Estimating lost dividends from incomplete energy access transitions

Emily L. Pakhtigian¹, Marc Jeuland², Subhrendu K. Pattanayak², Jonathan Phillips² ¹Penn State University ²Duke University

> ESMAP Insights Webinar Series March 12, 2024

Achieving universal electrification

• Modern energy access as a conduit of opportunity, growth, and well-being

Achieving universal electrification

- Modern energy access as a conduit of opportunity, growth, and well-being
- SDG 7: Ensure access to affordable, reliable, sustainable and modern energy for all
 - Universal electrification and clean fuel access by 2030
 - Improved efficiency and renewables share
- Electricity contributes to poverty reduction, health improvements, sustainable settlements, gender equality (Boateng et al., 2020; Chakravorty et al., 2014; Gertler et al., 2017; Irwin et al., 2020)

2/18

Achieving universal electrification

- Modern energy access as a conduit of opportunity, growth, and well-being
- SDG 7: Ensure access to affordable, reliable, sustainable and modern energy for all
 - Universal electrification and clean fuel access by 2030
 - Improved efficiency and renewables share
- Electricity contributes to poverty reduction, health improvements, sustainable settlements, gender equality (Boateng et al., 2020; Chakravorty et al., 2014; Gertler et al., 2017; Irwin et al., 2020)
- Significant advances in electrification to reach 90% with at least basic access (IEA, 2021)
 - Prompts consideration of dimensions of electricity access (Groh et al., 2016; Nerini et al., 2015)

Measuring energy access and its benefits

Measuring energy access and its benefits

• **Multi-tier framework** characterizes electricity access in increasing tiers from 0 to 5

Measuring energy access and its benefits

• **Multi-tier framework** characterizes electricity access in increasing tiers from 0 to 5

 The Energy Access Dividend (EAD) quantifies the electrification benefits forgone over a country's business-as-usual electrification transition

> PennState College of the Liberal Arts SCHOOL OF PUBLIC POLICY 3 / 18

Estimating the EAD

$$EAD = \sum_{t=0}^{T_s} \sum_{y=1}^{Y} \sum_{\forall g \in G} (1+\delta)^{-y} (B_{t_0,t_1=T_s,y,g}) \cdot f_{t_0,t_1=T_s,y,g} \cdot H_{y,g}$$
(1)

Estimating the EAD

$$EAD = \sum_{t=0}^{T_s} \sum_{y=1}^{Y} \sum_{\forall g \in G} (1+\delta)^{-y} (B_{t_0,t_1=T_s,y,g}) \cdot f_{t_0,t_1=T_s,y,g} \cdot H_{y,g}$$
(1)

- $B_{t_0,t_1=T_s,y,g}$: benefits of electricity access
- $f_{t_0,t_1=T_s,y,g}$: fraction of households in each tier
- $H_{y,g}$: total number of households
- $\circ \delta$: discount rate

Estimating the EAD

$$EAD = \sum_{t=0}^{T_s} \sum_{y=1}^{Y} \sum_{\forall g \in G} (1+\delta)^{-y} (B_{t_0,t_1=T_s,y,g}) \cdot f_{t_0,t_1=T_s,y,g} \cdot H_{y,g}$$
(1)

- $B_{t_0,t_1=T_s,y,g}$: benefits of electricity access
- $f_{t_0,t_1=T_s,y,g}$: fraction of households in each tier
- $H_{y,g}$: total number of households
- $\circ \delta$: discount rate
- Flexible framework that can be adjusted based on context and data availability
 - Applied to a case study in Honduras, 2021-2050

Achieving universal electrification in Honduras

- Electrification rate 91% nationally
 - Urban areas 100%, rural areas 81%

Achieving universal electrification in Honduras

- Electrification rate 91% nationally
 - Urban areas 100%, rural areas 81%
- Main generating sources mix of fossil fuels (55%), hydro (33%), and rewnewables (12%)
- Residential accounts for a little under half of all energy consumption
- Grid services most of the west
 - Low population density, challenging terrain in the east

Figure 1: Mean electricity access tier by municipality

Electrification trajectories

Figure 2: Baseline 1: Slower tier progression

Figure 3: Baseline 2: Faster tier progression

Pakhtigian et al. (2024)

Honduras as a case study

Characterizing electrification scenarios

Table 1: EAD Scenarios

Scenario	Process	Time frame	Policy relation		
Electrified EAD	Immediate tier 1 transition	2021-2028/36	Universal access		
Tier 5 EAD	Immediate tier 5 transition	2021-2050	Universal grid		
Tier 3 EAD	Immediate tier 3 transition	2021-2050	Microgrid and renewables		
Hybrid EAD	Immediate tier 5 (urban) or	2021-2050	Combination		
	tier 3 (rural) transition				

Quantification and monetization of benefits

Included benefits

- Lighting: Reduced expenditures on kerosene
- Mobile phone charging: Reduced expenditures on phone charging outside the home
- **Emissions:** Reduced emissions from more highly polluting lighting fuels (Jeuland et al., 2018) and monetized using the social cost of carbon
- Study time: Changes in study time valued using wage returns to education
- **Assets:** Changes in asset (fan, radio, tv, refrigerator) ownership valued using consumer surplus
- Business expenditures: Reduced business expenditures incurred due to power outages

Quantification and monetization of benefits

Included benefits

- Lighting: Reduced expenditures on kerosene
- Mobile phone charging: Reduced expenditures on phone charging outside the home
- **Emissions:** Reduced emissions from more highly polluting lighting fuels (Jeuland et al., 2018) and monetized using the social cost of carbon
- Study time: Changes in study time valued using wage returns to education
- **Assets:** Changes in asset (fan, radio, tv, refrigerator) ownership valued using consumer surplus
- Business expenditures: Reduced business expenditures incurred due to power outages
- Regression used to estimate significant differences in expenditures between electricity access tiers

MTF household survey for Honduras

- Survey characeristics
 - 2800 households across rural and urban Honduras
 - Identification of electricity access tiers
 - Household energy access and use across a variety of sources
 - Socio-demographic characteristics, assets, income-generating activities, time use

MTF household survey for Honduras

- Survey characeristics
 - 2800 households across rural and urban Honduras
 - Identification of electricity access tiers
 - · Household energy access and use across a variety of sources
 - Socio-demographic characteristics, assets, income-generating activities, time use
- Use MTF data to estimate

$$Y_{i} = \alpha + \beta_{1}T_{i} + \beta_{2}T_{i} \times U_{i} + \rho X_{i} + \varepsilon_{i}$$
⁽²⁾

9/18

 Outcomes include: kerosene consumption, cell phone charging expenditures, study time (boys, girls), asset ownership (radio, fan, tv, refrigerator), business expenditures due to power outages

Pakhtigian et al. (2024)

Data and parameterization

Estimated benefits by tier

Table 2: Electrification benefits by tier

Tier 1	Tier 2	Tier 3	Tier 4	Tier 5
Lighting	• Phone charging ^R	•Study time (B) ^U	•TV	•Study time (G) ^U
 Phone charging 	●Study time (G) ^U	•TV	 Business 	•TV ^{<i>U</i>}
 Emissions 	●Fan	 Refrigerator 	expenditures	
●Radio ^U	•TV			
	 Refrigerator 			

Parameterization, cont.

- Descriptive statistics from MTF data
 - Household size, number of children
 - Monthly electricity consumption by tier
 - Average electricity price

Parameterization, cont.

- Descriptive statistics from MTF data
 - Household size, number of children
 - Monthly electricity consumption by tier
 - Average electricity price
- Literature review
 - Kerosene price
 - Minimum wage
 - Emissions global warming potential and social cost of carbon
 - Wage returns to education

Parameterization, cont.

- Descriptive statistics from MTF data
 - Household size, number of children
 - Monthly electricity consumption by tier
 - Average electricity price
- Literature review
 - Kerosene price
 - Minimum wage
 - Emissions global warming potential and social cost of carbon
 - Wage returns to education
- Consumer surplus calculations for assets owned
 - Panama (2008) LSMS
 - Elasticities from the literature

Pakhtigian et al. (2024)

Data and parameterization

Household annual EAD

	Electrified EAD (1) (2)		Tier 5 EAD		Tier 3 EAD		Hybrid EAD	
			(3)	(4)	(5)	(6)	(7)	(8)
	Urban	Rural	Urban	Rural	Urban	Rural	Urban	Rural
Non-tiered	43.35	51.44						
Tier 0			129.99	105.59	74.11	56.66	129.99	56.66
Tier 1			117.28	79.57	61.40	30.65	117.28	30.65
Tier 2			81.89	59.27	26.01	10.34	81.89	10.34
Tier 3			55.88	48.93	0	0	55.88	0
Tier 4			3.21	0	0	0	3.21	0
Tier 5			0	0	0	0	0	0

Table 3: Household annual EAD

Cumulative EAD

	Business-as-Usual		Electrified EAD		Tier 5 EAD		Tier 3 EAD		Hybrid EAD	
	(1) Urban	(2) Rural	(3) Urban	(4) Rural	(5) Urban	(6) Rural	(7) Urban	(8) Rural	(9) Urban	(10) Rural
Non-tiered	0.70	0.76	1.71	15.46						
Baseline 1	1078.6	725.0			797.7	385.5	39.4	59.4	797.7	59.4
Baseline 2	1200.9	732.0			394.7	302.1	20.9	49.4	394.7	49.4

Table 4: Cumulative EAD

EAD contributions by benefit type

Figure 4: Distribution of benefits

- 1 Lack of cost comparison
- 2 True benefits of electrification may vary within and across households

- 1 Lack of cost comparison
- 2 True benefits of electrification may vary within and across households
- 3 Parameterization of benefits over a transition using cross-sectional data

- 1 Lack of cost comparison
- 2 True benefits of electrification may vary within and across households
- 3 Parameterization of benefits over a transition using cross-sectional data
- ⁴ EAD is only as comprehensive and accurate as its parameterization
 - Causal evidence from the literature
 - Data availability

College of the Liberal Arts SCHOOL OF PUBLIC POLICY 15 / 18

- 1 Lack of cost comparison
- 2 True benefits of electrification may vary within and across households
- 3 Parameterization of benefits over a transition using cross-sectional data
- ⁴ EAD is only as comprehensive and accurate as its parameterization
 - Causal evidence from the literature
 - Data availability

College of the Liberal Arts SCHOOL OF PUBLIC POLICY 15 / 18

Using MTF survey data to estimate EADs

- MTF surveys contain rich data on household energy use and practices
 - Tier classification
 - Focus on all energy sources and fuel types

Using MTF survey data to estimate EADs

- MTF surveys contain rich data on household energy use and practices
 - Tier classification
 - Focus on all energy sources and fuel types
- Capturing a point in time
- Comparability across countries is a key strength
 - Context-specific, relevant energy policy
- Speaking to benefits beyond the household, especially the operation and growth of firms
- Costs of enhanced electricity access-for households and society

Policy impact of the EAD

- The global power reliability problem
- Even in a country with high rates of electrification, EAD calculations inform us about missed benefits
 - Particularly from a distributional perspective

Policy impact of the EAD

- The global power reliability problem
- Even in a country with high rates of electrification, EAD calculations inform us about missed benefits
 - Particularly from a distributional perspective
- Comparisons by
 - Geography to inform where largest gains to more complete electrification lie
 - **Scenarios** to demonstrate relative returns to investments in different electrification technologies and pathways
 - Years to estimate the returns to investment over time
 - Benefit types to show priorities for energy use

Policy impact of the EAD

- The global power reliability problem
- Even in a country with high rates of electrification, EAD calculations inform us about missed benefits
 - Particularly from a distributional perspective
- Comparisons by
 - Geography to inform where largest gains to more complete electrification lie
 - **Scenarios** to demonstrate relative returns to investments in different electrification technologies and pathways
 - Years to estimate the returns to investment over time
 - Benefit types to show priorities for energy use
- Need for policymakers to develop electrification plans that confront the trade-offs of different electrification trajectories

Estimating lost dividends from incomplete energy access transitions

Emily L. Pakhtigian

School of Public Policy, Penn State University emilypakhtigian@psu.edu

