

Roadmap for Enhancing Energy Efficiency in New Buildings

Shabnam Bassi Bureau of Energy Efficiency Government of India

ENERGY CONSERVATION ACT, 2001

Energy Conservation Act, enacted in October 2001. BEE created as the nodal statutory body to improve energy efficiency through:

- Standards and labeling for appliances
- Energy Conservation Building Codes
- Energy consumption norms for Designated Consumers
- Certification and accreditation of energy auditors and energy managers
- Dissemination of information and best practices
- Capacity Building
- Establish EE delivery systems through Public-Private Partnerships

The Act creates the Bureau of Energy Efficiency (BEE) in the centre, and State Designated Agencies (SDAs) in the states

> 30 states have created SDAs

ENERGY CONSERVATION AND EFFICIENCY POTENTIAL

	Energy Conservation potential assessed as at present (IEP) (15%	20000MW	
	by DSM) Verified Energy Savings :		
JAL OF	-During X Plan period	877 * MW	
	-During 2007-08 and 2008-09 (June 2008)	1208 MW	
	-Target for XI Plan period (5% reduction of energy consumption)	10000 MW	
	* Only as indicated by participating units in the National Energy Conservation award scheme, for the previous five years.		

Growth Profile of Indian Commercial Sector

- Demand for OFFICE SPACE in India is driven by the increasing share of the services sector in the Indian economy
 - Office space supply shifting from Central Business Districts to secondary centers (office and IT parks)
 - Modern office buildings in newly developed areas enable the higher quality standards that are essential for IT services
 - All India office market
 - 70% by IT Services companies (more than 7000 No.) in India
 - 15% by financial service providers & pharmaceutical sector
 - 15% by other sectors
 - Office stock must increase nearly 20 million sf/year in New Delhi, Mumbai, Bangalore to keep pace with growing demand
 - Conservative estimate (for India): Approx. 55 million sf/year
 - SHOPPING CENTRES/MALLS
 - By the end of 2008, space of 79 million sf in 257 centers are estimated in 15 largest cities of India

Outlook for India's Commercial Real Estate Market¹

eutsche Bank Report on India's Commercial Real Estate Marke

Energy IN-efficiency is rampant

- Most commercial buildings have energy performance index (EPI) of 200 to 400 kWh/sq m/year
- Similar buildings in North America and Europe have EPI of less than 150 kWh/sq m/year
- Energy-conscious building design has been shown to reduce EPI to 100 to 150 kWh/sq m/year in India – development of such buildings is restricted to environmentally-sensitive corporates
- Large scale energy-efficient building design is limited due to split incentives - builders fear that they would bear the costs, while tents would enjoy benefits

Electricity Use in the Commercial Sector is exploding !

Typical Building Energy Use

What are Energy Conservation Building Codes?

- ECBC set minimum energy efficiency standards for design and construction
- ECBC encourage energy efficient design or retrofit of buildings so that
 - It does not constrain the building function, comfort, health, or the productivity of the occupants
 - Lifecycle costs (construction + energy costs) are minimized

Energy Conservation Building Code

- ECBC covering the following components prepared:
 - Building Envelope (Walls, Roofs, Windows)
 - Lighting (Indoor and Outdoor)
 - Heating Ventilation and Air Conditioning (HVAC) System
 - Solar Hot Water Heating
 - Electrical Systems
 - ECBC finalized after extensive consultation
 - Voluntary introduction of ECBC in May 2007; mandatory after capacity building and implementation experience
 - Impact of ECBC Reduced Energy Use for buildings
 - National Benchmark ~ 180 kWh/m²/year
 - ECBC Compliant building ~ 110 kWh/m²/year

Case study 1 : CESE, IIT Kanpur

Designed for IIT, Kanpur

Initial energy consumption: 240 kWh/m²/yr

Building envelope

- Cavity wall with insulation
- Insulated and shaded roof
- Double glazing and windows

Architectural building section showing passive strategies

Case study 1: CESE, IIT Kanpur

- Efficient fixtures
- Efficient lamps
- Daylight integration
- > Average LPD < 1 W/ft²

HVAC system

- Load calculation with optimized envelope and lighting system
- Efficient chillers
- Efficient condenser cooling
- Use of geothermal energy for cooling

Case study 1 : CESE, IIT Kanpur

Case study 2: Fortis Hospital

New Delhi

- Initial energy consumption: 605 kWh/m² yr
- Building envelope
 - AAC blocks
 - Insulated roof
 - Double glazing and shading for windows

Case study 2: Fortis Hospital

- Efficient fixtures
- Efficient lamps
- Daylight integration
- Load reduction of 33%

HVAC system

- Load calculation with optimized envelope and lighting system
- Efficient chillers
- Efficient fans for AHUs
- Use of VFDs

Case study 2 : Fortis Hospital

Case study 3: Triburg office

Environmentally Sensitive Design Makes Sense

- Energy savings are of the order of 50%
- Initial cost increases by 10 to 15%, but payback is obtained in 5 to 7 years
- The most cost effective way to meet the ECBC requirement is to design buildings with appropriate regard to climate and sun.
- A design not sensitive to sun and climate will have to invest more to meet the minimum ECBC standard

ECBC User Guide

Contains information related to

- Purpose
- Scope
- Administration and enforcement
- Building envelope
- Heating, ventilation, & air conditioning
- Service water heating & pumping
- Lighting
- Electrical power
- Appendixes
 - A: ECBC definitions, abbreviations, and acronyms
 - B: whole building performance method
 - C: climate zone map of India
 - D: Supplemental material
 - E: Comparison of international building energy standards
 - F: References
 - G: ECBC compliance forms

Energy Conservation Building Code (ECBC)

User Guide

ECBC User Guide

Why is User Guide Important?

- Prescriptive option
- Tradeoff option
- Whole building performance option
- Fills essential gaps in ECBC (revised version 2008)

Why is User Guide Important?

ONGOING INITIATIVES ON ECBC

> CAPACITY BUILDING / TRAINING

 25 training programmes/ workshops involving about 1500 professionals have been conducted till date

> PANEL OF ECBC EXPERT ARCHITECTS

- To provide advice to design professionals to meet the ECBC requirements.
- BEE is providing assistance to MH&FW to develop the six AIIMS like institutes under the "Pradhan Mantri Swasthya Yojna" (PMSSY) Scheme as ECBC compliant buildings

ONGOING INITIATIVES IN ECBC

DEVELOPMENT OF TECHNICAL REFERENCE MATERIAL

Tip sheets on envelope design, lighting, HVAC and energy simulation have been developed

CURRICULUM DEVELOPMENT

20 architectural/ engineering colleges have committed to develop architectural and engineering courses for energy efficient and sustainable building design.

ECBC PROGRAMME COMMITTEE

- To facilitate development of ECBC complaint building design
- Credible implementation of few demonstration project
- Setting up compliance and evaluation procedures by creating appropriate institutional mechanism.

Barriers to Energy Efficiency

- Lack of information about comparative energy use.
- Risk due to lack of confidence in performance of new technologies.
- Higher cost of EE technologies.
- Asymmetry in sharing of costs and benefits.-especially in building sector.

STAR RATING FOR OFFICE BUILDINGS

- Large potential for energy savings both in government and commercial office buildings.
 - The regulation, promotion and facilitation of energy efficiency in commercial buildings is one of the key thrust areas of BEE.
 - Energy Conservation Building Code (ECBC)
 - specifies standards for new, large, energy -efficient commercial buildings.
 - Energy Service Companies(ESCOs)
 - upgrade the energy efficiency of existing government buildings through retrofitting on performance contracting mode.

SCHEME FOR RATING OF BUILDINGS

- The Star Rating Program for buildings is based on actual performance of the building in terms of specific energy usage (kWh/sq m/year).
- This programme would rate office buildings on a 1-5 Star scale with 5 Star labeled buildings being the most efficient.
- Five categories of buildings office buildings, hotels, hospitals, retail malls, and IT Parks in five climate zones in the country have been identified.
- Office buildings in the following 3 climatic zones for airconditioned and non- air-conditioned:
- Warm and Humid
- Composite
- Hot and Dry
- It will be subsequently extended to other climatic zones and building types.

SCHEME FOR PARTICIPATION

- Buildings having a connected load of 500 kW and above
 - The application for each building shall be accompanied by non refundable registration fee of Rs.1,00,000 (Rupees One lakh)
 - Energy Performance Index (EPI) in kWh / sq m/ year in terms of purchased & generated electricity divided by built up area in sq m excluding basement and parking areas
 - The total electricity would not include electricity generated from on-site renewable sources such as solar photovoltaic etc.
 - Energy performance after completion of 1 year of operation with full occupancy of the building.

BANDWIDTHS- LESS THAN 50% AIR CONDITIONING

Composite	
EPI(Kwh/sqm/year)	Star Label
80-70	1 Star
70-60	2 Star
60-50	3 Star
50-40	4 Star
Below 40	5 Star
Warm and Humid	
EPI(Kwh/sqm/year)	Star Label
85-75	1 Star
75-65	2 Star
65-55	3 Star
55-45	4 Star
Below 45	5 Star
Hot and Dry	
EPI(Kwh/sqm/year)	Star Label
75-65	1 Star
65-55	2 Star
55-45	3 Star
45-35	4 Star
Below 35	5 Star

BANDWIDTHS- MORE THAN 50% AIR CONDITIONING

Composite	
EPI(Kwh/sqm/year)	Star Label
190-165	1 Star
165-140	2 Star
140-115	3 Star
115-90	4 Star
Below 90	5 Star
Warm and Humid	
EPI(Kwh/sqm/year)	Star Label
200-175	1 Star
175-150	2 Star
150-125	3 Star
125-100	4 Star
Below 100	5 Star
Hot and Dry	
EPI(Kwh/sqm/year)	Star Label
180-155	1 Star
155-130	2 Star
130-105	3 Star
105-80	4 Star
Below 80	5 Star

Label

Growth of Commercial Buildings in India

- Commercial buildings in India account for nearly 8% of the total electricity supplied by utilities.
- Electricity demand is likely to increase by 39.7% in 2011-12 as compared to 2006-07, by another 43.7% in 2016-17 as compared to 2011-12 and by yet another 37.5% in 2021-22 as compared to 2016-17.
- The real estate sector is second only to agriculture in terms of employment generation and contributes heavily towards the gross domestic product (GDP).
- In spite of the fast-paced growth of the commercial building sector, energy consumption data for the sector is largely unavailable in the public domain

Need for Benchmarks

- Absence of macro-level data is a barrier that does not allow the government to formulate market-oriented policies.
- The Bureau of Energy Efficiency, with technical assistance from USAID ECO-III project, embarked on the initiative to provide sectoral energy consumption data and undertook the preliminary benchmarking initiative.
- It is also felt that creation of macro-level benchmarks would also help in identifying exemplary buildings as well as poorly performing buildings that can be excellent targets for implementing energy efficiency measures.

Benchmarking Methodology

