**ESMAP Global Mini Grid Technical Conference** Abuja, Nigeria, December 6, 2017

### FRONTIER DEVELOPMENTS IN MINI GRIDS

## **Geospatial planning**

### Ignacio J. Pérez-Arriaga

CEEPR, MIT Instituto de Investigación Tecnológica (IIT), Comillas University Florence School of Regulation, European University Institute







ENTRE FOR DVANCED

FLORFNCF

MITei MIT Energy Initiative

### **UTILITY OF** THE FUTURE

An MIT Energy Initiative response to an industry in transition





### We have to change the "top-down" perspective...



## ... by another one with demand & generation all over the place



4

## What could be the true frontier of mini grids in the developing world?

I do believe that mini grids must... ... become integrated as one more component of a comprehensive electrification process... ... led by the incumbent distributor  The differentiation between grid extension, mini grids & SHS is becoming blurred

• An integrated perspective is becoming increasingly necessary

## How can geospatial planning help in the electrification planning process?

### What's an electrification plan? (the techno-economic answer)

- An electrification plan will consist of some mix of on- & off-grid expansions providing electricity access to all consumers at minimum cost
  - For some **prescribed demand** for each consumer
  - Meeting minimum reliability requirements
  - And additional constraints (e.g. limit on the total diesel utilization)

### The costs of the plan

- The plan will consist of on- & off-grid expansions
- Grid extension costs
  - Investment & operation costs of new grid, reinforcements of existing grid, "upstream" cost of grid-supplied electricity, cost of non served energy
- **Off-grid** development costs
  - Microgrids: Investment & operation costs of generation, storage & network, cost of non served energy
  - Stand-alone systems: Investment & operation costs of generation & storage, cost of non served energy

## The Reference Electrification Model (REM)

### Massachusetts Institute of Technology / Tata Center for Technology and Design IIT-Comillas University / Institute for Research in Technology





IFCIALA CHUCK



Universal Energy Access Lab http://universalaccess.mit.edu

# **REM supports large-scale electrification planning...**





#### District of Vaishali (Bihar) About 600,000 households

# ... as well as local electrification projects...

Village of Tayabpur, in Bikhanpura, Desari block, ward 9,(Bihar) 190 households





Consumers

| Cable Type/Name       | kVA | Length (km) | Costs (euros) |
|-----------------------|-----|-------------|---------------|
| mole (single phase)   | 15  | 1.14        | 1130.82       |
| gopher (single phase) | 27  | 0.26        | 495.74        |
| weasel (single phase) | 30  | 0.04        | 87.21         |
| weasel                | 89  | 1.05        | 3505.63       |
| ferret                | 107 | 0.35        | 1532.83       |

## **REM output in both cases**

Table:

(\$/kWh)

- Network layout
- Generation design (micro-grids), detailed dispatch
- Detailed cost and design figures (tables, charts)
- Geo-referenced solutions (maps)



### Large-scale REM output



## We start from the position of every building to be supplied...

District of Vaishali (Bihar) About 600,000 households



## If geolocation of buildings is not available, starting from satellite imagery...



## ... our software identifies the location of each building...



## ... we also need the estimated demand for each type of building...





## ... & the location & characteristics of the existing network...



... & then the REM model determines the lowest cost electrification mode for each building & can place it on Google maps



#### **Once REM determines the electrification mode for each** building, we can place the solution on Google maps...



Extension 11kV — Extension 400V Microgrid 11kV — Microgrid 400V

Stand-Alone

## For each microgrid REM optimizes the mix of generation & storage...







# ... & provides statistics of cost & performance for each type of supply



## ... & it can adapt the network layout to the pattern of roads and paths in the village

### DETAIL OF THE DESIGN OF ONE MICROGRID

#### Legend

- ▲ Low/Medium Voltage Transformer
- Low Voltage Consumer
  - Medium Voltage Network
- Low Voltage Network

0 2.50 500 750 1000 m

# **Topography...** (ongoing implementation)



#### Topography: NO Forbidden Zones: NO Forbidden Zone Cost Multipliers: N/A





#### Topography: YES Forbidden Zones: NO Forbidden Zone Cost Multipliers: N/A





#### Topography: YES Forbidden Zones: YES Forbidden Zone Cost Multipliers: 10





#### Topography: YES Forbidden Zones: YES Forbidden Zone Cost Multipliers: 100





## Sensitivity analysis For both large scale & village levels

The model can be used to answer "what if questions" by comparison of various scenarios

For example, how would the optimal electrification mode change if...

- ... grid **reliability** improves?
- ... electricity **demand grows** significantly?
- ... microgrids are required to be built to grid code?
- ... some technology (e.g. diesel, DC) is excluded?

## **Uganda** (Southern Territories)

### Uganda – Southern territories Forced 100% Grid Extension


#### Uganda – Southern territories 100% Grid Reliability



#### Uganda – Southern territories 85% Grid Reliability





## The Cajamarca region

- The region of Cajamarca is located in the north of Peru and close to Ecuador.
- The case study focus on the Michiquillay district.
- It has an area of approximately 400 km<sup>2</sup> and around 6,700 buildings.



Image source: Andres Gonzalez-Garcia, Reja Amatya, Robert Stoner, and Ignacio Perez-Arriaga, 'Evaluation of universal access to modern energy services in Peru. Case study of scenarios for Electricity Access in Cajamarca.' Enel Foundation, 2015.

## **Cajamarca** (*Peru*) **Location of buildings**



#### Cajamarca (Peru)

**Base case** (estimated household demand: 185.5 kWh/year)



## Cajamarca (Peru) Demand growth (500 kWh/year & household)



# **Nigeria** (Identification of best mini grid sites in Sokoto)

## **Google Earth With UTM regions**



- Sokoto region:
  - 2 UTM zones (31/32)
  - Village-level boundary data and additional information such as population, number of schools & health centers available

## Sokoto State data

- Total population: 4.37 million
- 1,503 clusters (clusters identified using global population dataset, NMIS school data, and polling units)
- Largest cluster 904,798 population identified as an electrified cluster
- Largest cluster 29,865 population (~ 6000 hh) identified as unelectrified cluster
- Total number of electrified clusters: 167 (12.5%)
- Total population electrified: 2.33 million (53%)

#### **Assumptions:**

- Household population = 5 people (\* given population is not a round number probably came from some statistical measurement)
- Electrified village cluster data provided by the WB (based on nightlight data, and information about electrified schools)

#### Run 1 (Base case; grid reliability: 85%)

- Grid reliability = 85% (assumption)
- Result: 15% of the demand nodes created should be grid connected as it is the least cost option, rest should be off-grid systems
- At this level of granularity, there is no distinction between a microgrid and an isolated system, as a single isolated system in a green dot would be a microgrid for 100 household customer.

| Column1                                     | Microgrids 💌 | Isolated Systems 💌 | Grid Extensions 💌 | All 💌     |
|---------------------------------------------|--------------|--------------------|-------------------|-----------|
| Number of Customers (#households)           | 2156         | 1792               | 688               | 4636      |
| Fraction of Customers                       | 0.47         | 0.39               | 0.15              | 1         |
| NPV per Customer (\$)                       | 61756        | 24422              | 31340             | 42811     |
| System Cost Per Customer (\$/yr)            | 6315.11      | 3677.07            | 2628.21           | 4748.25   |
| Administrative Cost Per Customer (\$/yr)    | 49.3         | 60                 | 9.02              | 47.46     |
| Non-served Energy Cost Per Customer (\$/yr) | 8            | 20.67              | 3453.2            | 524.18    |
| Final Cost Per Customer (\$/yr)             | 6372.41      | 3757.74            | 6090.43           | 5319.89   |
| Total System NPV (\$)                       | 133145465    | 43764702           | 21562187          | 198472353 |
| Total System Cost (\$/yr)                   | 13615377     | 6589305            | 1808208           | 22012890  |
| Total Administrative Cost (\$/yr)           | 106290       | 107520             | 6206              | 220016    |
| Total Non-served Energy Cost (\$/yr)        | 17254        | 37038              | 2375802           | 2430095   |
| Final Cost (\$/yr)                          | 13738921     | 6733863            | 4190217           | 24663001  |
| Fraction of Demand Served (p.u.)            | 1            | 1                  | 0.85              | 0.98      |
| Cost Per kWh of Demand Served (\$/kWh)      | 0.22         | 0.22               | 0.13              | 0.21      |
| Cost Per kWh of Total Demand (\$/kWh)       | 0.22         | 0.22               | 0.11              | 0.2       |

#### **Resulting electrification modes**



### **Run 2** (increasing grid reliability to 90%)

- Grid reliability = 90% (assumption)
- Result: 64% of the demand nodes created should be grid connected as it is the least cost option, rest should be off-grid systems

| Column1                                     | Microgrids 💌 | Isolated System | Grid Extensions | All       |
|---------------------------------------------|--------------|-----------------|-----------------|-----------|
| Number of Customers                         | 335          | 1329            | 2972            | 4636      |
| Fraction of Customers                       | 0.07         | 0.29            | 0.64            | 1         |
| NPV per Customer (\$)                       | 20956        | 7358            | 40843           | 29807     |
| System Cost Per Customer (\$/yr)            | 2142.92      | 1107.77         | 3425.11         | 2668.15   |
| Administrative Cost Per Customer (\$/yr)    | 54.88        | 60              | 9.02            | 26.95     |
| Non-served Energy Cost Per Customer (\$/yr) | 10.65        | 20.37           | 3272.41         | 2104.45   |
| Final Cost Per Customer (\$/yr)             | 2208.44      | 1188.14         | 6706.54         | 4799.55   |
| Total System NPV (\$)                       | 7020161      | 9778228         | 121385860       | 138184249 |
| Total System Cost (\$/yr)                   | 717878       | 1472230         | 10179438        | 12369546  |
| Total Administrative Cost (\$/yr)           | 18384        | 79740           | 26810           | 124935    |
| Total Non-served Energy Cost (\$/yr)        | 3566         | 27074           | 9725593         | 9756233   |
| Final Cost (\$/yr)                          | 739828       | 1579044         | 19931841        | 22250714  |
| Fraction of Demand Served (p.u.)            | 1            | 0.99            | 0.9             | 0.91      |
| Cost Per kWh of Demand Served (\$/kWh)      | 0.26         | 0.29            | 0.11            | 0.12      |
| Cost Per kWh of Total Demand (\$/kWh)       | 0.26         | 0.29            | 0.1             | 0.11      |

#### **Resulting electrification modes**



#### 440 village clusters are always electrified via offgrid systems

#### (even with high reliable grid scenario)



- Clusters in blue boundaries – grid connected
- Clusters in yellow/green some or all off-grid nodes
- Current granularity level does not allow for distinction between isolation home systems and microgrids – all compiled as off-grid systems
- High priority off-grid
  project probably the
  ones where all demand
  nodes are served by off-grid systems (440 village
  clusters)

#### **Now for a single mini grid** (manually identified households from Google Earth)



## **Chosen cluster**

- Cluster NESP\_ID 7379
- Population: 833
- Total number of customers (assumption):
  - Residential: 170 (Daily energy usage ~ 0.75kWh)
  - Commercial: 43 (Daily energy usage ~ 3.5 kWh)
  - Productive: 17 (Daily energy usage ~ 8.5 kWh)

## **REM result** (with network layout)



## **REM results** (no diesel constraint)

| Capital cost:                                          |             |                  |  |  |  |
|--------------------------------------------------------|-------------|------------------|--|--|--|
|                                                        | Size        | Capital (USD \$) |  |  |  |
| Solar PV + installation                                | 49 kW       | 34,300           |  |  |  |
| Battery + installation                                 | -           | -                |  |  |  |
| Diesel Generator                                       | 20 kW       | 12,127           |  |  |  |
| Inverter                                               | 40 kW       | 8,192            |  |  |  |
| MPPT Charge controller                                 | -           | -                |  |  |  |
| Network + distribution transformers (incl. poles cost) | 4.89 km     | 65,956           |  |  |  |
| Total                                                  |             | 120,575          |  |  |  |
| Network (component breakdown)                          |             |                  |  |  |  |
| Name                                                   | Length (km) | Capital (USD \$) |  |  |  |
| Weasel                                                 | 4.14        | 49,638           |  |  |  |
| Ferret                                                 | 0.30        | 3,916            |  |  |  |
| Rabbit                                                 | 0.39        | 5,513            |  |  |  |
| Dog                                                    | 0.02        | 346              |  |  |  |
| Panther                                                | 0.04        | 977              |  |  |  |

# Microgrid (generation/load profile)





# **Diesel constrained scenario**

#### Limiting the total demand met by diesel generator

|                                                                                              | 20% constraint |                  | No constraint |                  |  |
|----------------------------------------------------------------------------------------------|----------------|------------------|---------------|------------------|--|
| Capital cost:                                                                                |                |                  |               |                  |  |
|                                                                                              | Size           | Capital (USD \$) | Size          | Capital (USD \$) |  |
| Solar PV + installation                                                                      | 92.75 kW       | 64,925           | 49 kW         | 34,300           |  |
| Battery + installation                                                                       | 488 kWh        | 105,900          | _             | -                |  |
| Diesel Generator                                                                             | 5 kW           | 5,760            | 20 kW         | 12,127           |  |
| Inverter                                                                                     | 36 kW          | 7,532            | 40 kW         | 8,192            |  |
| MPPT Charge controller                                                                       |                | 9,811            |               |                  |  |
| Network + distribution transformers                                                          | 4.89 km        | 65,862           | 4.89 km       | 65,956           |  |
| Total                                                                                        |                | 259,790          |               | 120,575          |  |
| Net Present Value (incl. replacement,<br>O&M, fuel costs: project lifetime =<br>20 years) ** |                | 370,000          |               | 183,350          |  |

\*\* Does not include network (capital, O&M)

Some other practical constraints of having a diesel generator – such as uncertainty in fuel supply, theft of fuel etc. has not been captured in the cost of running a diesel generator

# Any similar models to LittleREM?

## **Models similar to LittleREM**







# Any similar models to BigREM?

# **Models similar to BigREM**

- **NP** (Network Planner, from Columbia University)
  - Uses LandScan data & or clusters at village level to describe where population (& therefore demand) are located
    - $_{\rm O}$  Therefore less granularity then REM, but still good
  - Only considers one type of medium voltage line
  - Professional interface

# **Models similar to BigREM**

- **LAPER** (Logiciel d' Aide à la Planification de l'Électrification Rurale)
  - Also aggregates consumers into villages and does not design the interior of the village.
     Therefore less granularity then REM
  - It can consider non-economic criteria
- **NPAM** (Network Performance Assessment Model, from KTH) does clustering to identify locations suitable for microgrids.



ESMAP Global Mini Grid Technical Conference Abuja, Nigeria, December 6, 2017

#### **FRONTEER DEVELOPMENTSIN MINI GRIDS**

## **Geospatial planning**

#### Ignacio J. Pérez-Arriaga

CEEPR, MIT Instituto de Investigación Tecnológica (IIT), Comillas University Florence School of Regulation, European University Institute







FLORENCE SCHOOL O REGULATI