

The Bioenergy and Food Security Approach of FAO

Erika Felix and Ana Kojakovic Climate, Energy and Tenure Division FAO

RENEWABLE ENERGY TRAINING PROGRAM, MODULE 8 | BIOENERGY December 2012

Outline

- Definition
- Phases of bioenergy pathways
- Current global use
- Potential within national energy portfolios

Bioenergy, What do we mean?

What is bioenergy?

According to FAO's unified terminology:

 Bioenergy is all energy derived from biofuels, which are fuels derived directly or indirectly from Biomass....
.....and biomass are materials of recent biological

origin including plant materials and animal waste*.

Therefore biofuels can come in:

Form	Commonly known samples:
Liquid	Bioethanol, biodiesel, straight vegetable oil
Gaseous	Biogas or syngas
Solid	Firewood, charcoal, briquettes, pellets

Bioenergy : "Traditional" and "Modern"

"Traditional" bioenergy

- Biomass that can be directly converted for final energy through combustion, e.g. fuelwood, residues, animal dung and forest products.
- biofuels that are produced from biomass using simple techniques and technologies, e.g. charcoal and biogas.

These are combusted in stoves, furnaces or open fires to provide **heat energy** for cooking, comfort and for small-scale agricultural and industrial processing, typically in developing countries.

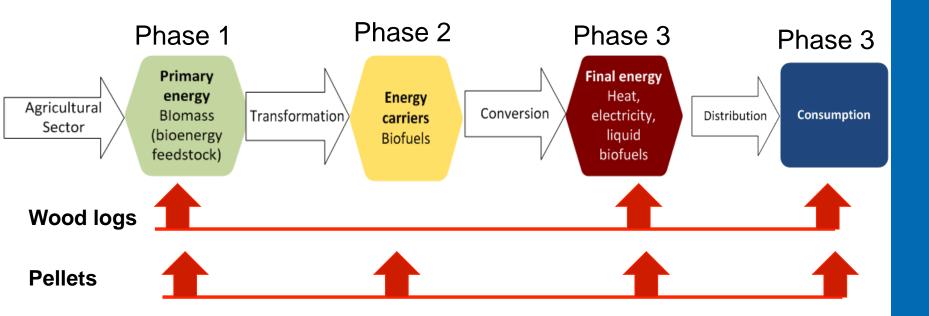
"Modern" bioenergy TBD

 Biofuels that are produced though employment of advanced conversion technologies, e.g. pellets, briquettes, liquid biofuels.

These are used for **heat and electricity** production as well as liquid biofuels for **transport** and are used primarily in developed countries.

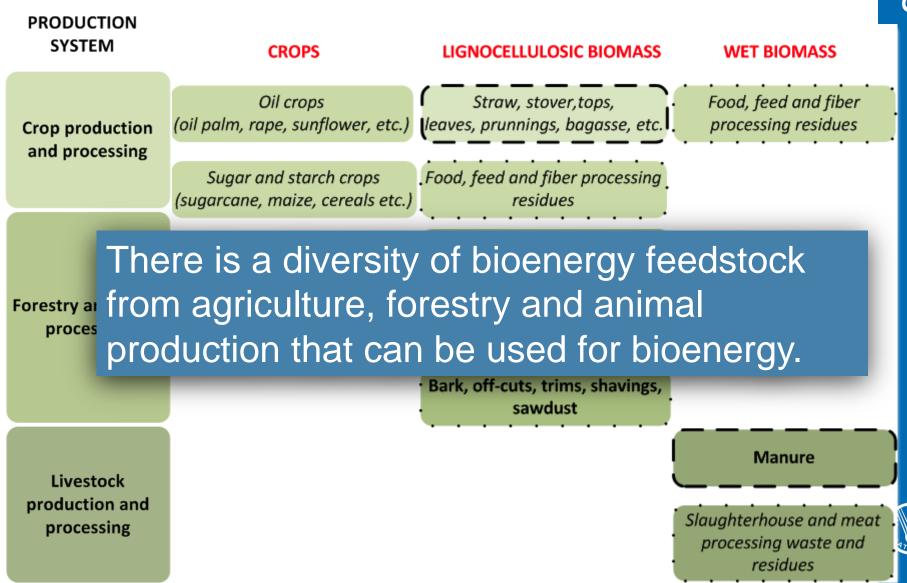
Some General Features of comparison between Traditional and Modern Bioenergy

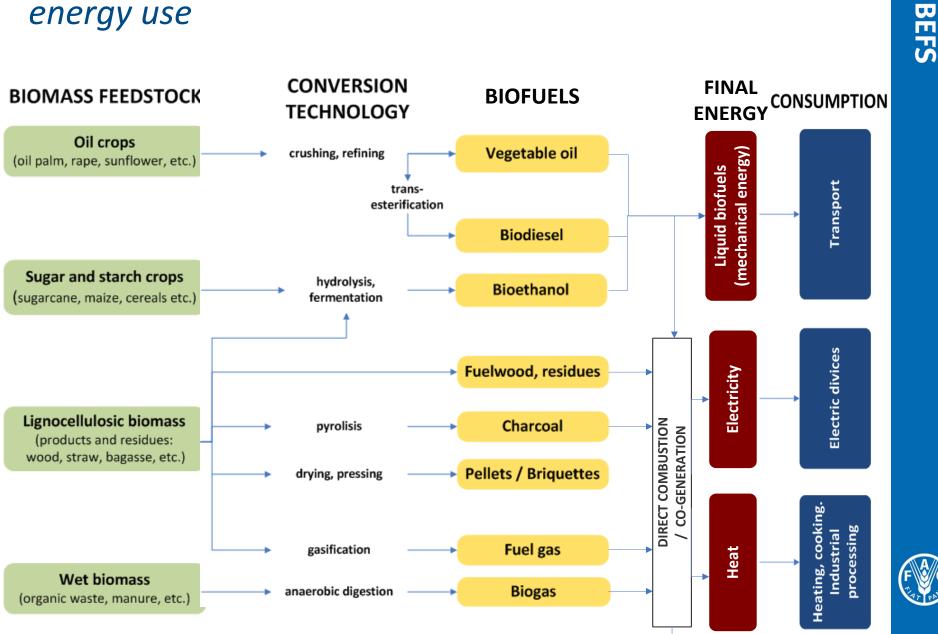
Characteristic	Traditional	Modern
Energy Density		Higher
Energy efficiency ¹	2-20 %	65 ⁻ 80 %
Environmental at: Feedstock Biofuel production Bioenergy ² consumption	Low-high ³ Low-high	Low- high Low - medium Low



¹Efficiency is from conversion to consumption; ²Feedstock includes production or collection; ³Environmental impacts are high for traditional once indoor pollutions and health impacts 5

From biomass To bioenergy


Converting biomass to energy for consumption requires from two to four phases. These are:


- The number of phases depends on the type of biofuel
- Energy pathways of other renewable energies do not include the two initial phases.

Phase 1: the bioenergy feedstock

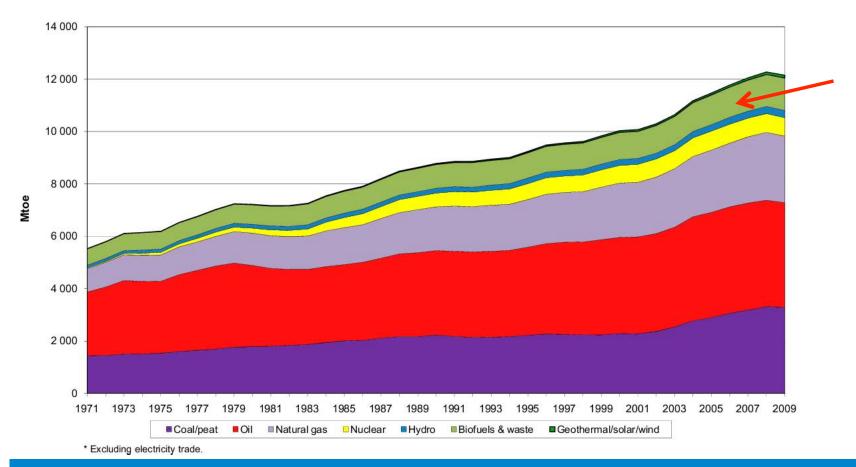
Phase 2 to phase 4: from bioenergy feedstock to final energy use

Final energy to consumption across economic sectors

	Energy end user					
Biofuel	Reside	ential sector	Industry &services	Transport		
	Household level	Community level				
Vegetable oil (SVO)	Cooking, machinery, electricity generation	Electricity generation		х		
Biodiesel	Machinery, electricity production			Х		
Bioethanol	Cooking (ethanol gel)			x		
Fuelwood, residues	Cooking, heating	Co-gen. electricity/heat	Co-gen. electricity/heat			
Charcoal	Cooking, heating		Industrial processing			
Pellets	Heating	Co-gen. electricity/heat	Co-gen. electricity/heat			
Briquettes	Cooking, heating					
Fuel gas			Co-gen. electricity/heat			
Biogas	Cooking, lightning	Co-gen. electricity/heat	Co-gen. electricity/heat			

BEFS

Developed countries - **Developing countries** - **Developed and Developing** 10

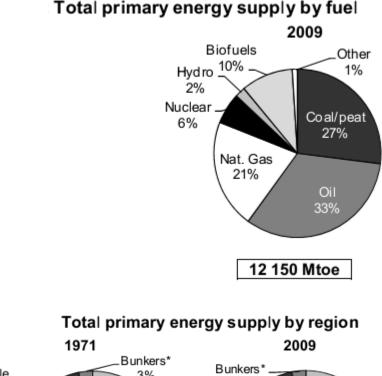


n today's

Bioenergy in today's Energy Mix

Total Global Primary Energy Supply

Biofuels and Waste represented about 10% of the world's energy in 2009


(F) (A)

BEFS

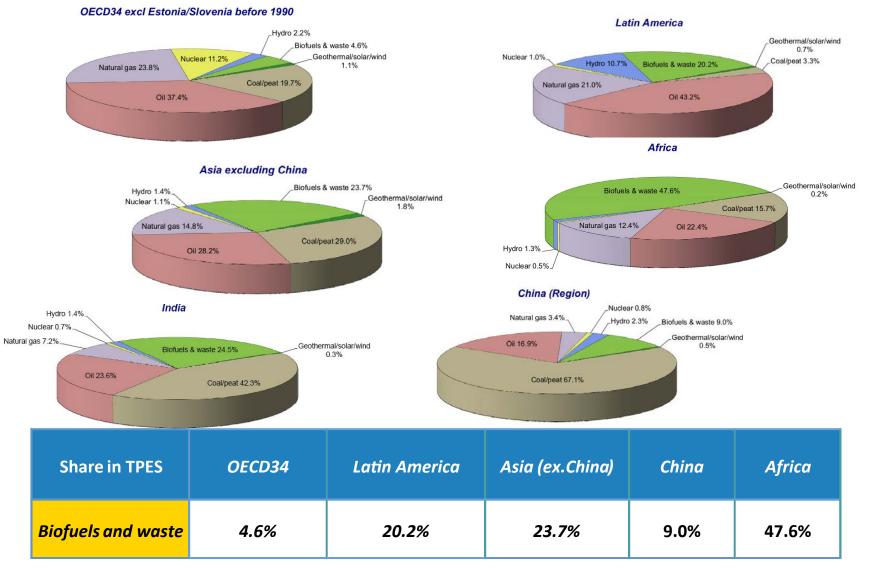
Biofuels and Waste: "Biofuels & waste is comprised of solid biofuels, liquid biofuels, biogases, industrial waste and municipal waste. Note that for biomass commodities, only the amounts specifically used for energy purposes (a small part of the total) are included in the energy statistics."

BEFS

Current status of bioenergy use: *Total primary energy supply - World*

Middle 3% 3% East 1% Asia Non-13% OECD Asia OECD 42% 31% Europe_ OECD and 62% Middle Eurasia East 5% _ 15% Non-Latin OECD America Africa Europe 3% Africa Latin 3% and 6% America Eurasia 4% 9% 5 532 Mtoe 12 150 Mtoe

At the Global level


- Biofuels and waste have a relatively low share when compare to other sources.
- But over the past 38 years the production volume has doubled from about 600 to 1 200 Mtoe.

At the Regional level

- -Global TPES has more than doubled between 1971 and 2009
- The share of TPES for Asia increased from 13% to 31 %
- -China's share in TPES in 2009 was 19%
- -TPES in Africa has increased from 3% to 6%

The importance of bioenergy in TPES across regions in 2009

Trends in bioenergy consumption

Bioenergy consumption has been increasing due to growing energy demand

Key drivers include:

- population growth
- economic growth
- climate change mitigation
- energy security

Industrial countries

 deliberate policies to support renewable energy related mainly to national energy security and environmental concerns

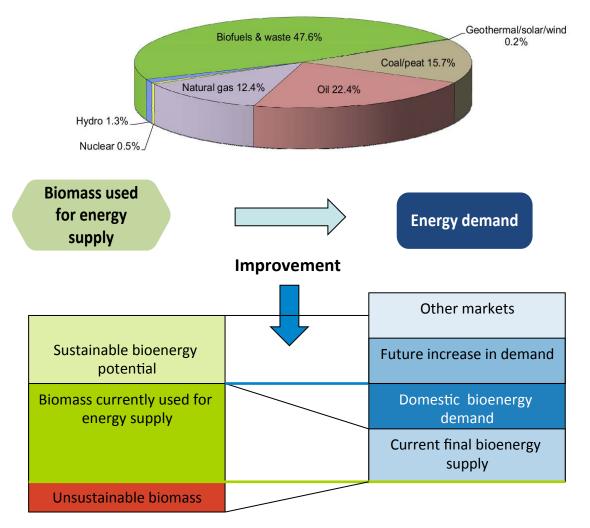
• Emerging economies

- main driver economic growth
- in some countries there is a decline in share of bioenergy in TPES due to diversification of energy supplies.

• Developing countries

- main driver population growth
- limited access to affordable alternative energy sources leading to continued reliance on the use of traditional bioenergy

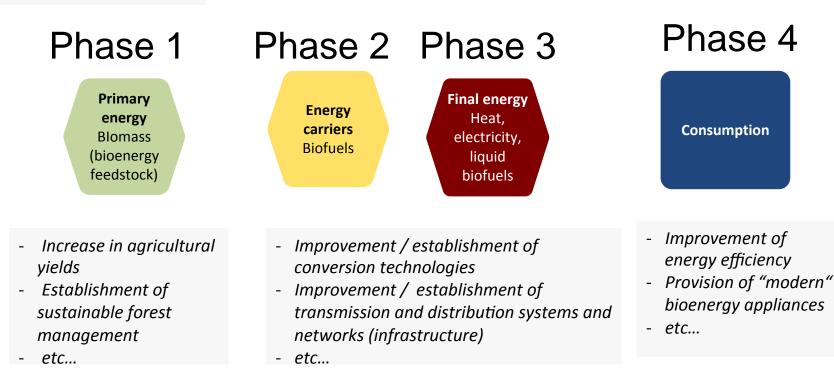
Bioenergy's potential role in a country's energy mix



Improvement potential in the use of bioenergy resources

The highest potential for bioenergy is in *developing countries and emerging economies* where greater opportunities exist for:

- Moving from unsustainable to sustainable use of natural resources
- Utilizing currently underused or non-used natural resources
- Improving the efficiency of energy use by employing energy efficient conversion and consumption technologies
- Increasing energy availability and accessibility


Improvement potential in the use of bioenergy resources (contd.)

Sustainable Bioenergy: Opportunities for improvement

Interventions targeting:

For a transition from inefficient to a well functioning bioenergy sector, the improvements should take place at all stages of bioenergy pathway

Planning and prioritizing bioenergy intervention

- Assessment of the current status
- Existing energy supply demand relations
 - Current and future energy demands
 - Energy mix, imported vs domestic fuel production
 - Energy access and reliability
- Status of the bioenergy supply
 - Current role of bioenergy in supplying the demand of different sectors
 - Sustainable availability of biomass resources and its bioenergy potential
 - Bioenergy role in supplying sustainable energy today and in the future
 - Infrastructure
 - Opportunities to implement energy efficiency interventions along supply chain today and in the future

Planning and prioritizing bioenergy intervention (contd.)

Defining the right policies

- Identifying the objectives for developing sustainable bioenergy such as increase energy access, rural development, energy diversification.
- Establishing Inter-institutional dialogues both at technical and policy level.
- Understanding the risks, opportunities and trade offs associated

with different bioenergy interventions.

What we have learned?

- Biofuels are not only liquid biofuels i.e. bioethanol and biodiesel but are much broader and can be used to produce heat, mechanical and electrical energy.
- There is a diverse range of biomass in the agricultural sector that can be used to produce bioenergy sustainably.
- Traditional bioenergy has a very important role in most developing countries.
- Modern bioenergy can supply a number of energy demands depending on the chosen pathway.
- Developing countries and emerging economies have a greater opportunities for *improvements in Bioenergy development*.
- Modern bioenergy can be associated with modernization and environmental sustainability, however, it requires capital, skills, technology, infrastructure, inputs and a certain level of development.

