

The Rapid Assessment Framework (RAF) An Innovative Diagnostic Tool for City Energy Use

Ranjan Bose, TTL, Senior Energy Specialist ESMAP, The World Bank September 28, 2010

What is RAF?

A practical tool for conducting rapid assessment of energy use in cities to identify and prioritize sectors, and suggest specific energy efficiency interventions with 3 principal components:

- 1. A city energy benchmarking tool
- 2. A process for prioritizing sectors that offer the greatest EE potential
- 3. A 'playbook' of tried and tested EE recommendations

The RAF is an Innovative Decision Support Tool for Evaluating Energy Efficiency Opportunities in Developing Country Cities

Positioning of RAF

What it does:

- Focuses on areas where CAs have strong intervention power
- ✓ Sensitive to user-city context
- Simple and practical diagnostic tool and can be quickly applied
- Big-picture analysis based on available data and extensive interviews
- Produces basic strategy for choosing and pursuing solutions
- Energy efficiency expert-led, structured process

What it doesn't do:

- Comprehensive energy audit or emissions inventory
- * 'Black Box' approach to energy planning recommendations (data in, energy plan out)
- Detailed analysis of sector specific interventions, cross-sectoral linkages, and detailed costs and benefits

RAF Vital Statistics

Clients	City mayors and municipal bodies
Sectors Covered	Buildings, transportation, water, public lighting, power & heat, waste
Principal Components	3 modules: energy benchmarking; prioritization of sectors; energy efficiency recommendations and quick appraisal
Benchmarking KPIs	28 KPIs spread across 6 sectors
Performance Data	54 cities; 691 data points with a minimum 8 data points per KPI
Prioritization	Energy expenditure, relative energy intensity, city authority control or influence
EE Recommendations	59 recommendations spread across 6 sectors and CA management
Case Studies	191 cases spread across 6 sectors
Decision-Making Attributes	Energy savings potential, upfront capital cost, speed of implementation
Basic Training	Essential as it requires experts' participation
Duration	~3 months
Field Testing Done	Quezon City, Philippines

Informed by Other Leading City EE Tools

Characteristics of other systems:

- Able to facilitate projections of future performance
- Helpful at linking potential recommendations to priority sectors
- Balance between automated approach and user judgment

Where we differ:

- EE focused, not emissions focused
- External expert-led, thereby requiring less on-going training and CA support
- Fewer information requirements
- 3 month process from start-to-finish
- RAF enables city benchmarking
- RAF links benchmarking to recommendation tool

PROJECT TWO DEGREES

RAF Support Documentation

Sample KPIs for Benchmarking

Key Performance Indicator	# cities w/ data
City Wide KPIs	
Electricity consumption (kWhe/capita)	52
Electricity consumption (kWhe/GDP)	11
Primary energy consumption (MJ/capita)	44
Primary energy consumption (MJ/GDP)	14
Transportation KPIs	
Total transport (MJ/capita)	40
Public transport (MJ/passenger km)	27
Private transport (MJ/passenger km)	26

Benchmarking Data Sources

- Hundreds of data sources reviewed
- NGO publications, academic and trade journal articles, city climate plans, World Bank databases & publications, etc.
- National Data used as proxy data for power/heat sector due to lack of city data.
- No fewer than 8 data points/KPI

Benchmarking Cities

 54 cities representing a cross section of Population, Climate and Level of Development

28 KPIs are used in RAF

CITY WIDE KPIS

- CW-1 Electricity consumption (kWhe/capita)
- CW-2 Electricity consumption (kWhe/GDP)
- CW-3 Primary energy consumption (MU/capita)
- CW-4 Primary energy consumption (MU/GDP)

TRANSPORTATION KPIS

- T-1 Total transport (MU/capita)
- T-2 Public transport (MU/passenger km)
- T-3 Private transport (MU/passenger km)
- T-4 Transportation Non-Motorized mode split (%)
- T-5 Public Transportation modes plit (%)
- T-6 Kilometres of high capacity transit per 1000 people

BUILDINGS KPIS

- B-1 Municipal buildings (kWhe/m2)
- B-2 Municipal buildings heat consumption (kWhth/m2)
- B-3 Municipal buildings energyspend as percentage of municipal budget

STREET LIGHTING KPIS

- SL-1 Electricity consumed per km of lit roads (kWhe/km)
- SL-2 Percentage of city roads lit
- SL-3 Electricity consumed per light pole (kWh/pole)

POINER & HEAT KPIS

- PH-1 Percentage heat loss from network
- PH-2 Percentage total T & D losses
- PH-3 Percentage of T & D loss due to non-technical

WATER & WASTEWATER KPIS

- WW-1 Water consumption (L/capita/day)
- WW-2 Energy density of potable water production (kWhe/m3)
- WW-3 Energy density of was tewater treatment (kWhe/m3)
- WW-4 Percentage of non-revenue water
- WW-5 Electricity cost for water treatment (potable- and wastewater) as a percentage of the total water utility expenditures

WASTE KPIS

- W-1 Waste per capita (kg/capita)
- W-2 Percentage capture rate of solid was te
- W-3 Percentage of solid was to recycled
- W-4 Percentage of solid was te that goes to landfill

Benchmarking Results

- Used to engage City Authority
- Used to estimate energy savings potential for city

Sector Prioritization "Score"

- *Relative Energy Intensity* Estimate of energy savings potential for the sector (based on benchmarking)
- Alternative REI Calculation Estimate of energy savings potential (based on CA/external expert assessment)
- Sectoral Energy Expenditure Estimate of money spent on energy in this sector
- *City Authority Control* (%) weighting factor to gauge the ability of the City Authority to influence change in the sector

Sector Prioritization: Relative Energy Intensity

Indicative KPI for sector A

Sector	Sub-Sector	КРІ			
Buildings	Municipal Buildings	B1 - Municipal Building Energy Consumption (kWh _e /m ²)			
Transportation	Public Vehicles	T2 - Public Transportation MJ / Passenger km			
	Private Vehicles	T3 - Private Transportation MJ / Passenger km			
Water	Supply Water	WW2 - Energy Density of Potable Water (kWh _e /m ³)			
	Wastewater	WW3 - Energy Density of Wastewater Treatment (kWh_e/m^3)			
Public Lighting	Street Lighting	SL3 - Electricity Consumed per Light Pole (kWh/pole/annum)			
Power & Heat	Electricity	PH2 - Percentage Total Transmission & Distribution Losses			
	Heating	PH1 - Percentage Heat Lost from Network			
Waste	Waste	W1 - Average Waste per Capita (kg/capita/annum)			

Sector Prioritization: Alternative REI Calculation

- For use when KPI-based REI calculation does not appear to match information acquired during stakeholder consultations
- Definition-based approach allows for uniform application across cities

	Municipal Buildings	Category+ Savings potential	Characteristics
Using the Slider below, the guidance provided i	Using the Slider below, select the appropriate REI based upon site walk-throughs he guidance provided in the 'Technical Energy Savings Estimation' Form.		Some buildings have opportunity for basic lighting upgrades, but most systems are new <i>or</i> most buildings are under-serviced and designed very sparsely
Please provide a ration proxies used etc.	ale for the change in the box below, for instance: no ber	Low (2-5%)	Mix of old and new buildings where lighting upgrades seem consistent, and some A/C or heating systems could be upgraded
			Some large buildings with major upgrade opportunities, but mostly old, smaller buildings
Reason for Change	CA facilities engineering staff have been looking at boiler upgrades and fan replacement. They anticipate no less than 11% savings from these two changes alone	High (10-20%)	Majority of old buildings with: old lighting at >20W/m2, old A/C with COP < 3.0, old heating with efficiency < 0.7, old elevator/pump motors.
	- other system upgrades will improve efficiency by a few more percent.	Return to REI	

Sector Prioritization: Level of CA Control

- Weighting factor for sector priority score
- Each city has a unique political, economic and policy-making context

City Authority Sector Ranking

Rank	Sector	REI%	Spending (US \$)	CA Control	Score	Check to Select
1	Public Transportation	53.3	1,800,000,000	0.51	489,600,000	\checkmark
2	Solid Waste	67.3	600,000,000	0.50	201,981,818	
3	Potable Water	25.2	300,000,000	1.00	75,789,473	\checkmark
4	Municipal Buildings	26.8	213,000,000	1.00	57,167,875	
5	Street Lighting	12.3	18,000,000	1.00	2,222,608	
City Wide Se	ctor Ranking					
Rank	Sector	REI%	Spending (US \$)	CA Control	Score	Check to Select
1	Wastewater	22.8	350,000,000	0.50	39,999,999	\checkmark
2	Power	52.5	569,888,000	0.05	14,964,956	
3	District Heating	0.0	140,000,000	0.26	0	

Recommendations

- 59 Recommendations in total
- Mix of strategic programs and specific sector activities
- 191 case studies with hyper-links to other resources and tools
- Each recommendation 'rated' on three attributes: *Energy Savings Potential, First Cost, Speed of implementation*
- 23 "technical" recommendations include energy savings calculators

ackground In	formation													
	Co	ost of electri	city (\$/kWh)		0.15	5								
Cost of el	ectricity at d	iscounted ta	riff (\$/kWh)		0.1									
		Contor Enor	m Co and /¢)		1700000									
		Sector End	8) opena (9)		17000000									
Pump 8	& Mot	or Up	grade	e Calcu	ulato	r								
Pump &	& Mot	or Up	grade	of Pumps an	u lato d/or Moto	r rs								
Pump & Recommendation	& Mot ons Reference Current B	e: 01 Improv	grade	e Calcu	ulato d/or Moto	r rs		Post-Up	grade Ener	gy Consum	ption			
Pump &	& Mot ons Reference Current E	cor Up e: 01 Improv Energy Cons Flow	grade re Efficiency sumption	e Calcu	ulato d/or Moto Hours of	r rs Total Flow		Post-Up	grade Ener	gy Consum	ption	Hours of	Total Flow	
Pump &	& Mot	Energy Cons Flow Capacity	grade re Efficiency sumption	of Pumps an Differentia	d/or Moto d/or Moto Hours of Operation	r rs Total Flow per day	Total kWh	Post-Up	grade Ener Flow	gy Consum Pump	ption Differentia	Hours of Operation	Total Flow per day	Total kWł
Pump &	& Mot ons Reference Current B Model	Flow (m3/h)	e Efficiency sumption	of Pumps an Differentia I Head (m)	d/or Moto d/or Moto Hours of Operation per day	r rs Total Flow per day (m3/day)	Total kWh per day	Post-Up	grade Ener Flow (m3/h)	gy Consum Pump Efficiency	ption Differentia I Head (m)	Hours of Operation per day	Total Flow per day (m3/day)	Total kWł per day
Pump & Recommendation Attributes	& Mot ons Reference Current B Model	Energy Cons Flow Capacity (m3/h) 360	Pump Efficiency Pump Efficiency 0 60%	of Pumps an Differentia I Head (m) 10	d/or Moto d/or Moto Hours of Operation per day	Total Flow per day (m3/day) 720	Total kWh per day 32.70	Post-Up Model	Flow (m3/h) 36	gy Consum Pump Efficiency 0 60%	Differentia I Head (m)	Hours of Operation per day	Total Flow per day (m3/day) 720	Total kWP per day 32.7
Pump & Recommendation Attributes Pump1 Pump2	& Mot ons Reference Current E Model	Flow Capacity (m3/h) Capacity	Pump Efficiency Efficiency 60% 60%	Differentia I Head (m) 10	d/or Moto d/or Moto Hours of Operation per day	Total Flow per day (m3/day) 2 720 120	Total kWh per day 32.70 5.45	Post-Up Model	Flow (m3/h) 36	Pump Efficiency 0 60% 0 70%	Differentia I Head (m) 10	Hours of Operation per day 2 1	Total Flow per day (m3/day) 720 120	Total kWf per day 32.7 4.6
Pump & Recommendation Attributes Pump1 Pump2 Pump3 Pump3	& Mot ons Reference Current E Model	Flow Capacity (m3/h) Capacity Capacity (m3/h) Capacity Capacity (m3/h) Capacity Capa	Pump Efficiency Pump Efficiency 60% 60%	Differentia I Head (m) 10 10	d/or Moto d/or Moto Hours of Operation per day	Total Flow per day (m3/day) 2 720 120 40	Total kWh per day 32.70 5.45 1.82	Post-Up Model	Flow (m3/h) 36 12 4	Pump Efficiency 0 60% 0 70% 0 80%	Differentia I Head (m) 10 10	Hours of Operation per day 2 1 1	Total Flow per day (m3/day) 720 120 40	Total kWl per day 32.7 4.6 1.3

Recommendations Appraisal

- As part of recommendation appraisal process, the CA's 'capacity to act' is rated on five factors:
 - Finance

Finance

O Low

Medium

High

Low

O Medium

Human resources Level of Competency

Level of Competency

- Human Resources
- Assets/Infrastructure

- Policy/Regulation/ Enforcement
- Data/Information

	Home	Initial Ap	praisal				→ E	xport	Save
	The matrix below presen prioritized sector, agains	ts the results of the initial apprais t the observed levels of competer	al of reco ncy and o	mmenda oportunit	tions in e y in the F	ach IAF city.		0	Back to Initial Appraisal
A		D	Data and	Informatio	n				
etency	Public Transportation	P	Policy, Regulation and Enforcement						
		A	Assets & I	nfrastructi	ure				
Funding is available from Municipal funding streams only. CA has no experience of other financial or partnering mechanisms.	Private Vehicles	Н	Human Re	esources					
CA has experience of: public private partnerships, some experience of other streams such as grants, soft loans and commercial funding	Solid Waste	F	Finance C	F	н	A	Ρ	D	Check to select
	Botable Water	ESMAP City score		m	m	h	h	m	
CA has relevant experience of some of the following: performance contracting, carbon finance and other innovative funding mechanisms		Car Parking Management		1	m	m	m	m	•
	Wastewater	Congestion Pricing		h	m	h	h	h	
elency.	Power	EE Municipal Vehicle Fleets		1	m	1	m	m	✓
City Authority has few technically skilled staff and/or a small available workforce. Staff can be		Enforcement of Vehicle Emission	ns	1	m	1	m	m	
trained/workforce expanded as part of the recommendation.	District Heating	Non-Motorized Modes		m	m	m	m	m	
City Authority has access to a highly trained/skilled person to lead the initiative and/or a medium sized workforce available. Staff can be trained/workforce expanded as part of the City	Street Lighting	Public Transportation Developme	ent	m	m	m	m	h	\checkmark
Authority.	Municipal	Taxi Vehicle Replacement Progra	m	m	m	1	m	m	
CA has access to considerable trained/technically proficient staff resources, including transport	Buildings	Traffic Flow Optimization		1	m	m	m	h	

Recommendations: Recommendation Matrix

RAF Process Summary

3-stage (12 week) process for a full city report

	Pre-m	hission		Post-mission			
Principal Activity	Preparations for Mission-Data Gathering	City Energy Use Benchmarking	RAF Introduction/ Sector Meetings	Prepare Final City Report			
Duration	6 w	eeks	4 days	1 day	4 days	1 day	4 weeks

- All information, insights, recommendations and calculations feed into Final City Report
- External energy efficiency expert's formal role ends here, although they may be contracted directly by CA to provide implementation support

Next Steps for RAF's Operational Leveraging

- Select a candidate city for pilot before it is deployed in different regions
- Criteria for city selection
 - Proactive Mayor local champion
 - Cost sharing from the region
 - Linkage to potential Bank investment operation
 - Availability of credible data

For more information: Dr Ranjan Bose Senior Energy Specialist, Task Team Leader Energy Efficient Cities Initiative Energy Sector Management Assistance Program The World Bank| 1818 H Street, NW | Washington, DC 20433 USA email | <u>rbose@worldbank.org</u>

web | www.esmap.org