transition planning & CMP
- 2. Energy Transition in Africa Insights from SPLAT analyses
 - CMP Key capacity expansion modelling outcomes
 - Case study Namibia Impacts of regional integration
 - Case study North Africa Energy transition scenarios including green hydrogen
- 3. Ongoing work: Regional Energy Transition Outlook for five African regions including hydrogen

Overview - IRENA's support for African energy transition planning & CMP

Planning and prospects for renewable power report series

Linking Up Africa's Electricity Infrastructure under the Continental Master Plan (CMP)

The BJ Technical Assistance Facility (TAF)

A Single Electricity Grid for Africa

AUDA-NEPAD

A Continental approach to Africa's energy future

forces to forge a continental approach to electricity markets in of green energy investments in Africa will not only impact the Africa, where a fully integrated, competitive, and harmonised market socioeconomic development of the continent, but could influence the will accelerate the development of the continent and improve energy entire global economy. Global cooperation and regional integration access for all African citizens.

The African Union (AU) and the European Union (EU) have joined. Green every for Africa is a workheide prowth objective. The volume offer the best guarantees for sustainable international stability and economic growth.

Africa's potential to become a leader in green energy

CO IRENA (60 Years

in this context, a high-level and collaborative planning of the and effects of climate change.

electricity sector is crucial to address future surge in electricity. Under African leadership and African ownership, the Continental demand, which is expected to triple by 2040, resulting from Africa's Master Plan (CMP) initiative brings together over 100 African energy rapid industrialisation, migration to cities, rising household incomes, stakeholders to rethink Africa's energy planning, and co-create solutions to tackle energy poverty, with selected expertise and lessons learned from the EU energy common market.

prove or allow

Masterplanning Africa's Single Electricity Market

Physical interconnection of Africa's continental energy infrastructure is planned within the context of the ongoing effort to create an African Single Electricity Market (AfSEM) -one of the largest electricity markets in the world, covering the African Union's 55 Member States. and a population of more than 1.3 billion.

African energy ministers tasked the African Union Development Agency (AUDA-NEPAD) to lead the development of this interconnection - under a Continental Master Plan (CMP) for electricity generation and transmission.

Following a consultation process coordinated by the EU Technical Assistance Facility (TAF) for Sustainable Energy, the five African powe pools selected the International Renewable Energy Apency (IRENA) and the International Atomic Energy Agency (IAEA) to support the continent's Master Plan technical modelling and capacity need

https://www.irena.org/Energy-Transition/Planning/SPLAT-Models-for-Africa

https://www.irena.org/Energy-Transition/Planning/SPLAT-Models-for-Africa/Prospects-for-Renewable-Power-in-Africa

Introduction to SPLAT models

- Coverage: 48 countries (all continental countries) + two island States (Sao Tome and Principe, Cabo Verde)
- Time horizon: 2019-2040
- Scope: Investments in utility scale generation and crossborder interconnections
 - Domestic T&D grid investments
 - × Off-grid investments

SPLAT Reference Energy System

Technology resolution: Wind and solar supply options

- > SPLAT models include geo-referenced supply options:
 - Region specific resource potential
 - Region-specific representative generation profiles
 - Cost markups for connection infrastructure (grid tie & connection roads)
- This allows optimal capture of spatio-temporal complementarities
- Coverage: Onshore & offshore wind, Solar PV, Solar Thermal

Methodology paper: Link https://www.nature.com/articles/s41597-022-01786-5

Onshore wind resources

Technology resolution: Hydropower profiles

> SPLAT models include site specific generation profiles for the hydropower projects

> Dispatch of dam-based hydropower plants is optimized

Generation profiles for run of river based hydropower plants

Generation profiles for dam based hydropower plants

IRENA report:

https://www.irena.org/publications/2021/Dec/African-Renewable-Electricity-Profiles-Hydropower

https://www.irena.org/Energy-Transition/Planning/Africa-Continental-Power-System-Masterplan

Relevant Continental Initiatives for power sector development

- » Programme for Infrastructure Development in Africa (PIDA) AUC/AUDA/AfDB
- » Africa Single Electricity Market (AfSEM) AUC
- » Continental Masterplan AUDA under AU
 - » Blueprint for the AfSEM, identifying key priorities for generation and transmission projects
 - » Selection of IRENA and IAEA as modelling partners
 - » Phase I: Baseline studies (2020), Phase II: the development of the CMP (2021-2023), Phase III: mobilization of finance, energy planning capacity building support, updating the CMP (2024-2029)

CMP Flagship Project

- IRENA inputs developed to support decision-making on energy component in Africa.
- In 37th AU assembly on 17-18 Feb 2024, the African heads of States officially endorsed the first CMP plan as an AU Agenda 2063 Flagship Project

Baseline studies by EU-TAF team (CMP phase 1)

- Review of regional masterplans
- Development of TOR for the CMP phase 2 (Jan 2021)

Key elements in the TOR

- Inform PIDA process by identifying the priority projects of regional significance
- Create harmonized planning process across 5 power pools
- Detailed modelling and planning studies
 - Transfer of know-how to ensure the sustainability
 - Permanent modelling team at AUDA-NEPAD and Power pools
 - Adoption of common modelling tools
 - Participatory, collaborative, consultative process
 - Coherence with PIDA, and AfSEM process

- 1. Overview IRENA's support for African energy transition planning & CMP
- 2. Energy Transition in Africa Insights from SPLAT analyses
 - CMP Key capacity expansion modelling outcomes
 - Case study Namibia Impacts of regional integration
 - Case study North Africa Energy transition scenarios including green hydrogen
- 3. Ongoing work: Regional Energy Transition Outlook for five African regions including hydrogen

CMP – Key capacity expansion modelling outcomes

CMP modelling team (Kigali, March-2023)

Tools and Scope of first CMP exercise

> Demand projections prepared for:

- Business-as-usual case
- Three cases of higher demand growth (Slow, Medium, High) to meet socio-economic goals as per African Union Agenda 2063

Network analysis included assessment of:

- Operational measures to strenghten transmission grids in countries
- Transfer limits of cross-border interconnectors

Modelling

Tool: Eviews

Network Analysis Tool: PSSe

Off-grid

systems

Tools and Analyses included in 1st CMP exercise

*Sent-out demand means demand at bulk generation side (not on consumer side)

Islanded

countries

Included

Excluded

Electricity

sector

needs

Grid

connected

demand

Analysis Boundary

Scenario definitions

» For CMP scenario defining, stakeholders agreed on two dimensions: Demand evolution and degree of coordination among African countries

Demand-side Scenarios	Cross-border integration levels		
	Planned integration	Full regional integration	Full continental integration
Reference	Low Demand, *		
Transition - Low			
Transition - Medium	Medium Demand	*	Continental, *
Transition - High			

* The CMP scenarios officially designed

Key outcome of CMP expansion scenarios

The increased energy demand can be met at lower emission and cost rate through more cross-border integration of national electricity systems

Average unit cost of generation through 2019-2040

Average emission intensity through 2019-2040

Key outcome of CMP expansion scenarios

Regional integration promotes renewable electricity & lowers reliance on fossil fuels

Note: Variable Renewable Energy VRE (solar PV, Wind onshore & offshore); Other RE (Geothermal, solar thermal, Biomass); Large Hydro (Dam or Run of River)

Installed Capacity in continental integration scenario

Significant expansion needs:

Total installed capacity in 2040 is over 5 times higher than in 2022.

VRE corresponds to 42% of total installed capacity in 2040

Installed Capacity GW		
	2022	2040
VRE		
Solar PV	6	224
Wind	8	335
Storage		
Battery Storage	0	28
Pump Storage	3	7
Large Hydro PP		
Large Hydro ROR	10	77
Large Hydro Dam	27	47
Other RE		
Geothermal	1	5
Solar Thermal	1	13
CrossBorder Interconnection	19	151

Investment requirements

- Total investments per annum would represent roughly 2.1 % of Africa's current GDP (~3.1 Trillion USD as per Statistica.com)
- Roughly 1 trillion USD would be needed for low-carbon technologies

Technologies	Investment BIn. USD	% of total
Wind onshore	498	35.2%
Natural Gas	315	22.3%
Run of River Hydro	160	11.3%
Utility Solar PV	154	10.9%
Coal	60	4.2%
Dam Hydro	56	4.0%
Solar Thermal	47	3.3%
Nuclear	32	2.2%
Interconnections (generic)	31	2.2%
Battery Storage	21	1.5%
Geothermal	17	1.2%
Diesel	7	0.5%
Pump Storage	6	0.4%
Interconnections (Committed & Candidate)	5	0.3%
Biomass	3	0.2%
HFO	2	0.2%
Тс	otal 1,413	

Investment requirements for the continental integration scenario through 2019-2040 (2019USD)

RE Hubs – Technology specific lead countries (Continental integration Scenario)

Solar PV, Wind onshore and Run of River Hydro make up 91% of RE capacity in 2040

Solar PV capacity (% of continental sum) (2040)

RE Hubs – Technology specific lead countries (Continental integration Scenario)

Solar PV, Wind onshore and Run of River Hydro make up 91% of RE capacity in 2040 » The big six countries will have 58% Solar PV and 84% Wind onshore

Wind Onshore capacity (% of continental sum)(2040)

RE Hubs – Technology specific lead countries (Continental integration Scenario)

Solar PV, Wind onshore and Run of River Hydro make up 91% of RE capacity in 2040 » The big six countries will have 58% Solar PV and 84% Wind onshore
» 90% of run of river hydro will be concentrated in just 10 countries

Run of River Hydropower Capacity (% of continental sum) (2040)

Case study Namibia – Impacts of regional integration

Scenarios

- > No Integration: only Namibia supply is optimized, no trade & reserve capacity shared from crossborder
- Constrained Integration: CMP medium demand scenario in which Namibia must achieve 100% self sufficiency by 2040 (i.e. zero net annual imports), reserve capacity shared from crossborder
- Full Integration (Optimal Case): CMP medium demand scenario involving optimal energy trade, reserve capacity shared from crossborder

Key takeaway: Regional integration promotes RE

- Dam-based hydro is fully utilized in all scenarios
- > No Integration scenario favors fossil capacity to meet reserve margin needs
- > Constrained integration scenario sees dominant role of wind combined with bi-directional energy trade

Key takeaway: Regional integration lowers unit energy costs

-18%

Full Integration

> Unconstrained trade allows lower unit costs of electricity and less dependence on fossil fuels

10.0

8.0

6.0

4.0

2.0

0.0

No Integration

Cents/kWh (2019 USD)

Average unit cost of domestic production in 2040

-13%

Constrained

Integration

Continental framework of SPLAT-MESSAGE is key to capture benefits of trade!

Role of different Resources

- Hydro flexibility is critical in all scenarios
- Battery plays a minor role only in **no** integration scenario
- In constrained integration scenario, wind is favored as it complements regional needs & periods of no sun

Case study North Africa – Scenarios of energy transition including green hydrogen

https://www.irena.org/Publications/2023/Jan/Planningand-prospects-for-renewable-power-North-Africa

Planning and prospects for renewable power: North Africa

The report outlines different power supply expansion scenarios for North Africa using SPLAT-MESSAGE

PLANNED	TRANSITION	TRANSITION + BATTERIES	TRANSITION + BATTERIES + H ₂
Historic demand growth and electrification levels Current interconnection capacity Countries' renewable energy targets are met but not surpassed	Higher demand growth with higher electrification of end uses Possibility to increase interconnection capacity No fossil-fuel-based generation investment after 2025 Renewable energy targets can be surpassed	Higher demand growth with higher electrification of end uses Possibility of increasing interconnection capacity No fossil-fuel-based generation investment after 2025 Renewable energy targets can be surpassed	Higher demand growth with higher electrification of end uses Possibility of increasing interconnection capacity No fossil-fuel-based generation investment after 2025 Renewable energy targets can be surpassed
		Battery storage	Battery storage

Hydrogen production

Supply scenarios for North Africa

Assessment of North Africa's potential for hydrogen supply

Question addressed by the hydrogen scenario: Against an assumed acceptable export price of green hydrogen starting from 3.5 USD/kgH₂ in 2025 and ending at 2 USD/kgH₂ in 2040, how much green hydrogen can be produced in North-Africa from electricity sourced through bulk grid

Installed capacity projections in four scenarios

Country wise potential to produce hydrogen for exports

Impact on the bulk supply system

Investing in RE generation infrastructure to tap hydrogen export market will make the bulk supply more costefficient

Note: H_2 = hydrogen; PV = photovoltaic; ROR = run-of-river; TWh = terawatt hour.

Evolution of energy mix in four scenarios

Electrolyzer flexibility potential

Electrolyzers unlocked additional flexibility in the system

YEAR	SCENARIO	TOTAL SENT-OUT ELECTRICITY (TWH)	POWER EXCHANGES (TWH)	SHARE OF POWER EXCHANGES IN TOTAL POWER DEMAND
2018	Historical	363	6	1.5%
2040	Planned scenario	662	24	3.6%
	Transition scenario	795	69	8.7%
	Transition + Batteries scenario	795	56	7.0%
	Transition + Batteries + H ₂ scenario	795	43	5.4%

Total electricity trade flow projections in four scenarios

Hydrogen supply seasonality

Complementarity between countries can ensure stable hydrogen supply across the region

2040 Seasonal hydrogen production in transition + battery + H2 scenario

Cost of H2 Dedicated vs bulk grid supply

Hydrogen supply curve using dedicated power supply

Hydrogen supply curve using electricity from bulk grid

Ongoing work on SPLAT and other energy planning tools developed at IRENA

Regional Energy Transition Outlooks for Africa

- → RETOs provide a scenario-based analysis for Africa's energy transition (2050) consistent with economic and sustainable development goals.
- \rightarrow Scope: five regions with a key country.
- → RETO includes: 1) renewable energy transition in end-use sectors; 2) power systems analysis; 3) socio-economic analysis; 4) Policy and finance

Region	Deep dives
Central Africa	D.R Congo
Eastern Africa	Kenya
North Africa	Egypt
Southern Africa	South Africa
West Africa	Nigeria

Power sector and H2 analysis Framework

Power sector and H2 analysis Framework

Green hydrogen demand for domestic use and trade will be shared by REMAP

Electrolyzers to be fed by utility scale renewable electricity generators that are also feeding the grid

- ➢ What we seek:
 - Countries with high green H2 potential
 - Lowering of unit electricity production costs
 - Investment requirements attached to H2 demand

Timeline

Thank You!

IRENA Innovation and Technology Center | 45

- AUDA-NEPAD (2023), "Integrated Continental Demand Forecasts-Scenario Analysis", https://cmpmwanga.nepad.org/publications
- Gov. Namibia (2022), Namibia Integrated Resource Plan (NIRP) Review and Update, https://www.mme.gov.na/files/publications/f74_29a_ELECTRICITY%20SECTOR%20NATIONAL%20INT EGRATED%20RESOURCE%20PLAN%20(NIRP)%202016%20FINAL%20REPORT.pdf