

SE4ALL Global Tracking Framework

Preview of Findings ESMAP Consultative Group March 1st 2013

INTRODUCTION

Energy access

- Ensure universal access to modern energy services

• Renewable energy

- Double the share of renewable energy in the global energy mix

• Energy efficiency

- Double the global rate of improvement in energy efficiency

A phased and differentiated approach

	Immediate	Medium term
Global tracking	Which indicator is ready to go for global tracking with all data needs (past, present, and future) already fully met?	Which indicator is highly desirable for global tracking, but would require a feasible incremental investment in global energy data systems over the next five years?
Country level tracking	Na.	Which indicator is ideal for tracking, and although too ambitious for global tracking, could be very suitable for country level tracking under SE4ALL?

Available data allows coverage of over 180 countries

	Data Sources	Country Coverage (% global popn.)
Electrification	Global omnibus and national household surveys plus some censuses	212 (99.8%)
Cooking	Household surveys Global omnibus and national household surveys plus some censuses	190 (99.8%)
Renewable Energy	IEA (plus UN) for Energy Balances REN 21, IRENA, BNEF for complementary indicators	181 (98%)
Energy Efficiency	IEA (plus UN) for Energy Balances WDI for GDP and sectoral value added	181 (98%)

ENERGY ACCESS

Methodological challenges immediate resolution

Measurement of Access

- •Household survey are the most common source of information on primary cooking fuel and electricity connections
- Surveys are carried out every 3-4 years
- A modeling approach has been adopted to allow data estimation for all countries annually

Definition of Access

- For electricity, availability of an electricity connection at home or use of electricity as a primary energy for lighting is considered access
- For cooking, primary use of various non-solid fuels is considered as access

Access rate to modern energy rose driven by increase in rural access rate and growth in South Asia and East Asia regions

Most of the absolute growth took place in urban areas and in South Asia, East Asia, and South East Asia regions

Regional

Still, 1.2 billion people live without electricity and 2.8 billion cook with solid fuels

Global

Electricity Access

Non-solid fuel Access

More than three quarters of global access deficit concentrated in some 20 high impact countries

Top 20 lowest access rate countries

Top 20 access deficit countries

Fastest moving countries have succeeded in providing access to 3-4% of their populations annually

Annual incremental access and population

Annual change in incremental access

Methodological challenges in medium term

Multi-tier access index can be approximated using data on average residential electricity consumption

	Tier-0	Tier-1	Tier-2	Tier-3	Tier-4	Tier-5		
	-	Radio, Cellphone	General	Tier-2	Tier-3	Tier-4		
		Charging, Task Light	Lighting	AND	AND	AND		
Indicative Electricity			AND Television	any	any medium-power	any		
Services			AND	low-power	appliances	high-power		
			Fan	appliances		appliances		
Consumption (kWh) per hh per year	<3	3-66	66-321	321-1,317	1,317-2,120	>2,120		
Index of Access to Electricity Services = ∑(PT x T)								
with $P_T = Proportion of households at the Tm tier$								
	T=Tier number {0,1,2,3,4,5}							

Average residential electricity consumption per household (1,000 Kwh) - (IEA 2010)

Simplified energy access index based on average consumption

RENEWABLE ENERGY

Methodological Challenges

Challenge	Issues	Proposed Approach
Energy Accounting Method	Primary energy accounting under-estimates useful energy produced by renewable sources, multiple methods exist for estimating final energy consumption	Measure the share of renewable energy in total final energy consumption terms using direct equivalent method
Measuring Sustainability	Despite progress, no internationally agreed criteria and assessment methodologies for each of the renewable energy technologies	Create a framework for measuring sustainability in the medium term
Classifying Biomass	Available data repositories do not distinguish between traditional and modern uses of biomass	Improve capability to separately track different categories of bio- energy in medium term
Data Gaps	Some aspects of renewable energy not fully captured in data (small distributed grid-connected generation, direct production of heat, waste fuels, heat pumps, etc.)	Develop methods for accounting these categories and including them in data collection efforts / surveys in medium term (link to access)

Traditional biomass accounts for over half of total renewable energy used mainly for heating and cooking

Global Share of Renewable Energy in TFEC, 2010

Source: IEA

Share of renewables in global energy mix hardly increased since 1990 (despite absolute growth)

Source: IEA

Non-conventional renewables experienced double digit growth reflecting surge in policy incentives and finance

2012 INTERNATIONAL YEAR OF SUSTAINABLE ENERGY

FOR ALL

Less developed regions show higher (though declining) renewable energy shares – and vice versa

Regional and Country Share of Renewables in TFEC (%)					
Region/Country	Share of RE i	Share of RE in Each Region / Country			
	1990	2000	2010		
Europe	7.8	9.4	13.7		
North America	6.0	7.1	9.0		
Former Soviet Union	3.2	3.8	4.0		
Middle East	1.2	0.7	0.9		
Latin America	32.3	28.2	29.0		
Africa	62.1	63.0	61.6		
Asia (excl. China and India)	21.8	18.9	18.8		
China	33.5	29.2	19.4		
India	57.5	52.6	42.4		
World	16.6	17.4	18.0		

Two thirds of expansion of modern renewable energy during last 20 years concentrated in just five countries

Top 20 Countries by RE consumption increase, 1990-2010 (PJ)

RE excluding traditional biomass

Source: IEA

Countries most heavily dependent on renewable energy have reached penetration levels of around one third

RE excluding traditional biomass and hydro

Source: IEA

ENERGY EFFICIENCY

Methodological challenges

Challenge	Proposed Approach
Multi-dimensionality	Track global performance on energy intensity complemented by energy intensity of major economic sectors and efficiency of energy industry Move towards better tracking of targets, policies, institutions, investments
Intensity vs. Efficiency	Track energy intensity for countries and major regions/blocks, where feasible complement with efficiency decomposition to strip out structural effects
Market Exchange Rate vs. Purchasing Power Parity	Track purchasing power parity
Primary vs. final energy	Track global energy intensity in terms of primary energy demand Track sectoral energy intensity in terms of final energy consumption
Volatility	Track a five year moving average trend

Last decade shows slowing rates of improvement in energy intensity (higher when adjusted)

CAGR Energy Intensity (PPP)

Adjusted CAGR Energy Intensity

Service sector contributed the most to energy savings during last 20 years

Energy Intensity Trends by Sector

Share of Cumulative Savings by Sector

Note: Services include services, transport, and residential

East Asia accounted for the lion's share of energy saved, even as Middle Eastern energy intensity deteriorated

Energy Intensity Trends by Region

Energy consumption patterns differ by income group

2012 INTERNATIONAL YEAR OF SUSTAINABLE ENERGY FOR ALL

Top 20 (2) consumers accounting for 80% (40%) of

global energy demand

	Countries with Highest Level of Energy Intensity Among 20 Largest Energy Consumers, 2010				
	All Sectors	Industry	Services	Agriculture	
1	Ukraine	Ukraine	Iran	Canada	
2	Russia	Russia	Ukraine	South Africa	
3	Saudi Arabia	Canada	Saudi Arabia	Russia	
4	South Africa	Brazil	Indonesia	United States	
5	China	South Africa	Russia	Brazil	

Fast moving countries typically register improvements in the range of 4-8% annually

Countries with Lowest Level of Energy Intensity (MJ/\$2005 PPP)

Bosnia-Herz.	11.9%	St. Lucia	3.9
Estonia	8.4%	Botswana	3.8
Azerbaijan	7.9%	Ireland	3.7
Armenia	7.3%	Bahamas	3.7
Afghanistan	6.8%	Switzerland	3.7
East Timor	6.3%	Malta	3.7
Sao Tome & P.	5.9%	Grenada	3.6
Belarus	5.3%	Kiribati	3.6
Georgia	4.9%	Panama	3.6
China	4.7%	Albania	3.5
Lithuania	4.6%	Colombia	3.4
Kyrgyzstan	4.5%	Antigua & Barb.	3.4
Albania	4.4%	Peru	3.3
Bhutan	4.3%	Solomon Isl.	3.0
Laos	4.2%	St. Vincent	2.9
Eritrea	4.1%	Afghanistan	2.9
Romania	4.0%	Vanuatu	2.7
Turkmenistan	4.0%	Dominica	2.6
Moldova	3.9%	Hong Kong	2.0
Uganda	3.9%	Macau	1.0

CAGR Energy Intensity, 1990-2010

Countries with Lowest Level of	Energy Intensity	Among 20 Larg	gest Energy	Consumers, 2010
				•

	All Sectors	Industry	Services	Agriculture
1	UK	Japan	Japan	Saudi Arabia
2	Spain	Germany	UK	Indonesia
3	Italy	UK	Spain	India
4	Germany	Spain	Italy	Germany
5	Japan	Italy	Germany	China

Structural and activity effects partially mask extent of <u>energy efficiency efforts among top 20 energy consumers</u>

China stands out in terms of greatest improvement seen among top energy consuming nations

Source: IEA, WDI

Bubble size represents volume of primary energy consumption in 2010

Through energy intensity improvements China saved about as much energy as it consumed over last 20 years

Largest Energy Consumers, Cumulative 1990-2010 (EJ)

Largest Energy Savers, Cumulative 1990-2010 (EJ)

China -		1 320
	360	1,520
Europe	203	
Luiope	223	
india _	114	
Germany	69	
UK	47	
Poland	46	
Bosnia-Herz.	38	
Russia	35	
Iraq	24	
Canada	23	
Belarus	18	
Romania	18	
Estonia	16	
Mexico	14	
France	14	
Australia	13	
Kazakhstan	12	
Argentina	11	
Nigeria	11	
Czech Rep.	10	

SCALE OF CHALLENGE

SE4ALL starting point in perspective

Percentages	Universal access to		Renewable	Rate of
	modern e	nergy	energy share	improvement of
	Electrification	Cooking	in global	energy intensity
			energy mix	CAGR 1990-2010
			(%)	(%)
Historic reference 1990	74	47	16.6	-1.3
Starting point 2010	83	59	18.0	
Objective for 2030	100	100	36.0	-2.6

Large absolute achievements of last 20 years diluted by surging population and energy demand

Absolute achievements

- 1.8 bn. connected to electricity
- 1.6 bn. gained access to primary non-solid fuel use
- 20 EJ of energy provided through renewable sources
- 2,216 EJ of energy saved through reductions in energy intensity

Relative achievements

- Electrification increases at 1.3% pa
- Non-solid fuel use increases at 1.1% pa
- Compound growth rate of renewable energy consumption of 2% pa
- Compound growth rate of energy intensity only -1.3% pa

Global population grew at 1.3% per year Global primary energy demand grew at 2.0% per year Global GDP grew at 3.2% per year

Projections from IEA and IIASA illustrate scale of challenge entailed by SE4ALL objectives

Percentage in 2030		Universal access to modern energy		Renewable energy share	20 year rate of improvement of	
		Electrification	Cooking	in global mix	energy efficiency	
IEA SCENARIOS						
•	Current Policies	-	-	18	-2.0	
•	New Policies	88	69	20	-2.3	
•	Efficient World	88	69	22	-2.8	
•	450 PPM (2 ^o C)	-	-	27	-2.9	
GEA SCENARIOS						
	Baseline	Na.	Na.	9	-1.3	
•	Six GEA Pathways	-	-	31/37	-2.6/-2.8	
•	2 ⁰ C	-	-	21/37	-1.6/-2.9	

NEXT STEPS

Launch and dissemination calendar

- Consultation
 - First round methodological consultation, November 2012
 - Second round full consultation, February 2013
- Previews
 - ESMAP CG, Washington DC, March 1st
 - SE4ALL EXCOM, Washington DC, March 11th
 - Energy Thematic Consultation, Oslo, April 9th
 - SE4ALL Advisory Board, Washington DC, April 19th
- Launch
 - Vienna Energy Forum, Vienna, May 28th-30th
 - Briefing to EU Development Ministers, Brussels
 - Briefing to UN Ambassadors, New York
 - Other opportunities?

Plans for future global tracking

- Details are still being discussed and funding unclear
- Individual partners commit to on-going tracking work
 - Electrification: WB/ESMAP via STEAR?
 - Cooking: WHO?
 - Renewable energy: various possibilities?
 - Energy efficiency: IEA and WB/ESMAP?
- Bi-annual unified report timed around Vienna Energy Forum

Global energy data improvement agenda

	Recommended targeting of effort over next five years				
Energy access	a) Work to improve energy questionnaires for Global Omnibus Surveysb) Pilot country level surveys for multi-tier framework				
Renewable energy	 a) Improve data and definitions for bio-energy and sustainability b) Capture renewable energy in distributed generation c) Capture renewable energy in off-grid (including micro-grids) d) Promote a more harmonized approach to target-setting 				
Energy efficiency	 a) Integrate data systems on energy consumption and associated output measures b) Strengthen country systems and capability to collect data on sectoral intensities (and ideally sub-sectoral process efficiency) c) Improve data on physical activity drivers (traffic volumes, number of households and floor space, etc.) d) Improve data on energy efficiency targets, policies and investments 				

ANNEX

Energy from natural sources that are replenished at a faster rate than they are consumed, including the following

- Hydro
- Bio-energy
- Geothermal
- Aero-thermal
- Solar
- Wind
- Ocean

Mixed model to estimate values for countries with at least one data point: Mixed model includes fixed effects for the time variable and the regional aggregation and it defines hierarchical random effects by regions and country and for time at country level

FEATURES OF THE MODEL:

- Natural cubic spline transformation cantered in 2000, the median date of the surveys data collected, and 5 knots over the entire time period.
- Data has been converted in logit function
- A fitted option has been used to predict the fixed portion plus contributions based on predicted random effects in countries with at least one data point.
- Values in countries without any data point are estimated by using the linear predictor for the fixed portion of the model based on the regional average value.

Candidate Multi-tier frameworks

Measuring Household access to electricity

Supply side: Tiers based on six attributes of electricity supply

ATTRIBUTES	Tier-0	Tier-1	Tier-2	Tier-3	Tier-4	Tier-5
Peak Available Capacity (Weq)	-	>1	>20	>200	>2000	>2000
Duration (Hrs)	-	≥4	≥4	≥8	≥16	≥22
Evening Supply (Hrs)	-	≥2	≥2	≥2	≥4	≥4
Affordability	-	-	٧	٧	٧	٧
Formality	-	-	-	٧	٧	٧
Quality (Voltage)	-	-	-	٧	٧	٧

Service side: Tiers based on regular use of appliances

Tier-0	Tier-1	Tier-2	Tier-3	Tier-4	Tier-5
-	Task Lighting AND	General Lighting	Tier-2	Tier-3	Tier-4
	Phone AND T Charging A	AND Television AND Fan	any low-power appliances	any medium- power appliances	any high-power appliances

Measuring access to modern cooking solutions

Technical Performance: Grades based on type of cookstove, fuel used and certification

Practicality: Tiers based on CCA attributes (conformity, convenience and adequacy)

Index of Access = $\sum (P_T \times T)$

THIS PRESENTATION IS CONFIDENTIAL, PLEASE DO NOT CIRCULATE OR CITE P_{T} = Proportion of households at the Tth tier

T = Tier number {0,1,2,3,4,5}

Tracking Access to Energy

Opt-in countries: The further development of the multi-tier metric can be substantially strengthened by rigorous piloting of questionnaires, certification, and consensus building **Global Tracking:** a simplified three-tier measurement condensing the six-tiers in the multi-tier candidate proposal is suggested, requiring only marginal improvement in data collection The metric is flexible and allows for country specific targets to be set to adequately account for varying energy challenges among countries.

2012 INTERNATIONAL YEAR OF SUSTAINABLE ENERGY FOR ALL

Achieving objectives calls for substantial financing as well as major policy commitments

Average	Universal access		Renewable	20 year rate of	Total
annual	Electricity	Cooking	energy share	improvement of	
US\$ billion			in global mix	energy	
2010-2030				efficiency	
Actual for	9.0	0.1	220	<mark>180</mark>	<mark>409.1</mark>
2010					
Additional	45.0	<mark>4.4</mark>	>>174	393	<mark>>>616.4</mark>
from WEO					
Additional	60.0	19.0	158	207	1,081.6
from GEA					

Both WEO and GEA coincide on need for phasing out fossil fuel subsidies and providing carbon pricing measures in order to meet objectives

