

Tanzania Power Loss Reduction Study

Volume I: Transmission and Distribution System Technical Loss Reduction and Network Development

Report No. 204A/98

June 1998

JOINT UNDP / WORLD BANK ENERGY SECTOR MANAGEMENT ASSISTANCE PROGRAMME (ESMAP)

PURPOSE

The Joint UNDP/World Bank Energy Sector Management Assistance Programme (ESMAP) is a special global technical assistance program run as part of the World Bank's Energy, Mining and Telecommunications Department. ESMAP provides advice to governments on sustainable energy development. Established with the support of UNDP and 15 bilateral official donors in 1983, it focuses on the role of energy in the development process with the objective of contributing to poverty alleviation, improving living conditions and preserving the environment in developing countries and transition economies. ESMAP centers its interventions around three priority areas: sector reform and restructuring; access to modern energy for the poorest; and promotion of sustainable energy practices.

GOVERNANCE AND OPERATIONS

ESMAP is governed by a Consultative Group (ESMAP CG), composed of representatives of the UNDP and World Bank, other donors, and development experts from regions benefiting from ESMAP's assistance. The ESMAP CG is chaired by a World Bank's Vice President, and advised by a Technical Advisory Group (TAG) of four independent energy experts that reviews the Programme's strategic agenda, its work plan, and its achievements. ESMAP relies on a cadre of engineers, energy planners, and economists from the World Bank to conduct its activities under the guidance of the Manager of ESMAP, responsible for administering the Programme.

FUNDING

ESMAP is a cooperative effort supported over the years by the World Bank, the UNDP and other United Nations agencies, the European Union, the Organization of American States (OAS), the Latin American Energy Organization (OLADE), and public and private donors from countries including Australia, Belgium, Canada, Denmark, Germany, Finland, France, Iceland, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal, Sweden, Switzerland, the United Kingdom, and the United States.

FURTHER INFORMATION

An up-to-date listing of completed ESMAP projects is appended to this report. For further information, a copy of ESMAP Annual Report or copies of completed projects, contact:

ESMAP c/o Energy, Mining and Telecommunications Department The World Bank 1818 H Street, NW Washington, DC 20433 U.S.A.

TANZANIA

POWER LOSS REDUCTION STUDY

VOLUME 1: TRANSMISSION AND DISTRIBUTION SYSTEM TECHNICAL LOSS REDUCTION AND NETWORK DEVELOPMENT

November 1992

ABBREVIATIONS

km	Kilometer
kV	Kilovolt
kVA	Kilovolt ampere
kVAr	Kilovolt ampere, reactive
kW	Kilowatt
kWh	Kilowatt hour
MVA	Megavolt ampere
MVAr	Megavolt ampere, reactive
MW	Megawatt
MWh	Megawatt hour
var	reactive volt ampere
US\$	United States Dollar

ACRONYMS

ESMAP	Joint UNDP/World Bank Energy Sector Management Assistance Programme
IDA	International Development Association
ЛСА	Japan International Corporation Agency
SIDA	Swedish International Development Agency
SVS	Static var compensation System
TANESCO	Tanzania Electric Supply Company Ltd.
TIRDO	Tanzania Industrial Research and Development Organization

, I

TABLE OF CONTENTS

EXECUTIVE SUMMARY Project Objectives Achievements and Conclusions System Loss Analysis Reactive Compensation Requirements for the Transmission System Reactive Compensation Requirements for the Distribution System Total Project Costs	ii ii iii iv vii
1. INTRODUCTION	1 1 2
2. THE TANESCO POWER SYSTEM Generation Transmission Distribution Consumers and Demand System Operations System Expansion	3 3 4 5 5 6
3. ANALYSIS OF SYSTEM LOSSES	9 10 13 14
 4. REACTIVE COMPENSATION FOR THE TRANSMISSION SYSTEM Background Methodology for Load Flow Studies Preliminary System Improvements The Study of Network Operation at Different Load Levels Results of Load Flow Studies System Performance for 1991 System Performance for 1992 System Performance for 1993 System Performance for 1994 System Performance for 1995 System Performance Beyond 1995 Effect of the Singida-Arusha Connection System Operation at Base Load System Operation data Base Load System Operation During Outages Silppage of Planned Investment Loss Reduction Benefits Compensation Requirements at Ubungo Compensation Requirements at Arusha 	21 21 22 23 27 29 30 30 31 32 32 34 34 35 36 37 37 39 40 40 41 42

	5. ECONOMIC ANALYSIS OF PROPOSALS FOR POWER FACTOR	
	COMPENSATION AT THE TRANSMISSION LEVEL	48
	Benefits of Investment in Reactive Compensation	48
	The value of unsupplied or poorly supplied energy	
		51
	Cost of outage savings	
	Cost of Compensation Equipment	
	Calculation of benefits and benefit to cost ratios	
	Compensation to be provided at Ubungo/Ilala	
		53
		55
	6. DISTRIBUTION SYSTEM DEVELOPMENT AND PLANNING GUIDELINES	56
	Background	56
		50 60
		62
	•	63
		64
	Planning Guidelines	04
	7. REACTIVE COMPENSATION ON THE DISTRIBUTION SYSTEM	68
		68
	4	70
	1	74 75
	Summary of Recommendations	75
1		77
		77
	Network Development proposals	78
		00
		83
		83
	Network Development proposals	84
		88
	The present distribution system	
	Network Development proposals	89
		~ -
	11. DEVELOPMENT PROPOSALS FOR THE ARUSHA REGION	
	The present distribution system	
	Network Development Proposals	92
		~ ~
	, , , , , , , , , , , , , , , , , , , ,	95
		96
		98
	Network Expansion to New Development Areas	99

-

List of Annexes

The following Annexes provides details of the computations used in the analysis:

Annex	A	-	Distribution	System	Characteristics
-------	---	---	--------------	--------	-----------------

- Annex B Transmission System Load Flow Studies
- Annex C Economic Evaluation of Reactive Compensation Requirements For Transmission and Distribution Systems
- Annex D Planning Methods and Guidelines for Distribution Systems
- Annex E Economic Analysis for Distribution System Development
- Annex F Distribution System Network Drawings

This report was prepared in 1992 consequent to a study conducted during 1990 to 1992 in association with a distribution planning unit established in the Tanzania Electric Supply Company (TANESCO).

The report is in two volumes; volume 1 dealing with the technical studies conducted on transmission and distribution systems and volume 2 dealing with non-technical loss issues. The Bank team carrying out the study consisted of Messrs. Winston Hay, Chrisantha Ratnayake, and Ms. Paivi Koljonen. Volume 1 was prepared by Mr. Ratnayake and volume 2 by Mr. Hay. The assistance and participation of the distribution planning unit in TANESCO in carrying out the detailed studies on which this report is based is readily acknowledged.

,

EXECUTIVE SUMMARY

1. The Tanzania Electric Supply Company (TANESCO), a state-owned utility, is responsible for the generation, transmission, and distribution of electricity in mainland Tanzania. Over the past several years, TANESCO's operations have suffered from poor system performance in the East and Northeast regions at times of peak demand. Despite use of all available thermal generation and curtailment of supply to certain major consumers, network voltages remain excessively low, and the system suffers from frequent outages that may affect the entire network. Concomitantly, equipment damage and burnouts occur in the installations of the supply authority and its consumers. In many areas, requests for new consumers cannot be met because of the poor system voltages. Symptomatic of the problem are energy losses of some 21 percent of net generation, a level considerably higher than the economic limits for the TANESCO system (after allowing for nontechnical losses). The shortcomings of the system have resulted in substantial economic losses to the country and financial constraints on the company. Moreover, high load growth rates are expected over the next few years, and the situation will worsen considerably without timely corrective action.

2. The major cause of the low system voltages has been identified as deficiencies in the transmission system. The network supplying the eastern and northeastern parts of the system is heavily overburdened and has clearly exceeded technical and economic loading levels, causing the distribution system to receive power at voltages far below the required level. In contrast, the western sections of the network experience high system voltages because of the long and comparatively lightly loaded 220 kV lines, thus further complicating the control of the transmission system voltages.

3. Two major development projects have been implemented for the distribution systems within the last five years, alleviating supply conditions to a large extent. But the rapid increase of load during this period and the absence of systematic network planning have caused many parts of the system to revert once again to poor operating conditions. A major contributory factor has also been the difficulty faced by TANESCO in undertaking sufficient network improvements outside of externally funded projects because of the lack of foreign exchange. Thus, considerable inputs are still required in the distribution systems to bring the networks to a satisfactory operating condition.

4. In 1989, TANESCO requested the joint UNDP/World Bank Energy Sector Management Assistance Programme (ESMAP) to assist in the development of a program of activities that would improve network voltage levels, reduce overall energy losses and generally improve the quality of supply to consumers. A study was commenced in late 1989 with funds provided by the Swedish International Development Authority (SIDA). A team of consultants comprising of a specialist each in the fields of transmission, distribution, commercial operations, load forecasting, and nontechnical losses was engaged for short term visits to assist in the study. In addition, a local consultancy firm was engaged to undertake the study of the economic costs of outages with respect to industrial consumers. Counterpart staff provided by TANESCO also worked in close coordination with the ESMAP staff and consultants and provided valuable inputs.

Project Objectives

5. The project seeks to find solutions to redress the poor supply conditions in TANESCO's power network and to reduce the existing high level of system losses. In particular possibilities of any short term actions to improve network voltages and enable new consumers to be added to the system at locations where such difficulties exist are to be explored. A major goal is also the development of TANESCO's competence in the field of distribution system planning so that timely action would continue to be taken to keep the networks at acceptable technoeconomic standards. Specific objectives are as follows:

- Identification of the main reasons for the poor system performance in the east and northeast regions of the network and development of solutions for rectification
- Identification of the sources of technical and nontechnical losses and development of reliable estimates of the contribution of each to overall losses
- Development of projects to reduce technical losses to economic levels
- Introduction to TANESCO of state-of-the-art techniques of data collection and distribution system planning and training counterpart staff to ensure the continuity of the applications.

6. The study report is issued in two volumes, undertaking the technical and nontechnical problems, respectively. The present report, volume (i), *Transmission and Distribution System Technical Loss Reduction and Network Development* deals with the diagnoses of problems and provides proposals to improve the technical condition of the transmission and distribution systems.

Achievements and Conclusions

7. The principal cause of the low system voltages experienced in many areas of the east and northeast was identified as the insufficiencies of the 220 kV transmission lines from Kidatu to Dar es Salaam as well as the 132 kV lines supplying the northeast loads. The study has identified solutions that can be applied in the short term to enable the system performance to be strengthened considerably. These consist of introducing reactive compensation equipment both in the transmission and distribution systems. The report recommends 45 MVAr of switched capacitors at Dar es Salaam and 30 MVAr of variable compensation using a Static var Compensation unit (SVS) at Arusha for the transmission system; it recommends 22 MVAr of capacitors for installation in the distribution system. Some subsidiary improvements to the transmission system, consisting of a 10 MVAr reactor at Mbeya (to contain the voltage rise in the western sections of the grid system) and shifting of an existing reactor from Ubungo to Ras Kiromany (for voltage control and loss reduction), are also identified. 8. In addition to the above recommendations some improvements of an operational nature was carried out while the studies were in progress. These consisted of the rearrangement of generator tap settings at the power stations and the introduction of a circuit breaker to control a reactor in service at Ubungo.

9. System studies were conducted on the distribution networks in the four major load centers: Dar es Salaam, Tanga, Moshi, and Arusha. Although the reactive compensation measures recommended (para 7) will provide some immediate relief, more substantial developments involving major changes to the network configurations are required in the longer term. Such requirements are presented as a package of proposals for which international funding will require to be secured. These development proposals will improve system performance considerably and reduce network losses to economic levels.

10. The study was conducted in close cooperation with TANESCO staff and emphasized training of the counterpart staff in the techniques and methodologies of distribution system planning. A study unit was established to undertake collection and analysis of network data on the distribution system. Microprocessor based instrumentation was provided to record and store network load data for subsequent downloading to a computer. The unit was provided with computers and state-of-the-art software packages to establish a mapping data base and undertake the required system analysis of the transmission and distribution networks. The hard work and dedication of the counterpart staff was recognised by TANESCO's management and the unit was soon institutionalized in the organization structure within the operations directorate responsible to oversee the functions of the zonal distribution organizations.

System Loss Analysis

11. Important load characteristics on the networks were collected by conducting extensive field measurements using electronic recording loggers, and these data were used to compute the losses of medium voltage (MV) and low voltage (LV) feeders. Using the data together with the monthly billing information from the sales summaries enabled development of a power and energy flow table. The table provides information on the losses (as well as supplies) at each voltage level as a percentage of the net power generated and indicates that the overall technical losses of the system amount to 19.3 percent for peak power and 11.5 percent for energy, based on net generation. Because the overall energy losses are approximately 21 percent, it can be inferred that the nontechnical losses account for 9.5 percent of the energy produced.

12. The transmission system presently exhibits peak losses of about 8.0 percent and energy losses of about 4.4 percent. These loss levels will drop with the commissioning of a second circuit to Dar es Salaam (1995) and the Singida-Arusha connection (possibly by 1996). A further reduction will occur with the commissioning of the new Pangani power station, expected in 1995. The peak losses will fall to about 5 percent with all these developments in place. However, loss levels will again increase when the Kihansi power station is commissioned because of the increased load transmitted to the main load center at Dar es Salaam.

13. The overall loss levels of the MV system are not excessive. This is attributable to the development work carried out by two recent distribution system improvement projects—the Dar es Salaam rehabilitation project, funded by the Japan International Corporation Agency (JICA) and the Power Project IV, funded by IDA. However, a number of feeders still have excessive loss levels, and the situation will worsen considerably with the expected load growth. Proposals to reduce the losses of these feeders to economically acceptable levels are contained in sections 8 to 11 of this report.

In comparison with the losses of the MV system, the losses of the LV networks are 14. extremely high, with average values of the samples studied in the four regions ranging from 6.5 to 10.5 percent for peak losses. These high levels, combined with the fact that a substantial portion of the system load flows through the LV system, mean that LV line losses account for 45.7 and 35.1 percent of the overall peak and energy losses, respectively. Two major factors contribute to the high loss levels in the LV networks: the high imbalance between phase currents in the three phases and the long lengths of LV feeders used in the network design. The former can be corrected without any capital investment, and savings of perhaps up to 25 percent of the existing losses on the LV lines could be made if such an exercise is carried out. To reduce the remaining LV line losses, the number of transformers in the network should be increased substantially, so that the lengths of LV lines can be reduced. The shortening of these lines will also reduce the area of supply of the individual transformers and increase the overall reliability of the system. An estimate for such requirements is included under LV rationalization in section 12. Loss improvement in the LV system should also include a program to purchase lower loss transformers by evaluating the annualized cost of losses together with the purchase price (a common practice among utilities but not presently followed by TANESCO). Further, the existing high core losses in a number of underloaded transformers can be reduced by implementing a transformer load management program to reallocate transformers to better suit the loads supplied.

Reactive Compensation Requirements for the Transmission System

15. Preliminary studies have indicated that the poor system voltages in many parts of the system are caused by the deficiencies in the transmission network. TANESCO has plans to rectify these deficiencies by constructing new transmission lines (a second circuit to Dar es Salaam from Kidatu and the Singida-Arusha connection). However, at the commissioning dates presently feasible for these lines, a number of years of continued poor system conditions will have to be endured, and load additions at important locations will have to be suppressed unless other developments are introduced. Load flow studies were therefore conducted on the transmission system to ascertain possible solutions of meeting the expected load additions in the immediate future. The results of these studies (described in section 4) indicate that reactive compensation equipment can be used to improve system performance substantially, particularly in the period before the new lines are commissioned. These reactive compensation measures are recommended for Dar es Salaam and Arusha, the two extremities of the eastern and northeastern sections of the transmission network. With these measures in place, the voltage regulation problems in the transmission system will be resolved, and supply can be provided to the distribution networks at acceptable voltage levels for all normal operating conditions.

16. Several benefits will accrue from these proposals, but only a few can be quantified accurately. The compensation recommended for installation at Dar es Salaam will ensure that the expected additional loads in the city and its environs can be met at acceptable voltage levels without resorting to additional thermal generation (which would otherwise be necessary) during the period up to the commissioning of the second circuit from Kidatu. Similarly, the compensation to be provided at Arusha will ensure that the network can bear the expected load additions in the northeast until the Singida-Arusha connection is introduced. The compensation to be provided at Dar es Salaam will also provide a substantial reduction of losses and improve system reliability.

17. After the commissioning of the new transmission lines, both installations will continue to play a useful function. The installation at Dar es Salaam will provide significant savings during times of line outages. Further, after the Kihansi power project is commissioned (by 1998), the capacitive compensation required at Dar es Salaam will increase substantially (up to about 75 MVAr) because of the increased power transfer over the Kidatu-Morogoro-Dar es Salaam lines, and the proposed installation will form a part of this requirement. After the Singida-Arusha line is commissioned, the installation at Arusha will serve a voltage control function by operation in reactive mode (particularly at times of low load).

The benefits of connecting additional load (as will be possible with the Arusha SVS) 18. and the reduction of thermal generation requirements (with capacitors at Dar es Salaam) have been valued at US \$0.10/kWh, equal to the average incremental cost (AIC) of supply at distribution level in the TANESCO system. Arusha, too, will experience a reduction of thermal generation that will otherwise be required (to support a limited load possible), but the value of such avoided generation has not been costed in view of the close correspondence between thermal generation costs and the value of new sales. The alternative cost of supporting the additional load is in fact considerably higher in Tanzania (see Table C1.1 for the cost of supply using small diesel generators). The value of the savings on outage energy units (used for capacitor installation at Dar es Salaam) has been estimated at US\$1.00/kWh, ten times the AIC of supply, a figure that compares favorably with studies done elsewhere. A research study conducted as part of the project by the Tanzania Industrial Research and Development Organization (TIRDO) indicated a value of US\$2.29/kWh to industrial consumers for unannounced outages. Cost-benefit analyses conducted with the values indicated above (\$0.10/kWh for additional load supplied and \$1.00/kWh of outages saved) provided benefit/cost ratios of 28.8:1 and 5:1 for the proposals at Dar es Salaam and Arusha, respectively. Even if the rates used for the benefits are reduced by 50 percent, the high economic viability of the proposals is obvious. In addition, a number of benefits of the proposals have not been quantified: the reduced incidence of damage to equipment owned by TANESCO and its consumers, improved quality of service and increased consumer satisfaction, reduced operation and maintenance expenses, and reduced adverse effects of delays to planned investment in generation and transmission.

19. The reduction of adverse effects of delays to planned investment in generation and transmission is worthy of particular consideration in the context of TANESCO's previous experiences. The present plans are for the transmission line from Kidatu to Dar es Salaam to be commissioned in two sections by 1993 and 1995, respectively, and for the Singida-Arusha line to be commissioned in 1996. In the past difficulties faced by TANESCO in obtaining the necessary foreign exchange, and other shortcomings in project management have forced considerable slippage of planned investment. The benefits of the present proposals will increase substantially in the event of such delays; in the absence of reactive compensation at the scale proposed, TANESCO will be forced to resort to extensive load shedding and increased thermal generation over the period of such delays. In any event heavy demands will be placed on thermal generation to meet the hydro generation shortfall until 1998, when the Kihansi project is expected to be commissioned and the present plans for meeting the extent of the shortfall are far from satisfactory. Thus, any marginal relief of the need for thermal generation will be of enhanced value, as it is highly probable that TANESCO will not be able to meet the future demand. Therefore, the reactive compensation measures proposed could be justified even solely on the basis of providing sufficient security for the possible slippage of the planned investment in major generation and transmission projects.

20. The proposed installation at Arusha is a Static var System (SVS), employing Thyristor-controlled reactors. It will provide the best technical solution to the complex problems at this location. If TANESCO is unable to procure the necessary funds for this installation in a timely manner, switched capacitors up to the same rating should be purchased instead. This solution will provide a lesser technical performance but will still provide high economic benefits, at a benefit/cost ratio of 6.4, assuming only half the value of benefits attributed to the prefered solution. This alternative proposal is made because of the urgency of the requirements. In fact, compensation requirements at both locations are already overdue; early implementation will enable TANESCO to recoup higher savings, and delays in implementation will cause substantial losses. On the average for both installations, four months of delay are equivalent to the loss of half the value of the installation costs. This indicates the need for immediate action to capture the full benefits of the proposals.

21. Three other recommendations are made to improve the performance of the transmission system. The first is shifting the existing 20 MVAr reactor at Ubungo to Ras Kiromany, the mainland terminal of the submarine cable supplying power to Zanzibar. This proposal will provide substantial loss reduction and voltage control benefits. Considering only the former, a benefit/cost ratio of 20:1 and a pay back period of 4.5 months have been demonstrated. The second is installing a 10 MVAr switchable reactor at Mbeya to enable better control of the transmission voltages in the southwestern section of the network. The third is providing 10 MVAr of switched capacitors in the distribution network at Tanga; the compensation will provide substantial relief to the northeastern sections of the system. This proposal is justified by the loss reductions that will be achieved along the 132 kV line to Tanga at a benefit/cost ratio of 21:1.

Reactive Compensation Requirements for the Distribution System

22. Long-term improvement of the conditions in the distribution system is dealt with in sections 8 to 11. However the developments identified will require at least three to five years for implementation because of the necessity to arrange for external financing as well as other logistical difficulties in procurement and project management. However, it is possible to provide early relief for the high losses and excessive voltage drops by installing capacitor banks in the distribution system. Providing compensation in the distribution system will also reduce the compensation requirements in the transmission system. In fact, progressive improvements of the existing power factors at the grid substations have been taken into account in the studies that determined the requirements of the transmission system.

23. The lead time for the purchase of these capacitors (particularly those to be fixed on distribution lines) is extremely short (about six months), and installation can be undertaken by TANESCO's own staff as the items are received. The selection of appropriate locations for the capacitors and the resulting loss reduction benefits at various voltage levels in the distribution system are discussed in section 7, and a summary of the recommended installations with related benefit/cost ratios is provided in Table 7.1. Total savings of 3,180 MWh per annum can be expected from the application of the capacitors recommended for the distribution system, giving an overall benefit/cost ratio of 10.6:1. The loss reduction represents a 3 percent reduction of the existing overall distribution system technical losses (estimated at 100 GWh), equivalent to 0.2 percent of the annual energy produced.

Distribution System Development and Training of TANESCO staff in Distribution Planning

24. Distribution systems in the four major load centers of the country-the regions encompassing Dar es Salaam, Tanga, Moshi, and Arusha-were selected for detailed study. These four regions collectively account for 75 percent of the energy consumed in the grid-supplied system. The study was conducted by a team of TANESCO engineers established in a newly formed distribution planning department. A program was carried out to collect all relevant distribution system data, such as the conductor sizes and connected loads, and network maps were compiled for the study areas. The loading patterns at selected locations were measured using a number of instruments-in particular, electronic loggers capable of storing the required characteristics for subsequent downloading to a computer. A package of computerized mapping and distribution planning software was provided to set up the data base and undertake the analysis. TANESCO staff has mastered the operation of the software and completed the establishment of the digital mapping data base in all four of the regions included in the study. They are also proficient in operating the load flow programs that interlink with the data base and have conducted a number of studies using the software. In addition to these studies, simpler techniques using calculations performed on computer spreadsheets (see Annexes A and D1) have been used to compute the required characteristics of all the MV feeders as well as a sufficiently representative sample of LV feeders in the study regions.

25. The network planning procedure consists of modeling the system to be studied either using the specialized software package or the spreadsheet methodology and determining operating characteristics such as technical losses, loading levels, and line voltage drops. Studies were also made to determine the ability to extend normal supply configurations (to provide alternative supply sources that can be utilized during network outages). The present situation as well as the network conditions in future years were studied, and the effects of various development possibilities examined. The studies were also used to prepare guidelines corresponding to optimum economic performance levels to facilitate the planning procedures. These guidelines include tables and graphs (see Annex D2) that can be applied conveniently to determine the operating characteristics (losses and voltage drops) at various loading levels.

26. The study has addressed two major long-term goals related to institutional development. First, the distribution networks that constitute a vast number of segments of lines and equipment have been collated in a computerized data base that can be updated continuously as network improvements proceed. Second, TANESCO engineers have been trained in conducting the required technical and economic analyses. Software and other study aids have been supplied to predict network performance, such as losses and line-end voltages. In addition, methodologies of computing economic benefits of proposed development options have been established. The unit established is expected to continue the task of monitoring the distribution systems in the future and planning the required developments in a timely manner to maintain the networks at optimal performance levels. The unit is also expected to play an important role in refining the proposals, monitoring the work, and updating the computerized data base as the work is implemented.

27. Sections 8 to 11 of this report deal with the major distribution system development requirements for the four regions. The proposals presented consist of the introduction of new grid substations (132/33 kV) and primary substations (33/11 kV) and uprating the voltage of certain feeders. These efforts are designed to enhance the "bulk supply" function of the distribution systems and to provide economically acceptable loss levels and reliability standards. The individual proposals have been subjected to economic analyses, and the related cost/benefit tables are presented in Annex E. The benefits accounted for are the reduction of losses, the ability to supply new consumers (where supply restriction existed formerly), and the reduction of outages. When all three components are evaluated, the benefit/cost ratios generally exceed 5:1. When the latter benefits mentioned above are not readily quantifiable, the proposals are justified on the basis of the loss reduction benefits alone.

28. Section 12 deals with improvements required to the distribution system supplementary to the major developments dealt with in sections 8 to 11. These requirements consist of three categories of work:

- reinforcement of MV systems combined with network rehabilitation,
- rationalization of LV systems, and
- system expansion.

29. The reinforcements required in the first category consist mainly in reconductoring MV line sections presently conductored with gauges too small for the economic dispatch of the load carried. In addition, some new lines are also deemed advantagous in order to reduce the feeder routes in the network. Many of the lines to be reconductored are also antiquated and need extensive rehabilitation. It is for this reason that reinforcement and rehabilitation are conjoined under the same category of work. The rehabilitation will cover requirements of both the MV and LV lines (including those which are not being reconductored) as well as requirements at substations and transformer stations. Rehabilitation—in effect, delayed maintenance efforts—constitutes the major portion of the costs.

30. Specific economic analyses to justify rehabilitation efforts is in reality quite superfluous; if the utility is to remain in business it must keep the existing networks serviceable enough to supply existing consumers. Also if major maintenance is further postponed, the networks will deteriorate rapidly, resulting in burnouts and damage to healthy equipment, with potentially high costs. Finally, no convenient procedures are available to measure the varied benefits of rectifying delayed or neglected maintenance, and engineering judgment often determines the nature and extent of rehabilitation requirements. Nonetheless, an analysis of the possible savings of outage costs that can be achieved by conducting rehabilitation can be gauged from Tables E6.1 to E6.4 of Annex E for the four regions, respectively. At an estimated outage saving of 1 percent of the power supplied and a cost of US\$1.00/kWh, the benefit to cost ratios are in the range of 7.5:1 to 17.7:1 for the four regions. The net benefits remain positive even if the outage savings are reduced to 0.3 percent of power supplied and valued at US \$ 0.75/kWh along with a reduction of the sales growth rate to 0.04 percent (from 0.08 percent).

31. The second category of suplementary work (see para 28) is LV rationalization, required in view of the high losses existing in the LV systems. The loss analysis detailed in section 3 indicates that 45.7 percent of the total power losses and 35.1 percent of the total energy losses occur in the LV lines. A substantial portion of these losses can be removed by balancing the load of the three phases. At Dar es Salaam in particular, more than 30 percent of the total LV line losses can be attributed to unbalanced conditions. The remaining losses can be reduced to economic levels by introducing a greater number of transformers to reduce the line lengths of the LV network. Estimated requirements for carrying out this work are included under the LV rationalization category. An economic analysis using estimated loss savings is provided in Table E7 in Annex E.

32. System expansion work (identified as the third category of suplementary work in para 28) is designed to extend the networks to cover new areas that have very promising load growth potential. These areas are in close proximity to the existing supply systems, and in many instances unorthodox extensions from the existing networks are already being erected to meet the pressing demand for power. Each of the new areas to be electrified is being subjected to an economic analysis (see Table E8 in Annex E) by computing the benefits from expected sales (less the upstream costs incurred in supplying power to the distribution network). The results of such analyses for the developments studied in detail so far are presented in the report and indicate very

high returns. The total cost of the areas that require electrification have been compiled based on presently available data. TANESCO's planning staff will continue the task of designing and analyzing each individual network expansion proposal and ensure that only the economically acceptable projects are included.

Total Project Costs

33. The total costs of the proposed development work in the transmission and distribution systems are presented below.

Costs of Development Work in Tanzania's Transmission and Development Systems

Costs of Reactive Compensation Requirements	US\$'000
Switched capacitor banks at Ubungo/Ilala	825
SVS unit at Arusha	5,000
10 MVAr reactor at Mbeya	200
Shifting of existing reactor from Ubungo to Ras Kiromany Reactive compensation requirements in the distribution	10
system (inclusive of 10 MVAr at Tanga)	175
Contingencies	790
TOTAL	7,000
	-

Cost of Distribution System Development

Transmission stns., LV reinf. 3,014 1,279 996 1,544 6,8 Network expansion 5,703 1,088 1,002 2,038 9,8 MV and LV rehabilitation 5,233 1,689 1,568 1,892 10,3 Contingencies 1,7	Activity	Dar es Salaam	Moshi	Arusha	Tanga	US\$'000
Transmission stns., LV reinf. 3,014 1,279 996 1,544 6,8 Network expansion 5,703 1,088 1,002 2,038 9,8 MV and LV rehabilitation 5,233 1,689 1,568 1,892 10,3 Contingencies 1,7	MV network development	7,002	1.543	1,332	4,344	14,221
Network expansion 5,703 1,088 1,002 2,038 9,8 MV and LV rehabilitation 5,233 1,689 1,568 1,892 10,3 Contingencies 1,7		3,014	•	996		6,833
MV and LV rehabilitation 5,233 1,689 1,568 1,892 10,3 Contingencies 1,7	Network expansion	5,703	1,088	1,002	2,038	9,831
Contingencies 1,7		5,233	1,689	1,568	1,892	10,363
	Contingencies	,		,	,	1,753
TOTALS 20,951 5,599 4,879 9,819 43,0	TOTALS	20,951	5,599	4,879	9,819	43,000

1. INTRODUCTION

Background

1.1 The United Republic of Tanzania is situated on the east coast of Africa, its eastern coast lying between 2° and 11° south of the equator. The country comprises a large mainland area and a number of islands, the largest of which is Zanzibar. Mainland Tanzania, with an area of about 940,000 square kilometers, is bordered on the east by the Indian Ocean; on the north by Kenya, Lake Victoria, and Uganda; on the northwest by Rwanda and Burundi; on the west by Lake Tanganyika, Zambia, Malawi, and Lake Malawi; and on the south by Mozambique. The most recent census (1988) assessed the population of Tanzania as 23 million, 1.5 million of whom lived in Dar es Salaam, the nation's largest city and commercial capital. The overall annual rate of population growth in recent years has been 3.4 percent, but the rate of urbanization is appreciably higher. It is estimated that the current (1991) population of Dar es Salaam is about 2 million persons.

1.2 The economy of Tanzania depends heavily on agricultural products, but there is some mining activity, primarily in diamonds and other gems, gold, and coal. Significant increases in industrial output have occurred over the last few years, and tourism is also an important and growing foreign exchange earner. The per capita gross national product was estimated at approximately \$110 in 1990.

1.3 The Tanzania Electric Supply Company Limited (TANESCO) is responsible for the generation, transmission, and distribution of electricity throughout mainland Tanzania. Although TANESCO sends electricity to Zanzibar through an interconnecting submarine cable, power supplies within Zanzibar are administered by a separate authority, the State Fuel and Power Corporation.

1.4 Over the past several years TANESCO's operations have suffered from low system voltages in the eastern and northeastern regions at times of peak demand. This has necessitated operation of diesel generating plant solely for voltage regulation. Despite the use of thermal generation. TANESCO has had to curtail supply to certain major consumers and reduce the rate at which new consumers are added to the system in areas where the distribution lines are overloaded. System disturbances often result in extensive outages sometimes affecting the entire network. Consumers who require a stable supply of power are therefore compelled to procure standby generating equipment. In addition energy losses on the system have increased steadily, currently exceeding 20 percent of net generation. The effects of these undesirable conditions have contributed to substantial economic losses to the country as well as to financial constraints on the company's operations.

ESMAP Assistance

1.5 In 1989, TANESCO requested the joint UNDP/World Bank Energy Sector Management Assistance Programme (ESMAP) to assist in the development of a program of activities that would improve system voltage levels, reduce overall energy losses and generally improve the quality of supply to its consumers. Funds provided by the Swedish International Development Authority enabled ESMAP to respond positively to TANESCO's request and the study was initiated in October 1989. ESMAP staff and consultants have worked closely with TANESCO counterpart staff in analyzing the problems and in identifying economic solutions. In the course of the study extensive use has been made of computerized techniques for power system mapping and analysis and as a result TANESCO's staff has developed significant skills in these areas.

1.6 This report describes the results of the studies on the transmission and distribution Network losses are analyzed and solutions identified for the low voltages in the systems. transmission system and poor supply conditions in the distribution systems at Dar es Salaam, Tanga, Moshi, and Arusha, which collectively constitute 75 percent of the total grid supplied load in the country. The recommendation for the voltage improvement in the transmission system consist of the provision of reactive compensation to enable the network to be operated at satisfactory voltage levels until planned transmission system developments can be introduced. The recommendations for the improvement of the distribution systems contain proposals for the major developments required to provide supply at economic loss levels and improve the system reliability. They also cover improvements necessary for the rehabilitation and rationalization of the existing networks in the study areas as well as system extensions required to provide supply to adjacent areas where significant urban development is already in progress. A separate report deals with the high nontechnical losses observed in the system. It describes the efforts made to reduce these losses by conducting systematic field operations and provides solutions to manage nontechnical losses in the longer term.

2. THE TANESCO POWER SYSTEM

2.1 The majority of mainland Tanzania is supplied from an interconnected power grid. There are a number of isolated systems supplied by diesel generators but these are very small in comparison to the interconnected grid and account for less than five percent of the electric energy consumed annually. This report will be concerned only with the interconnected grid system and especially with the problems of low voltages experienced in the northern and northeast regions. Map IBRD 22162 shows the geographic distribution of TANESCO's generation and transmission system.

Generation

2.2 More than 98 percent of annual generation is from six hydroelectric stations with aggregate rated capacity of 327 MW, as shown in Table 2.1 below.

Table 2.1

Station	River	Rated Capacity (MW)
Kidatu	Great Ruaha	200
Mtera	Great Ruaha	80
Hale	Pangani	21
Pangani Falls	Pangani	17
Nyumba ya Mungu	Pangani	8
Kikuletwa	Pangani	1

2.3 There are a number of diesel stations and a single gas-turbine generator (not in operation at present) connected to the grid but these are normally used only for emergency generation or voltage support. The aggregate rated capacity of thermal generating units on the grid system is about 100 MW. The capacity available at the end of 1990 was only about 30 MW. Since then a program of rehabilitation of the thermal station at Ubungo, adjacent to the major 220/132/33/11 kV substation supplying Dar es Salaam has increased the available capacity by a further 31 MW (with all six diesel units rehabilitated).

Transmission

Figure B4 of Annex B is a one-line schematic of the transmission system, which consists of lines operating at 220, 132 and 66 kV. Over three quarters of the power generated is transmitted by the single circuit 220 kV line (of 132 km) running east from Kidatu to Morogoro. Bulk of the load continues eastward thereafter on a single circuit line (of 178 km) to the principle load center, Dar es Salaam. The remaining power is transformed to 132 kV at Morogoro and a line operating at this lower voltage runs parallel to the 220 kV line between Morogoro and Dar es Salaam. This line has a switching station approximately mid way at Chalinze from which the north eastern network is supplied. Areas in Western Tanzania are supplied from a separate 220 kV system by lines running from Kidatu and Mtera to Mbeya on the southwest and Mwanza on the northwest. The north western network also has two 132 kV spurs supplying Tabora and Musoma.

2.5 The 132 kV system is the backbone of the transmission grid north of Dar es Salaam, with a line extending from Chalinze through Hale to Moshi and Arusha, with a spur from Hale to Tanga, the second largest city of Tanzania. All generating stations on the Pangani River system feed into this 132 kV network. The TANESCO grid is interconnected with that of Zanzibar at 132 kV through overhead lines on land and a submarine cable from Ras Kiromany on the mainland to Ras Fumba in Zanzibar.

2.6 The only 66 kV line currently in regular operation is that between the Nyumba Ya Mungu generating station and the 132/66 kV substation at Kiyungi near Moshi. The 66 kV interconnection between Kiyungi and Arusha is still operable but since the completion of the Kiyungi/Arusha 132 kV line the 66 kV circuit is not normally energized. Subtransmission lines operating at 33 kV emanate from the grid substations shown in Figure B4 (Annax B) and are used to energize distribution substations as well as to supply certain consumers directly.

2.7 All transmission lines are of single-circuit construction with limited or no supply alternatives in the event of unavailability of any one line.

Distribution

2.8 In city areas the majority of primary distribution lines operate at 11 kV with the secondary voltage being 400 V three-phase or 230 V single-phase. 33 kV is used as a subtransmission voltage for bulk supply to distribution substations, but some distribution transformers and major consumers are also directly energized from this voltage. In rural areas 33 kV forms the bulk of the primary distribution voltage.

Consumers and Demand

2.9 At the end of 1990 TANESCO had approximately 155,300 consumers with annual average energy consumption of about 10,000 kWh. The peak system demand was 264 MW. As is shown in Table 2.2 below, peak demand and annual energy consumption over the past five years have been increasing at an average annual rate of 11 percent. The number of consumers in Dar es Salaam and its immediate environs at the end of 1990 was about 70,000 with a peak demand of approximately 100 MW and annual consumption of 590 GWh.

	1985	1986	1987	1988	1989	1990
Peak demand MW	176	183	200	219	253	264
Generation GWH	915	1041	1169	1303	1436	1565
Sales GWH	696	822	871	1005	1110	1254
Consumers 000s	126	133	111	129	144	155
Losses GWH	219	219	298	298	326	311
Losses (% gen)	24.0	21.0	25.4	22.9	22.7	19.9
% inc. Peak		3.9	9.4	9.5	15.5	4.4
% inc Gener/n		13.8	12.1	11.5	10.2	9.0
% inc Sales		18.2	6.0	15.3	10.5	13.0
% inc. Consu/m				16.0	12.0	7.6

Table 2.2.	Power and	Energy	Demand	TANESCO	Grid System,		
1984 to 1990							

Note: There are number of inaccuracies in the data compiled at TANESCO and the figures should be taken to represent approximate values. The consumer records were adjusted in 1987 resulting in the removal of a number of 'dead' accounts.

System Operations

2.10 Since the mid-1980s, TANESCO's operations have been handicapped by low system voltages in Dar es Salaam and areas in the northeast. At times of peak system demand that normally occurs between 9 a.m and 3 p.m. in the daylight hours and 6 and 9 p.m. in the evening (see Figure 3) the voltage on the 220 kV busbars at Ubungo, the 220/132 kV substation supplying Dar es Salaam, falls to 175 kV or less. At Arusha in the northeast it is necessary to run the diesel

generating units and in addition shed certain loads at times of peak demand in order to maintain system voltages. Even then the voltage conditions are below acceptable levels. The long and relatively lightly loaded transmission lines in the west limit the level to which the voltage on the generator busbars at Kidatu and Mtera can be raised without resulting in unacceptably high voltages at the peripheral grid substations.

2.11 The low-voltage conditions on the transmission system in Dar es Salaam and other areas in the east are compounded by overloaded distribution circuits. Many consumers frequently experience single-phase supply voltages of less than 180 volts instead of the nominal 230 volts. The overloaded distribution circuits are, in part, the result of inadequate distribution planning and the fact that investment in distribution over the past decade has not been commensurate with the increase in consumer demand. TANESCO has had to restrict the rate at which it adds new consumers to the system in certain areas of Dar es Salaam because of the overloaded condition of existing distribution circuits. The overloaded distribution lines and poor power factor control by some consumers have contributed to a steady increase in system energy losses. As can be seen from Table 2.3 above, system losses have remained at a high level (around 20 to 25%) in spite of two major distribution development projects undertaken during the last five years. However not all of these losses are due to overloaded lines or other technical considerations. A significant proportion is due to the failure of the metering and billing system to capture all of the units consumed.

2.12 The low voltages experienced in the high load-density areas of eastern and northeastern Tanzania often result in lost production and equipment damage. The high voltages in the western areas place undue stress on consumers equipment and are believed to have resulted in failure of a number of grid substation transformers. Inadequate investment in the distribution system not only increases losses and restricts the rate at which consumers are added to the system as previously mentioned but also contributes to poor physical condition of much of the distribution plant. In consequence certain areas experience frequent supply outages many of which are of long duration. The various undesirable characteristics of current operations on TANESCO's transmission and distribution systems cause substantial economic loss to the country as well as financial penalties to TANESCO itself.

System Expansion

2.13 TANESCO's system expansion plans are based on a study undertaken by the Canadian consultants Acres International and completed in 1985. The demand forecasts have since been revised regularly by TANESCO and Acres, most recently in 1990. The projected demand for the period 1991 to 2005 is as shown in Table 2.3.

	1990	1991	1992	1993	1994	1995	1996	1997	2002		
Peak Demand (MW)	264	297	325	352	373	395	416	438	569		
Annual Energy (GWh)	1254	1395	1507	1614	1722	1842	1977	2118	2853		
Annual Growth (%)	13.1	11.2	8.0	7.1	6.6	7.0	7.3	7.1	-		
Load Factor (%)	67.6	66.6	66.0	65.0	65.0	65.0	65.0	65.0	65.0		

Table 2.3. Forecast of Power and Energy demand upto 2005

-Projected-

->!

Note: The 1990 values represent actual system performance. The values for other years are projected. The figures for 1991 have still not been finalized by TANESCO.

2.14 It is seen that the high load growth over the last few years are expected to continue though at a slightly reduced rate. There is also a good possibility that TANESCO will experience a more rapid increase in demand than is currently projected.

Generation Expansion

Actual <---

2.15 TANESCO's plans to increase generating capacity in the period 1991 to 2000 are as follows:

- To undertake further rehabilitation of the diesel plant in the western parts of the grid system to provide an additional 20 MW by 1994.
- Redevelopment of the Pangani Falls site to provide an increase of 49 MW in 1995
- Construction of a new generating station on the Kihansi River (the Lower Kihansi plant, near Iringa) to provide 150 MW in 1998.

2.16 Comparison of planned investment in generation with projected demand indicates a severe capacity shortage if any large generating unit should be out of service over the period beyond 1992. This situation would be compounded in the event of unfavorable hydrologic conditions, especially in the Great Ruaha/Kihansi watersheds. Adverse rainfall conditions in the catchment areas combined with the non availability of hydro generation units have in fact caused large scale load shedding during many periods in 1992.

Investments in Transmission

2.17 From now until 2000 TANESCO plans to invest in two major transmission projects. The first is a second 220 kV line (300 km) from Kidatu to Dar es Salaam (probably to a new substation site and not Ubungo) via Morogoro. Construction has already begun for the section Kidatu to Morogoro. Funds are still being sought for the section from Morogoro to Dar es Salaam, which is planned to be in service by the end of 1994. The second major investment in transmission will be the Singida to Arusha 220 kV line (about 280 km) expected to be completed by the end of 1995.

Improvements in Distribution

2.18 TANESCO is currently developing plans to rectify the effects of past inadequacies in investment in the distribution systems and to be well positioned to meet the consumer demands of the future. The current ESMAP study will provide the required assistance in determining the investments at the major load centers of Dar es Salaam, Tanga, Moshi and Arusha. TANESCO is independently developing distribution plans for the other service areas. Investment financing is expected from a new World Bank (International Development Agency) power credit as well as from bilateral financial agencies.

3. ANALYSIS OF SYSTEM LOSSES

A power system can be divided conveniently into a number of sections in accordance 3.1 with the voltage of operation. All major generation stations feed into the transmission system, which in the case of TANESCO consists of a radial network of 220 kV and 132 kV lines. At present, only one load (the power supply to Zanzibar) is supplied directly at the transmission voltage. Grid substations on the transmission system located at major load centers transform power to 33 kV, and feeders at this voltage are used as the first stage of the distribution system. Some of the larger loads are supplied from the 33 kV lines, while others are fed directly off transformers connected to these lines. 33 kV lines are also used to provide supply to rural areas with 33 kV/LV transformers supplying the low voltage networks. The remaining load undergoes a further transformation at primary substations (33 kV/11 kV) resulting in an additional system voltage of 11 kV. Part of the load supplied is fed at the same voltage (11 kV) to larger consumers; a second part is supplied to consumers directly from step down transformers at low voltage; and a third part is carried along LV lines and supplies the rest of the consumers. Consumers supplied at 33 and 11 kV are classified as medium voltage loads. Those supplied at LV are considered as bulk LV loads if fed directly off transformer stations and as retail LV load if fed from the LV lines. The system consists of a hierarchial structure as shown in Fig. 3.1. A substantial portion of the total network load flows along the 11 kV and LV systems.

3.2 Technical losses on the system occur in all sections of the network. Almost the entirety of these losses are caused by the heating effect of an electric current when flowing along a conductor. The exception is the losses caused in magnetizing transformer cores. In addition to the network losses described above, losses also occur at power stations due to the consumption of auxiliary equipment as well as losses on generator transformers. The overall losses (inclusive of the losses in generation stations) are termed gross losses, while the portion of the losses that occur in the transmission and distribution networks are considered as net losses. In the present exercise we will concern ourself with the analysis of net losses, that is, those occurring in the transmission and distribution systems.

3.3 Power supply systems also contain nontechnical losses. These losses are caused by deficiencies in billing and meter reading as well as by consumption not captured by meters. The difference between units sent out of the power stations and units sold (as appearing in the billing statement) are the net system losses consisting of the sum of the two components, technical and nontechnical losses described above. The present report deals with the technical component; a complementary report is being issued regarding nontechnical losses.1/

<u>1</u>/ Thi

This Report is entitled Tanzania: Reduction of Nontechnical Losses.

3.4 The load at various sections of a power network can be expressed in power demand (MW) as well as in energy (MWh) terms. Similarly, system losses are also expressed in power (MW) and energy (MWh) terms; the energy loss being the integration of the power losses over the relevant time period. The ratios of the average to peak values for the power demand and power loss are termed the load factor and the loss factor respectively; the relationships between the various parameters are provided in Annex D. During the study an extensive measurement program was conducted using electronic instruments capable of recording and storing the required power flow characteristics and subsequently downloading these measurements to a computer. One of the instruments used, the DIP 6000, uses three clip-on current transformers and three voltage transducers to record the current, voltage, power factor and power values of three phase networks. Two others, the load logger (which can be placed on overhead lines) and the load profiler records the current of individual phase conductors. All the instruments can be programmed to perform measurements at pre determined intervals and are also supplied with software to facilitate down loading the data and performing analyses of the results.

3.5 The program of power flow measurements carried out included all the 33 and 11 kV feeders in the study area as well as a representative sample of low voltage (LV) feeders and distributors. Some typical results of daily loading profiles and other characteristics are given in Annex A. These results provided values for the load factor and loss factor of individual feeders as well as for network components at various operational levels. These values have been used when necessary to convert the power and power loss figures to energy and energy loss terms in the various computations appearing hereafter.

Network Losses in the Distribution System

In contrast to the transmission system, distribution networks contain an extremely 3.6 large number of line sections and the building up of the necessary data base as well as its modeling for analysis is far more complex. An important initial step has been made by introducing computer programs to build up a data base and conduct the required system studies for the distribution networks (see Section 7 for a description of the software provided). During the course of the project significant progress has been made in establishing the data bases and performing studies in limited areas of the network. This work is continuing and the study team established is expected to complete modeling the medium voltage distribution systems in the entirety of the Coastal and North Eastern Zones (consisting of the cities Dar es Salaam, Tanga, Moshi, Arusha as well as the associated peripheral areas) by end 1992. However, in order to obtain an early assessment of the existing technical losses in the system an approximate methodology (as explained in Annex D1) has been developed and applied in parallel with the more exhaustive computer applications. This procedure has been used to compute the line losses and terminal voltage drops of all medium voltage networks in the study areas for three typical loading conditions consisting of peak, mid and base load. A similar study has been made on a sample of LV systems in the four regions. The sample consisted of a total of 105 transformer stations having 367 distributors and is therefore considered to be sufficiently representative of the total LV network. Sample results of these

studies are presented in Annex A. The losses and voltage drops have been worked out for the 1991 year loads as well as the expected load in 1995 with no developments made to the existing system. The calculations have been repeated with the proposed system developments described in sections 8 to 11.

3.7 The results of the power loss studies for both MV and LV systems indicate a wide diversity of performance among the various feeders. Summaries of the total losses obtained for each region are presented in Tables 3.1 and 3.2 below:

		Dar-es- <u>Salaam</u>		Tanga <u>District</u>	Tanga who <u>Region</u>	ole <u>Moshi</u>	<u>Arusha</u>
1)	33 KV lines Power losses	2.0	2.20	1.30	1.91	3.80	3.7
2)	33 KV lines Energy losses	1.50	1.65	2.38	1.43	2.90	2.8
3.	11 KV lines Power losses	2.80	1.80	2.61	2.04	3.00	5.7
4.	11 KV lines Energy losses	2.10	1.35	1.96	1.50	2.30	4.3
5.	LV lines Power losses	8.90	-	-	7.80	1.04	6.5
6.	LV lines Energy losses	6.20	-	-	5.50	0.72	4.6

Table 3.1. Total Power and Energy Losses in Percent of Input at Each Voltage Level, 1991 Loads

Table 3.2. Total Power and Energy Losses in Percent of Input at Each Voltage Level: 1995 Loads with existing system configuration

1)	33 KV lines	Dar-es- <u>Salaam</u>	Tanga <u>Town</u>	Tanga <u>District</u>	Tanga wh <u>Region</u>	ole <u>Moshi</u>	<u>Arusha</u>
1)	Power losses	2.36	2.6	1.6	2.1	4.46	4.35
2)	33 KV lines Energy losses	1.77	1.95	1.2	1.58	3.34	3.26
3.	11 KV lines Power losses	3.83	2.20	3.08	2.44	3.55	6.37
4.	11 KV lines Energy losses	2.86	1.65	2.31	1.83	2.66	4.77
5.	LV lines Power losses	10.35	-	-	9.07	1.21	7.56
6.	LV lines Energy losses	7.21	-	-	6.32	0.84	5.27

3.8 The percentage losses provided in Tables 3.1 and 3.2 are based on the input power at the respective voltages. These percentages can be converted to the base of the input power and energy of the total system by consecutively accounting for the loads and calculating the losses along each section of the network hierarchy (described in para 3.1 and shown in Figure 3.1). Such an analysis has been conducted for the distribution system using the monthly billing data for the year 1990 for the four regions and is presented in Table A4 in Annex A. In this analysis the maximum demands (kVA) recorded in the various tariff categories have been converted to peak loads by use of estimated coincidence factors and the consumption of retail units (where the kVA demand is not recorded) has been converted using an estimated overall load factor. The estimated figures have been derieved from the data collected from field measurements and the total demand figures have been reconciled with recorded values thus indicating a good degree of reliability for the results obtained. Thereafter the average values for power and energy losses at various voltage levels (presented in Table 3.1) have been used to develop a hierarchial power and energy flow table consisting of the loads and losses occurring at each level in the network. Finally the losses and loads at each voltage level are expressed as percentages of the input to the distribution system. A summary of the results of these tables is presented in Table 3.3 below. Charts indicating the comparative losses of the four regions, the total sales and loss breakdown and the breakdown of overall distribution losses are presented in Figures 3.2 to 3.4.

F	FOR ALL 4 REGIONS	DARES SALAAM	TANGA	MOSHI	ARUSHA
POWER LOSSES			•		
33 kV line loss	2.26	2.00	1.20	3.79	3.70
SS T/f loss	1.22	1.26	1.02	1.18	1.21
11 kV line loss	2.44	2.32	1.34	2.32	4.53
LV t/f loss	1.16	1.19	0.88	1.31	1.19
LV line loss	5.97	6.22	4.42	7.61	4.74
Sum of losses	13.05	12.98	8.86	16.22	15.36
ENERGYLOSSES	;				
33 kV line loss	1.69	1.50	0.90	2.85	2.77
SS T/f loss	1.14	1.18	0.75	∠1.34	1.22
11 kV line loss	1.74	1.63	0.74	1.98	3.42
LV t/f loss	1.00	1.01	0.86	1.17	0.97
LV line loss	3.02	3.26	1.96	3.67	2.41
Sum of losses	8.59	8.58	5.21	11.00	10.80

Table 3.3. Distribution Network Losses in Percent of Input to Distribution System

3.9 An examination of the distribution system losses developed above indicate that the overall network loss levels for the medium voltage feeders are not excessive (particularly in comparison to those in many developing countries). The low loss values in many parts of the network is the result of two major distribution development projects carried out recently. However, there still remains a number of feeders where the loss levels are considerably high. Further with the

- 12 -

expected load growth between now and 1995 the situation will worsen considerably unless corrective action is undertaken. A number of system improvements to reduce losses in areas where they are exceptionally high have been formulated in sections 8 to 11. A particular difficulty that TANESCO faces is that it can not often mobilize the funds (particularly foreign exchange) necessary to undertake development requirements in a timely manner. It is therefore very necessary to ensure that all necessary steps are taken to limit the time delays associated securing the necessary financing facilities.

The sample studies conducted for the low voltage systems indicate that the network 3.10 losses in this section of the network is exceptionally high. The average peak losses for LV networks in the four regions yielded results between 6.5 and 10.5% of the input power. The LV line losses together with the transformer losses exceeded half the overall distribution system peak losses. In energy losses too this figure came close to the half mark (46.7%, see Fig. 3.4.). Clearly this is an area where considerable loss reduction inputs are required. One major factor is the high unbalance existing in many of the schemes studied. The losses due to line unbalance is exceptionally high in Dar es Salaam and Tanga where savings as high as 30 and 20% of the existing losses can be realized by undertaking a program of load balancing, without incurring any capital investment. The other major loss reduction improvement required in the LV networks is the introduction of a substantial number of additional distribution transformers to reduce the LV line lengths. A program of transformer replacements and interchanges need also to be carried out to enable more efficient loading levels to be achieved (to optimize transformer losses). TANESCO should also change its present practice regarding transformer purchases by including the evaluation of lifetime cost of losses thereby ensuring that low loss transformers are secured in the future. These developments are discussed in section 12.

Transmission System Losses

3.11 Losses in the transmission system can readily be obtained by the results of the load flow studies conducted. Section 4 discusses these studies and Annex B presents the results of the computations made. Typical peak, mid and base load flows for each year from 1991 to 1998 have been performed. In order to calculate the energy losses a simplified load duration curve consisting of 25% of average peak load, 42% of average mid load (taken at 80% of peak) and 33% of base load has been assumed. While the peak and base load values have been taken direct from the results of the studies, the mid load values have been estimated by reference to load flows conducted with similar operating conditions. These results are presented in Table 3.4 below:

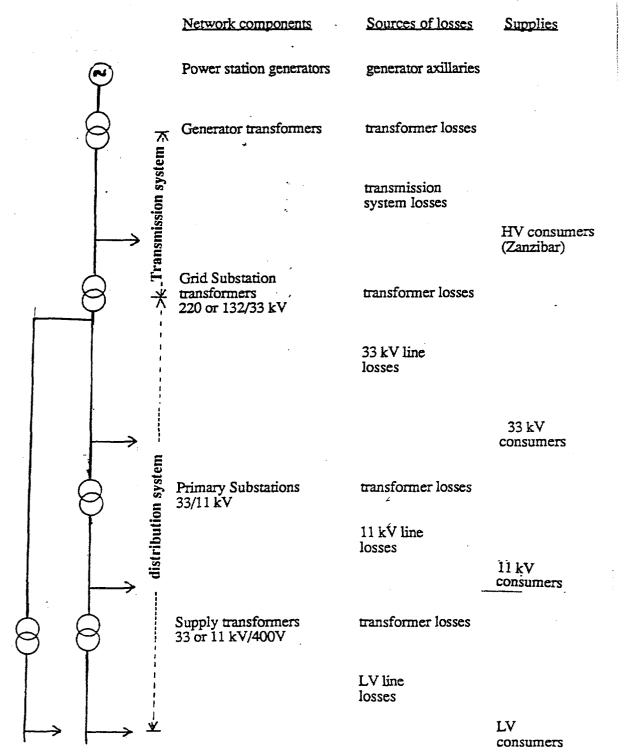
Table 3.4.	Transmission	System	Losses	in	Percent
-------------------	--------------	--------	--------	----	---------

				Mid- Base-	
	<u>Year</u>	Proposed Developments	<u>Peak</u>	Load	Load
	1 99 1		8.0	3.0	5.5
	1992		9.0	3.0	4.7
	1993	Kidatu-Morogoro 2nd cct.	5.8	3.5	4.4
	1994		6.0	3.8	4.8
	1995	Morogoro-Ubungo 2nd cct.	5.5	4.0	4.3
		New Pangani P.S.			
	1996	Singida-Arusha Line	5.0	4.0	4.2
	1997		5.4	4.2	4.4
	1998	Kihansi P.S.	6.2	4.3	4.6

3.12 The results indicate a number of step changes to the loss levels that occur with various network developments introduced. System losses decrease with the transmission developments of the second circuit to Dar es Salaam and the Singida-Arusha connection as well as the New Pangani Falls power station. Peak losses decrease in certain years due to thermal generation inputs (supplied at Ubungo, the main load center) to meet the hydro power deficit. With the commissioning of the Kihansi project the necessity of thermal generation is removed and the power flow along the Kidatu-Morogoro-Ubungo lines is increased resulting in higher transmission system losses. The introduction of reactive compensation (proposed in this report) at Ubungo will also contribute to substantial loss reduction both before 1995 and after 1998.

Loss Analysis for Total System

3.13 The present level of network losses derived for the transmission system and the load supplied at this level (to Zanzibar) has been combined with results of the distribution system power flow developed (in Table A4 of Annex A) to obtain the overall network power flow and system losses based on net generation (ie. input to the transmission system). For this purpose the percentage figures obtained for supplies and losses for the four regions studied are assumed to represent the entire grid supplied distribution system. Summary information from this table is provided at Table 3.5. It is seen that line losses of transmission and distribution systems are approximately of equal significance. The results of the above loss analysis for the total system (based on net generation) is also presented in Fig. 3.5.


POW	VER	ENERGY		
Values Expres	sed as % of:- Total	Values Expres	sed as % of:- Total	
Net Gen	losses	Net Gen	losses	
5				
8.00	41.52	4.00	34.85	
1.98	10.27	1.50	13.03	
1.03	5.36	0.97	8.43	
2.06	10.71	1.50	13.03	
1.03	5.36	0.88	7.66	
5.16	26.78	2.64	22.99	
•.				
19.27	100.00	11.48	100.00	
8.00	41.50	4.00	34.85	
11.30	58.50	7.50	65.15	
ES				
5.91	7.32	8.11	9.16	
8.86	10.97	12.49	14.11	
5.50	6.82	12.58	14.21	
60.46	74.89	55.34	62.51	
80.73	100.00	88.52	100.00	
100.00		100.00		
	Values Expres Net Gen 5 8.00 1.98 1.03 2.06 1.03 5.16 19.27 8.00 11.30 ES 5.91 8.86 5.50 60.46 80.73	Net Gen losses 8.00 41.52 1.98 10.27 1.03 5.36 2.06 10.71 1.03 5.36 5.16 26.78 19.27 100.00 8.00 41.50 11.30 58.50 ES 5.91 7.32 8.86 10.97 5.50 6.82 60.46 74.89 80.73 100.00	Values Expressed as % of:- Total Values Express Net Gen losses Net Gen S 8.00 41.52 4.00 1.98 10.27 1.50 1.03 5.36 0.97 2.06 10.71 1.50 1.03 5.36 0.88 5.16 26.78 2.64 19.27 100.00 11.48 8.00 41.50 4.00 11.30 58.50 7.50 ES 5.91 7.32 8.11 8.86 10.97 12.49 5.50 6.82 5.50 6.82 12.58 60.46 74.89 55.34 80.73 100.00 88.52 55.34 55.34	

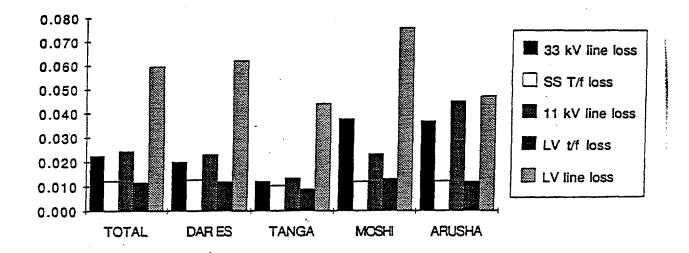
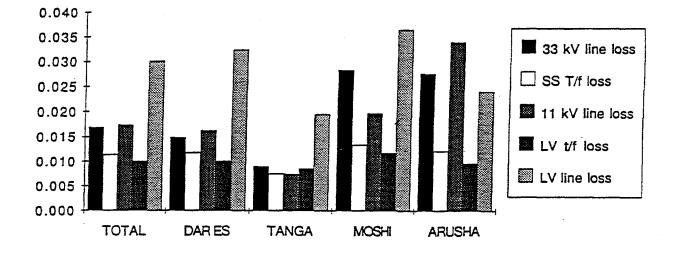
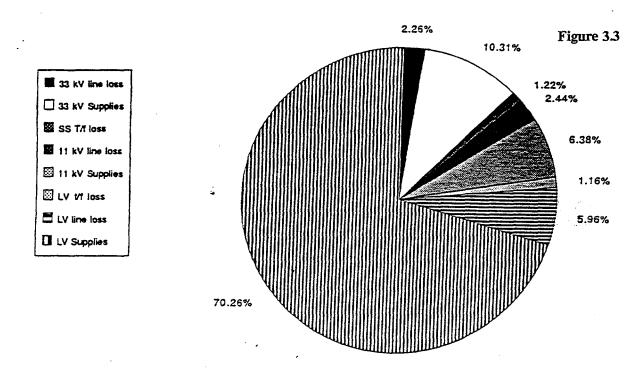

4

Table 3.5. Breakdown of System Losses and Supplies by Voltage Level


.

POWER SYSTEM SUPPLY HIERARCHY

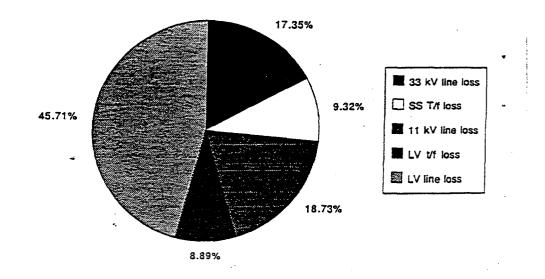

Distribution System Peak Power Losses (expressed as % power input at 33kv).

Distribution System Energy Losses (expressed as % energy supplied at 33 kv).

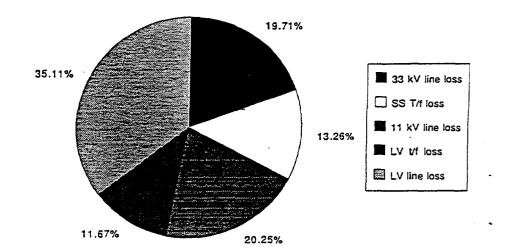
- 17 -

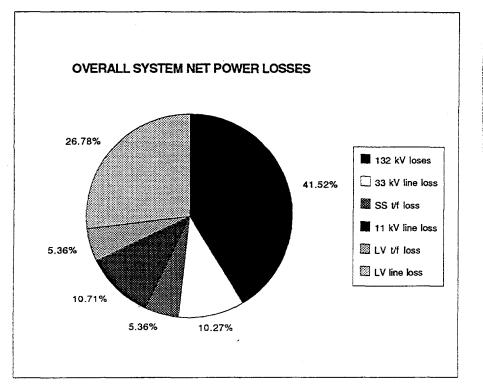
Figure 3.2

Distribution System Peak Power Supplies and Loss Composition (expressed as % power input at 33kv)



Distribution System Energy Supplies and Loss Composition (expressed as % energy supplied at 33 kV)


- 18 -



Composition of Peak Distribution Losses by Category (expressed as % of total Distribution System Power Loss).

Composition of Energy Losses by category (expressed as % of total Distribution System Energy Loss).

NOTE: Total power losses amount to 19.3 % of net generation

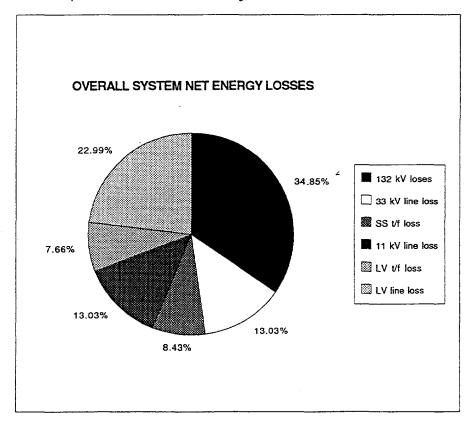


Figure 3.5

4. REACTIVE COMPENSATION FOR THE TRANSMISSION SYSTEM

Background

4.1 At present the transmission system is severely overloaded in the east and northeast sections leading to very poor voltages at the main 220/132 kV receiving station at Ubungo (Dar es Salaam) as well as at the peripheral substations of Tanga and Arusha. The extent of the voltage depression experienced at day and night peak loads can be seen from Figures 4.1 and 4.2, which indicate the voltage readings obtained on a typical week day at the substations at Ubungo and Arusha. This depression of voltage at the substations is a principal cause of the low system voltage existing in the distribution system. In contrast to the east and northeast sections the network in the west is comparatively lightly loaded and care must be exercised to prevent the voltage at the substations are installed at seven of the nine substations in the west. The dangers of possible high voltage in the west further complicate the control of the voltage conditions in the east and northeast.

4.2 TANESCO's current plans to redress the transmission system deficiencies of the east and north east are as follows:

- Construct a second circuit 220 kV line from Kidatu to Dar es Salaam via Morogoro (the contract for the first section, Kidatu to Morogoro has already been awarded and the line is expected to be commissioned by early 1993; funds for the second section Morogoro to Dar es Salaam are presently being sought and the line is expected to be in service by January 1995).
- Construct a 220 kV connection between Singida in the north west and Arusha in the north east (expected to be in service by 1996).

The above developments have been selected after studies carried out by TANESCO's consultants ACRES International and represent the long term least cost solutions among the limited options available. However, these proposals by themselves and at the commissioning dates presently feasible are insufficient to resolve the poor voltage conditions that would continue to be experienced for some time.

4.3 Load flow studies on the transmission network were therefore conducted in order to examine possible short and medium term solutions for the rectification of the voltage control problems. Normally the maximum load on transmission lines occur at times of system peak load. However in some situations the most severe loading conditions are experienced at other operating periods. Such situations occur in the TANESCO network when the thermal generation requirements to meet the hydro shortfall results in a lower transfer of power along the main transmission lines at peak times than at other operational periods. The studies have therefore covered a number of such operational periods. Consideration has also been given to exigencies such as the outage of transmission lines supplying important load centers. It is seen from these studies that network voltages can be considerably improved by introducing reactive compensation at certain line extremities. A further benefit of reactive compensation is the reduction of losses in the network. The studies presented in this section therefore seek to determine the best possible application of reactive compensation measures to improve the transmission system voltage levels

Methodology for Load Flow Studies

and obtain loss reduction benefits.

4.4 The performance of the transmission network during various future periods will vary considerably according to the addition of various generation and transmission developments as well as with the expected load growth. For this reason and in order to establish the usefulness of the reactive compensation measures to be employed over a reasonable period load flow studies have been performed yearly from 1991 to 1998. Some studies beyond these years have also been done particularly to assess the impact of possible export of power to Kenya. As discussed in para 4.2 above, studies have been performed to represent system performance at maximum system peak for the various years as well as at lower loading conditions. Table B1 of Annex B report provides the expected yearly maximum loads for the total system as well as the distribution of the loads at each grid substation. The import/export requirements indicating the power transfer conditions between the various load and generation centers in the system are also presented in this table. The overall load forecast tallies with the present forecast in use by TANESCO (prepared by ACRES) and represents an average annual load growth of around 6.75%. Transmission line data including impedances used in the study are provided in Table B2 of Annex B. In performing the load flow studies the range of bus voltages considered acceptable for technically satisfactory operation was chosen to be between +5% and -5% of nominal voltage. An exception was made for the Ubungo 220 kV bus voltage, which was allowed to drop to as low as -10% in view of the possibility of keeping the 132kV bus voltage at about -5% by use of the tap-changing facilities of the 220/132 kV transformers. Three other 220/132 kV transformations are used in the system; these being at Morogoro, Shinyanga and Mwanza. The latter two locations do not present any particular problem as any fluctuations on the 220 kV system can be accommodated by small variations of the tapchanger from the standard position. In Morogoro the 220 kV voltage will be higher than at Ubungo. Further the chief concern here will be the necessity to maintain the 132 kV side voltage as high as possible due to the need to maintain voltages along the Chalinze-Hale-Arusha line. Thus no special voltage conditions need to be applied for the 230/132 kV transformers other than the one at Ubungo. For all 220/132 kV transformers the tap changer operating range allowed was +/-6% of nominal and a suitable selection within this range was used to obtain the best possible operating conditions.

4.5 The best candidate locations for applying reactive compensation are the heavily loaded line extremities. In the TANESCO transmission system these locations are found at Dar

se Salaam (the extremity of the eastern radial) and at Arusha and Tanga (the extremities of the north eastern radial). Once the overall requirements at or close to these two locations are determined consideration should be given to their distribution among adjacent substations. The extent of the such distribution will depend on the total capacity required as well as the operational demands on the compensators. Thus in the discussion hereafter the reactive compensation requirements are indicated by their principal locations, Ubungo and Arusha. After finalizing the overall quantities required, consideration will be given to operational aspects as well as secondary advantages and recommendations will be made as to the distribution of the compensation to be applied among adjacent locations. Thus the requirements indicated in the following discussion at Arusha may in fact be distributed between Arusha and Moshi and the requirements indicated at Ubungo may in fact be distributed between Ubungo and Ilala (the second step down station, 132/33 kV, in Dar es Salaam). Further it should be noted that the existing capacitors in the system (5 MVAr at Moshi and 2.5 MVAr at Arusha) are included within the quantities provided in the various load flow results.

Preliminary System Improvements

4.6 At the commencement of the study two operational measures were identified to improve the poor voltage conditions experienced at peak load. The first consist of the installation of a circuit breaker to control the operation of the 20 MVAr reactor installed at Ubungo to enable this reactor to be switched off during normal operation and introduced only when required at very low load (see also para 4.11). The second measure consist of adjustments to the generator transformer tap possitions at Kidatu in order to raise the 220 kV voltage at this station to a higher value. Both these measures were put in practice during the study resulting in incremental improvements to the voltage profile.

4.7 Certain other improvements requiring minimal capital investment can also be effected to rationalize and improve the performance of the existing system. It is necessary to address such possibilities prior to undertaking an analysis to determine the extent of major reactive compensation requirements (at the east and northeast system extremities). Consideration could then be focussed on the direct benefits of the main reactive compensation proposals after allowing for improvements that are possible to be achieved by other means. The various measures that could be employed in this respect are discussed below:

Reducing the Voltage Rise in the Western Section of the Network

4.8 As discussed earlier, the line voltage in the northwest (extending up to Musoma) and the southwest (extending up to Mbeya) will rise to unacceptable levels unless the reactors installed are switched on and the Kidatu and Mtera bus voltages are restrained. It is thus appropriate to examine if this restriction on the increase of the generation station voltages could be relaxed. This is particularly so since a higher voltage at Kidatu will reduce the reactive compensation requirements at Ubungo by allowing for a greater voltage drop. With respect to the compensation requirements at Arusha the Ubungo voltage is not so critical as the tap changer at Morogoro as well as the generation at Hale will allow the voltage to be raised at these intermediate points. However during the initial years (until the new Pagani power station is introduced) when the generation at Hale is sometimes insufficient to allow for the maintenance of the maximum desired voltage and the drop in the Kidatu-Morogoro section is excessive the rise in the Kidatu voltage does have a positive effect on the compensation requirements at Arusha too.

4.9 Under normal peak load conditions, the Kidatu voltage can be raised to about 1.03 p.u. without causing the peripheral station voltages in the north and south western sections to exceed the upper limit of 1.05 p.u. However there are some particular circumstances that cause concern in keeping to such a voltage level. These aspects are discussed below:

- Three diesel generation stations Nayakato (13.5 MW, connected to Mwanza), Mwanza South (4.5 MW), and Mbeya (10 MW) are connected to the grid in the southwest section. When thermal generation is required to meet peak shortages these stations will need to be operated. In fact during the early period of 1991 much of the peak period diesel generation (required due to the unavailability of a machine at Kidatu) came from the station at Nayakato. Such local generation will reduce the loading on the 220 kV lines and result in considerably high voltages at the grid substations of Mbeya and Mwanza if the Kidatu voltage is also maintained at a high level.
- The loads in the southwest are mainly dependent on two large industrial loads, a paper mill and a cement factory. Quite often either or both the factories are not in operation. At such times the loading on this section is very light when the rest of the system experiences peak load conditions. A saturated reactor providing variable output up to 30 MVAr is available at Mwanza. However the reactor is designed to maintain a constant voltage at 11 kV to the paper factory and the output cannot be varied as required by the grid operating conditions.
- A situation similar to the abnormally low loads discussed above is that caused by the tripping of large loads. Since the loads at both the northwest and the southwest consist basically of a few large load concentrations, tripping of 33 kV feeders or grid substation loads will cause sharp voltage rises that can be detrimental to equipment connected to the system. In fact, there has already been instances of damage to grid substation transformers due to core saturation caused by exposure to high voltages. A particular problem has also arisen at Mbeya where the transformers were found to be inadequately designed to withstand high voltages.

4.10 The reactors presently installed in the system as well as the dispersed nature of the loads do not cause such serious concerns in the north west. In the south west however the only reactor connected at Mwanza (whose output is controlled by the paper mill load) is insufficient to effect the necessary control. It is therefore proposed that a 10 MVAr switchable reactor be

installed at Mbeya. Load flow runs conducted with such a reactor at Mbeya indicates that the voltage rise can be effectively controlled. For example, the 1991 peak load flow with 1.03 p.u. voltage at Kidatu caused a voltage of 1.043 p.u. at Mbeya without a reactor and the voltage was reduced to 1.004 p.u. with the use of a 10 MVAr reactor. In order to give sufficient leverage for the variation of the Kidatu voltage therefore the analysis is conducted with a 10 MVAr reactor at Mbeya being included in the proposals.

Installation of a Reactor at Ras Kiromany

4.11 The 38 km submarine cable that provides power from the TANESCO system to Zanzibar generates about 33 MVAr of reactive power. The MW and MVAr load in Zanzibar is relatively small compared to this var generation and consequently the line load is dominated by the var flow to Ubungo. In addition the line losses remain practically unchanged during varying load conditions, even increasing slightly during base load periods due to the higher cable var generation resulting from the higher base load system voltages. Line losses from Ubungo to Ras Kiromany (the mainland end of the cable) can be substantially reduced by installation of compensating reactors at either or both ends of the cable. At present a compensating reactor is installed at Ubungo to help reduce the voltage rise due to the cable during light load periods. This reactor was originally directly connected to the line with no possibility of switching it in or out. However at peak periods there is a need for capacitive injection on the system and not for an inductive load. After recommendations made during the ESMAP studies TANESCO installed a circuit breaker in order to allow the reactor to be connected to the bus only when required to limit the voltage rise at periods of low loads. Although this arrangement helps to resolve the present critical voltage problems it is unsatisfactory in many respects. As a result of the reactor being installed at Ubungo rather than at the cable that is the source of the var generation, the voltages at Ras Kiromany, Ras Fumba and Mtoni (the latter two locations being in Zanzibar) are higher than at Ubungo and thereby limit the value to which the Ubungo voltage can be raised. The load flow results indicate that the voltage rise from Ubungo to Ras Fumba varies from 2.7 to 3.5 percent, depending on the extent of the cable var generation with changing voltage levels as well as on the load in Zanzibar. The resultant limitation on the Ubungo voltage will affect the ability to control voltage levels in the northeast, which would normally require maintaining as high a voltage as possible at Ubungo and Morogoro. Another disadvantage is the higher losses in the Ubungo Ras Kirosmany section discussed earlier. Yet another drawback of the present reactor arrangement is that the switching on and off of the reactive load of 20 MVAr will cause considerable step changes in voltage at all busses in the east and northeast. In fact the present switching operation of the reactor should be viewed as an emergency procedure to help achieve some voltage improvement until a more technically acceptable arrangement is made.

4.12 The technically optimal solution is to have two reactors of equal size, one at each end of the cable. This will limit the var flow in the Ubungo-Ras Kiromany line and in the cable itself. However since a 20 MVAR reactor is already available at Ubungo, the most feasible practical solution is to transfer this reactor to Ras Kiromany. (The loss reduction would be about the same if the reactor were transferred to either of the two cable ends but the cost of transport by sea to

Ras Fumbo would make overall costs much higher for this location). The load flow results indicate that the installation of 10 or 20 MVAR reactors at Ras Kiromany will restrain the voltage rise between Ubungo and Ras Fumbo to about 2.0 and 1.0 percent respectively (in comparison to an average of about 3.0 percent with the reactor at Ubungo). The loss reduction benefits are evaluated in Table C2 of Annex C and indicate benefit to cost ratios as high as 20 to 1 and pay back periods as low as 4.5 months. Having the reactor in fixed service at Ras Kiromany will require an increase in the capacitance of the reactive compensation equipment to be installed at Ubungo by an amount equivalent to the rating of the reactor when compared with the alternative of being able to disconnect the existing reactor from the system. For this reason the cost/benefit analysis shown in Table C2 includes the cost of the additional capacitance required in the overall cost of transferring the reactor. Use of a single 20 MVAR reactor is the primary suggestion because the existing 20 MVAR reactor at Ubungo can be conveniently transferred whereas the 10 MVAR reactors currently installed on the system are all rated for 33 kV, which voltage is not available at Ras Kiromany or Ras Fumba. Transfer of the existing 20 MVAR reactor to Ras Kiromany is therefore recommended in view of the high economic rates of return and substantial technical advantages. Once transferred, switching the reactor on and off in accordance with low and high system demands will not be feasible. Therefore the transfer can only take place after adequate variable/switchable compensation is provided at Ubungo.

Employing Part of the Reactive Compensation Requirements at Tanga

4.13 The ability to maintain the voltage at Hale (where generation capacity is available) at the upper limit is a critical factor in obtaining the best possible voltage profile in the northeast. However such ability is dependent on sufficient MW and MVAr generation at Hale together with the supply of the required reactive compensation at Ubungo (to enable the Morogoro voltage to be raised as high as possible). Until the commissioning of the new Pangani Falls power station generation support at Hale is not always able to maintain this desired voltage level. Further with increasing load over the years the voltage drop between Hale and Tanga will increase to excessive values. Thus for the 1992 load the voltage drop between Hale and Tanga, with the Hale voltage maintained at 1.04 p.u. is 0.033 p.u. while for the 1998 load the drop increases to 0.09 p.u. Voltage improvement at Tanga as well as support in maintaining the required voltage level at Hale can be accomplished by providing reactive compensation at Tanga. In consideration of the load at Tanga a 10 MVAr of compensation is expected to provide the required support. The compensation may be effected by power factor correction within the power installation of the cement factory itself (which is the major load fed from this substation) combined if necessary by additional compensation at the other major loads and 33/11 kV substation at Majani Mpana. If adequate compensation is not provided directly within the cement factory installation capacitors may be installed at the stepdown (33/6.6 kV) substation feeding the factory. In addition to the benefits of improved voltage the capacitors can be justified by the energy loss reduction in 132 kV Hale-Tanga line as well as in the 11 km 33 kV line to the cement factory. The double benefits of improved voltage and reduced losses as well as relaxation of the necessity for high var generation at Hale make it important to introduce reactive compensation at Tanga at the earliest possible opportunity. As this compensation will be provided at the distribution level the matter is further dealt with in Section 6 (see paragraph 6.19). The loss reduction benefits are computed at Table C3 in Annex C. For the purpose of evaluating the reactive compensation requirements in the transmission system the load at Tanga is assumed to be compensated by a capacitor of 10 MVAr.

Improving Low Power Factor Levels in the Distribution System

4.14 The existing power factors at the major grid substations are presently at very low values, with some stations as low as 0.8 p.u. (which represents a var load of half the active power load). With various system development and loss reduction measures (including capacitor applications) under consideration for the distribution system the future power factors at the grid substations are expected to improve from the existing low values. The reactive loads used for the study at the various substations are thus computed on the assumption of the improvement of the power factors to 0.82 by 1995 and 0.85 by 2001. To effect this improvement 37 MVAr of capacitors are required to be introduced between now and 1995. This enables the benefits of the reactive compensation proposals in the transmission system to be computed after giving due allowance to the developments expected in the distribution systems.

4.15 In accordance with the above discussion, the reactive compensation requirements for the transmission system are examined on the assumption that the following preliminary developments are also introduced:

- The installation of a 10 MVAr (switchable) reactor at Mbeya. With this reactor in place the Kidatu voltage is allowed to be raised to 1.03 p.u. under normal peak operating conditions.
- The shifting of the 20 MVAr reactor presently at Ubungo to Ras Kiromani.
- The improvement of the power factor at Tanga by the installation of 10 MVAr of capacitors in the distribution system.
- The improvement of the power factor of the distribution system load from the present low values to 0.90 by 1995.

The Study of Network Operation at Different Load Levels

4.16 The yearly peak loads provided in Table B1 in Annex B represent the highest system load expected for that particular year. This situation would occur only for a few hours during relatively few days in each year and represents the maximum load demand to which the system would be subjected. Hence, it indicates the generation and transmission capacity required. The system need also to be evaluated at other operating loads, particularly those that are sustained over a long period. Such studies will provide a better measure of the benefits of loss reduction and saved thermal generation. 4.17 The load duration curve for the system indicates the period over which a particular load is exceeded. Typical load duration curves for a normal working day, for weekends, and a consolidated curve for the whole year are presented in Figures B1 to B3, in Annex B. The yearly load duration curve can also be approximated using a step function in which the value of each step represents the average load over a certain loading period. In the first instance, load-flow studies need to be conducted for the maximum expected load of a particular year. To relate the results of these studies to other loading periods of later years, the steps of the approximated load duration curve have been selected to coincide with the maximum loads of previous years. Using this methodology, it is possible to use each load flow study to predict the system behavior at different loading periods over a number of years. The steps selected and their correspondence with the loads of previous years are shown in Table 4.1.

	% of Max. Yearly Peak	No. years back corresponding max. system peak	% time load exceeded
Maximum yearly system peak 100		0	0.1
Load step 1	93	1	8
Load step 2	-87	2	30
Load step 3	81	3	40
Load step 4	76	4	50
Load step 5	67	6	67
Load step 6	62	8	83
System base load	50	10	100

Table 4.1

4.18 Column 2 of Table 4.1 indicates the loading level of each step as a percentage of the maximum system peak for the year, and column 3 indicates the number of years backward necessary for the maximum system peak of such previous year to be equivalent to the load step of the current year under consideration. Thus, the maximum yearly system peak load for a particular year represents the highest loading conditions for that year as well as a number of subsequent loading steps for the succeeding years. For example, the 1992 maximum yearly system peak load would represent load step 1 of 1993, load step 2 of 1994, and so on. Load steps 1 and 2 could be considered as within the peak loading periods, and load steps 3, 4, and 5 could be considered as within the mid-loading period of the load duration curve. By selecting the generation availability and other system conditions, such as transmission developments, to suit the particular year under consideration, the procedure provides means of evaluating the network performance not only at the system peak of a particular year but at the various loading conditions of future years. In the system studies conducted, load flow computations have been performed for the maximum yearly system peak, the four subsequent loading steps, and the minimum load represented by the system base load. It can also be seen that some of the system studies representing normal operating conditions in a particular year will represent periods of system outages (at different loading steps) in future years. This will be applicable when there are expected developments in generation or transmission facilities between the two years in question.

Results of Load Flow Studies

4.19 A large number of computations representing different generation and transmission line availability conditions have been performed for the various loading conditions described earlier. The studies have been conducted taking into account the operating principles and system conditions detailed in paras 4.4 and 4.15. In particular, the Kidatu bus voltage is not raised above 1.03 p.u. in order to contain the voltages of other 220 kV buses in the west (particularly in the event of any local load rejection at the substations combined with thermal generation in the west). The var generation at Hale is adjusted to maintain a target voltage of 1.04 p.u at this bus. In interpreting the results of the load flow studies, it must be borne in mind that the compensation applied at the buses at Ubungo and Arusha are dependent on each other if the Hale voltage is below the target level. The chief concern in the northeast is to maintain voltage levels. This often requires a var flow in the reverse direction to the active power flow and hence there are no loss reduction benefits by increasing the extent of the compensation. At Ubungo, however, loss reduction benefits can be realized by increasing the compensation over the minimum requirements for voltage control. Studies have been performed to indicate the extent of such benefits. For the period before the commissioning of the new Pangani Falls power station the generation availability at Hale is critical to satisfactory system performance. At periods of low rainfall the firm power availability at Hale and Moshi reduces to 24 MW and 4 MW respectively. The studies up to the year 1995 therefore include both the maximum (34 MW at Hale and 8 MW at Moshi) as well as firm generation availability conditions in the north east.

4.20 Bus voltages and other important characteristics of each load flow study have been extracted and presented in a number of tables in Annex B. The tables are numbered according to the year and the loading step. The studies with line outages are prefixed by the letter O. In addition two summary tables are presented in Annex B. Table B3 indicates the loss reduction and voltage improvement in various years by incremental changes to the capacitive injection provided at Ubungo while Table B4 indicates the network voltage changes that occur with incremental changes to the injection provided at Arusha. A discussion, on the results of the load flow studies for each year is given in the succeeding paragraphs. The situation at the maximum system load as well as at lower loading levels (see paras 4.17 and 4.18 are discussed and compensation requirements to maintain minimum satisfactory network voltage levels are indicated. In the discussion, it is assumed that the preliminary system improvements detailed in para 4.15 are already effected. Further the locations for reactive compensation is mentioned as Ubungo and Arusha with the understanding that the actual application may be distributed among the adjacent grid substations (see para 4.5). With respect to the compensation in the northeast since 5 MVAr is already available at Moshi, this compensation is applied at the Moshi bus and the additional requirements placed at Arusha. The Arusha compensation indicated in the discussion includes the 2.5 MVAr presently available at this location.

System Performance for 1991

4.21 Thermal generation is not required to meet the maximum load in 1991 if the maximum output of all hydro stations are available. However, in the absence of var compensation at Ubungo network voltages are depressed to unacceptable levels at that location as well as in the northeast. With full hydro generation availability in the northeast (34 MW at Hale and 8 MW at Moshi), the minimum var compensation requirements for satisfactory voltage levels can be considered as 30 MVAr at Ubungo, 10 MVAr at Tanga, 5 MVAr at Moshi and 13.6 MVAr at Arusha. This level of compensation will result in the Ubungo HV (nominal 220 kV) voltage dropping down to 0.92 p.u. at peak with Kidatu voltage maintained at 1.03 p.u. (a drop of 11 percent). Additional compensation provided at Ubungo will increase the system voltages and provide substantial loss reduction benefits as evidenced from Table B3, Annex B. It is also seen that with a compensation level of 35 MVAr or more at Ubungo the Hale voltage can be maintained at the desired level of 1.04 p.u. thus enabling better system performance particularly in the northeast.

4.22 With firm generation conditions in the northeast (24 MW at Hale and 4 MW at Moshi), there is a supply shortfall of about 10 MW to meet peak load requirements with hydro resources alone. With this power together with 30 MVAr of reactive power supplied at Ubungo, the compensation required at Arusha increases from 13.6 MVAr to 33.5 MVAr. A particular problem encountered with the restricted generation in the northeast is the inability to keep the Hale voltage at a high level, thus requiring increased compensation at the northeast line extremities. The Hale voltage can be increased however with increased var injection at Ubungo resulting in reduced compensation requirements in the northeast. Thus, the compensation requirements at Arusha drop to 28.9, 21.6 and 15.9 MVAr corresponding to increases of var supply at Ubungo to 35, 45 and 55 MVAr respectively. The increase of var compensation (at Ubungo) is also accompanied by substantial loss reduction benefits (see Table B3 of Annex B). Desirable compensation levels for the 1991 maximum load situation would thus be either 50 var at Ubungo with 16 MVAr at Arusha or 40 MVAr at Ubungo with 21.5 MVAr at Arusha (keeping in mind that when generation is provided at Ubungo some var supply is also possible from the generators).

System Performance for 1992

Maximum Load Condition for 1992

4.23 To meet the expected maximum load in 1992, thermal support of about 12 MW is required in addition to the full availability of all hydro stations. In addition substantial reactive compensation is also required at Ubungo and in the northeast. With 12 MW and 30 MVAr supplied at Ubungo (6 MVAr of which could be supplied by the generators) and 5, 10 and 21.4 MVAr at Moshi, Tanga and Arusha respectively, the Ubungo HV drops to 0.89 p.u. (Arusha being at 0.95 p.u.). The voltage improvement and loss reduction benefits by successive additions of var compensation is seen from Table B4 in Annex B.

4.24 For firm hydrogeneration conditions in the northeast, 27 MW of thermal power will be required to meet the shortfall in generation capacity. With all of this active power supplied at Ubungo, a reactive supply of about 50 MVAr is also required, primarily for the purpose of keeping the Hale voltage sufficiently high. For these conditions, the compensation required at Arusha is 30 MVAr (compared to the 21.4 MVAr required for the full hydro availability condition). If the var injection at Ubungo is now raised to 60 MVAr, the requirement at Arusha drops to 25 MVAr.

4.25 The required compensation at Ubungo and Arusha for the year 1992 could thus be considered as 45 MVAr and 25 MVAr respectively (to meet the firm generation conditions in the northeast along with a generation of 27 MW and 15 MVAr at Ubungo).

4.26 Load Step 1 for 1992. The system conditions at the load step 1 for 1992 will be the same as the maximum load condition for 1991 and the discussion in paras 4.18 and 4.19 will also apply to this situation.

System Performance for the Year 1993

1993 Maximum Load Condition

4.27 The second circuit from Kidatu to Morogoro is expected to be available for operation by this time. In order to meet the maximum expected load for the year about 30 MW of thermal generation need to be provided in addition to maximum output from all hydro plant. Even with such generation injection and the var compensation required to maintain voltages in the northeast, the Ubungo voltage will be substantially depressed, unless sufficient var compensation is also provided at this busbar. With 10, 5 and 25 MVAr at Tanga, Moshi and Arusha, respectively, a 30 MW, 10 MVAr supply at Ubungo results in the HV bus at Ubungo being depressed to 0.90 p.u. Furthermore, the Hale voltage can only be maintained at about 0.994 p.u. under these conditions. Successive addition of var compensation at Ubungo will increase the system voltage and reduce network losses as seen from Table B3 of Annex B.

4.28 It is observed that 50 MVAr of injection will be required at Ubungo (15 MVAr from the generators and 35 MVAr from capacitors) in order to maintain the target voltage of 1.04 p.u. at Hale. Due to the increase of voltage at Hale, successive increase of var injection at Ubungo results in the reduction of the var requirements at Arusha. Thus, an increase from zero to 50 var at Ubungo causes a reduction of the requirement at Arusha from 29.4 VAr to 18.3 VAr.

1993 Load Step 1

4.29 For the load step 1 loading condition about 10 MW thermal generation is required to be supplied at Ubungo when all hydro plant is in operation. The improvement of the voltage levels and reduction of system losses with additional var injection is depicted in Table B3 of Annex B. As in the yearly maximum load condition, successive additional var injection at Ubungo results in an improvement of the Hale voltage and the reduction of the var requirements at Arusha. The desired var requirement for the selected conditions are 25 MVAr at Ubungo and 20 MVAr at Arusha.

1993 Load Step 2

4.30 The loading conditions during load step 2 for 1993 enables the System to be operated without thermal support if the full output of all hydro plant is available. In the absence of reactive compensation at Ubungo, however, the system voltage remains low. With 10, 5 and 12.9 MVAr at Tanga, Moshi and Arusha, respectively (necessary to keep the northeast voltages above 0.95 p.u.) the Ubungo HV level is at 0.90 p.u. if no compensation is applied at this bus. The Hale voltage (1.032 p.u.) is also below the target level (1.04 p.u.). The reduction of system losses and improvement of voltage with the addition of var compensation at Ubungo is seen from Table B3 in Annex B.

4.31 If only the firm generation outputs of 24 MW at Hale and 4 MW at Moshi are available, a minimum of 6 MW of thermal generation support is required. In such circumstances, maintaining the Hale voltage becomes increasingly difficult. The required compensation at Arusha increases from approximately 12 MVAr (in the full generation availability condition) to a value ranging from 21.5 to 30.0 MVAr for var injections at Ubungo ranging from 27 MVAr to zero (inclusive of the vars produced by the generators).

System Performance for the Year 1994

4.32 For the year 1994 the network will remain unchanged from that of 1993. Thus, operating performance for a number of loading conditions for this year may be determined from the studies for the year 1993. The 1993 year studies, corresponding to the loading periods in 1994, are as follows:

1994 load step 1 = 1993 maximum system load, see paras 4.27 to 4.28 1994 load step 2 = 1993 load step 1, see para 4.29 1994 load step 3 = 1993 load step 2, see para 4.30

System Performance for the Year 1995

4.33 New developments expected to be available for the year 1995 are the second circuit line from Kidatu to Morogoro and the new Pangani Falls power station. The former will bring added reliability benefits, particularly to the load at Ubungo and reduce losses (in that section of the network) considerably. The line capacitive generation produced will also eliminate the need for reactive compensation at Ubungo. The new generation will help reduce the hydro generation shortfall and assist in reducing the system losses particularly in the northeastern sections. The additional generation injection in this region will also help maintain network voltages and reduce the need for reactive compensation at Arusha. There is, however, a reasonable probability of the new Pangani Falls power plant being delayed until late 1995 or early 1996. Hence, the system performance for 1995 has been studied both with and without the availability of the new Pangani Falls power station.

1995 Maximum Load Condition (with new Pangani Falls available)

4.34 Despite the added hydro generation facility, thermal generation of about 30 MW is required to meet the maximum system load of 1995. If this generation is provided at Ubungo, additional var contribution from the generators can also be used. Under these circumstances, reactive compensation is not required at Ubungo to maintain voltage control. The addition of capacitors will contribute to loss reduction benefits but to a lesser extent than in previous years.

4.35 The increased generation availability at Hale (from new Pangani Falls) now enables the bus voltage to be raised as high as desired at this bus bar. Thus with Hale maintained at a voltage of 1.04 p.u. and with the existing 5 MVAr capacitor at Moshi, the compensation requirements at Arusha are 31, 25, 21 MVAr, respectively for generation of 0, 4 and 8 MW at Moshi.

1995 Load Steps 1 to 3 (with new Pangani Falls available)

4.36 As the load decreases from the maximum load condition for the year the requirement for thermal generation at Ubungo will decrease. Accordingly the power flow along the Kidatu-Morogoro-Ubungo lines will increase slightly up to the step 2 condition at which point thermal generation at Ubungo will become redundant (for the full hydro availability condition). Capacitive injection is not required at Ubungo and system voltages can be maintained without difficulty except at Arusha-Moshi. The compensation requirement at Arusha will also reduce as the load is reduced from the peak condition and will be 18 and 20 MVAr respectively for the load step 2 condition for a generation availability of 8 and 4 MW respectively at Moshi. For the load step 3 condition the Arusha compensation will reduce further to 6 and 10 MVAr respectively.

1995 Maximum Load Condition (new Pangani Falls not available)

4.37 If the new Pangani Falls station is delayed and is unavailable for operation the thermal generation requirements will be increased considerably by the year 1995. For the maximum expected load in 1995 the shortfall will be 75 MW. Existing thermal facilities and presently proposed developments will not cover this shortfall and substantial new thermal generation facilities will be necessary to cater for this contingency. If such generation facilities are provided at Ubungo the loading on the Kidatu-Morogoro-Ubungo lines will be further reduced and there will be no necessity for reactive compensation at Ubungo. The compensation requirements at Arusha will however increase substantially due to the difficulty of maintaining a satisfactory voltage at Hale in the absence of the added generation capacity. In order to maintain a minimum bus voltage of 0.95 p.u. at Arusha with the availability of the existing north eastern hydro plant at full capacity and the generation shortfall supplied at Ubungo, capacitive injection totalling xx will be required at Arusha Moshi.

1995 Load Steps 1 to 3 (new Pangani Falls not available)

4.38 The thermal requirements will keep reducing as the load falls and by the load step 3 condition of 1995 it will almost be eliminated. The compensation required at Arusha will reduce likewise along with the improvement of the voltage at Hale and the reduced loads on the lines and by the step 1 condition only 6 MVAr will be required at Arusha (with the existing 5 MVAr at Moshi). However, if only the existing firm generation availability of 24 MW at Hale and 4 MW at Moshi can be relied upon the hydro generation shortfall will be about 25 MW for the load step 3 condition. Under these conditions the difficulty of maintaining the Hale voltage will require the compensation at Arusha to be raised to 29 MVAr.

System Performance Beyond 1995

4.39 The thermal requirements to bridge the hydro generation shortfall increases each year until the next expected hydro addition, Kihansi is introduced (1998). Thus, with the required thermal generation provided at Ubungo the active and reactive power carried over the Kidatu-Morogoro-Ubungo lines will in fact decrease (although by a small margin) over this period in relation to the corresponding load step of the preceding year (with a corresponding increase of the Kidatu and Mtera generation feeding the western loads). The system will therefore not require any capacitive injection at the Ubungo bus bars. In the northeast, however, the network loads will continue to increase with no additional assistance available from generation or transmission development (after the new Pangani Falls station is introduced). Thus, the period 1995 onwards will see a continued increase of var compensation requirements at Arusha -Moshi until the proposed Singida-Arusha line is commissioned. Current expectations are for this line to be commissioned in 1996. However, it would be useful to examine the implications of the delay as well as the effect of expediting this line. Accordingly load flow studies have been performed with the line introduced as early as 1995 as well as the without the line in service up till 1998. The results of these studies (presented in Annex B) can be used to evaluate system performance with and without the line in operation during this period.

Effect of the Singida-Arusha Connection

4.40 When the Singida-Arusha connection is introduced the power flows on the Kidatu -Morogoro-Ubungo line as well as the lines in the north eastern network will be substantially reduced improving the performance of the system considerably. There will be a direct power transfer from the western section to the northeastern section resulting in a substantial reduction of system losses. Capacitive compensation will now not be required in the northeast in view of the power injection provided at Arusha as well as the vars introduced by the line charging current. If the line is introduced in 1995 the maximum load conditions for that year will show a loss saving of about 3.0 MW and the thermal generation will correspondingly be reduced. The loss reduction for the maximum load of 1996 will be about 5 MW. The importance of this line increases greatly with the introduction of the Kihansi station, which will result in the flow of a considerably larger amount of power from the central highlands to the east and north eastern areas of the network (with a corresponding reduction of thermal power injection otherwise required at Ubungo). The network performance after the introduction of the Kihansi project is dealt with in the succeeding paragraphs.

System Performance for the Year 1998

4.41 The Kihansi hydro plant is expected to be commissioned for operation during late 1997 and will be available during the year 1998. With this development, thermal support will no longer be required for a number of years. The loading on the Kidatu-Ubungo lines will be substantially increased and once again the need for reactive compensation at Ubungo will arise. The Kihansi power will be connected to the grid at Iringa from whence it will flow to Ubungo via Kidatu. Hence, the bus voltage at Iringa will need to be higher than that maintained at Kidatu. The Mtera voltage too will be at the level of the Iringa bus voltage as no substantial power flow is expected to occur from Iranga to Mtera. In order to contain the voltage at these busbars it is found that var absorption has to be resorted to at the Kihansi and Mtera generation stations. The extent of var absorption required will depend on the reactors employed in the western section and the voltage maintained at Kidatu. It is also seen from the load flow studies that the system voltages in the northwest are very sensitive to incremental changes in the reactive compensation employed. The studies conducted indicate that it is not advisable to maintain Kidatu at voltages higher that 1.03 p.u. under normal operating conditions. The corresponding Iringa voltage will be around 1.04 p.u.

4.42 As discussed earlier the role of the Singida-Arusha 220 kV connection will be substantially enhanced with the addition of the Kihansi station. In order to assess the impact of this line as well as to understand the implications of its delay, the system behavior for the year 1998 is studied both with and without the operation of the Singida-Arusha line.

1998 Maximum Load Condition (with the Singida-Arusha line)

4.43 The power flow to Arusha from the northwest considerably reduces the loading of the northeastern 132 kV line sections. The total system losses reduce to approximately half the value in the absence of the new line. The available hydro generation exceeds the requirements for the maximum expected load of 1998 and the maximum stress on the transmission network occurs when generation in the northeast is reduced allowing for full power output from the major hydro stations in the center. Accordingly, generating 50 MW at Hale/Pangani with no generation at Moshi provides the most onerous conditions for the system. For these conditions a minimum of 25 MVAr of var injection is required at Ubungo to maintain a satisfactory voltage profile (Kidatu at 1.03 p.u. and Ubungo HV bus at 0.92 p.u.). The increase of var compensation from this minimum value will provide substantial loss reduction benefits as shown in Table B3 in Annex B.

4.44 With the Hale and Moshi generation increased to the maximum values the power transmission throughout the network is reduced. The minimum compensation required at Ubungo for a satisfactory voltage profile is now about 18 MVAr.

1998 Maximum Load Condition (Without the Singida-Arusha Line)

4.45 Without the Singida-Arusha connection the system is considerably overburdened in carrying the maximum load of 1998. The total system losses (with sufficient var compensation applied) rises to 9 percent and the northeast section losses rise to 15 percent (of input power). Due to this high level of losses, there is very little slack in generation capacity. With the 8 MW at Moshi being unavailable and Kihansi supplying 140 MW all other hydro plant has to operate at maximum capacity to meet the system load. With the Hale voltage maintained at 1.04 p.u. var compensation of 25 and 30 respectively is required at Moshi and Arusha when there is no generation at Moshi. If full generation (8 MW, 4 MVAr) is available at Moshi, the additional (static) compensation at Moshi may be reduced to 10 MVAr (while maintaining Arusha at 30 MVAr). (In this instance var compensation requirements are stated at both Arusha and Moshi deviating from the previous practice of stating the new requirements lumped at Arusha. This is because the application of the total requirements at Arusha will depress the Moshi voltage to unacceptably low values).

4.46 With the above compensation levels provided in the northeast at least 25 MVAr is required at Ubungo to maintain a satisfactory voltage. Increase of var compensation will improve the voltage profile and reduce the system losses as shown in Table B3 of Annex B.

Power Export Possibilities to Kenya

4.47 Possibilities of exporting power to Kenya are being considered to supply the shortages in the Kenyan power system either at Nairobi or at Mombasa. The use of the Singida-Arusha line extension by making a connection from Arusha to Nairobi is being considered for the Nairobi supply. 1998 peak power flows with this connection (using Bison conductor, which is used for all the 220 kV lines in the western section, for both Singida-Arusha and Arusha-Nairobi lines) indicate the necessity of 35 MVAr of compensation at Arusha for a 50 MW, 25 MVAr supply to Nairobi (with full available hydro generation plus 30 MW of thermal supply at Ubungo). With this transfer the loading on the initial sections of the lines in the west (Iranga-Dodoma-Singida) rises to over 50 percent of thermal rating. The losses in the western section also rises to 6 percent of the power flow. At any rate if power supply to Nairobi via Arusha is to be provided at a future date, the compensation at Arusha will be a necessity.

4.48 A connection from the east up to Mombasa with a 220 kV line from Chalinze to Mombasa via Hale and Tanga seems to be more appropriate on considerations of the network power flows. In addition the gas development from Songo Songo enables exportable power to be available in the eastern section of the network. A 2001 year peak power flow with full hydro generation (inclusive of the second stage Kihansi) and 120 MW (gas fired thermal plant) at Ubungo gives a satisfactory power flow and voltage profile for a 100 MW transfer to Mombasa. No reactive compensation is required along the new transmission line or elsewhere in the system.

4.49 The above discussion is not intended to arrive at specific conclusions for the possibilities of power export to Kenya but in order to form an idea of the capacity of the network

for meeting possible new demands in the future.

System Operation at Base Load

4.50 A number of studies for base load operation has been conducted in order to examine the behavior at low load times. Some of the studies include the rejection of half the load at Ilala (the second step down station in Dar es Salaam) in order to provide a situation which could arise with a lower than normal base load. Another method of considering loads lower than the given base load for the year is to consider base load runs of previous years (while allowing for network changes relevant to the future year).

4.51 For the initial years after the commissioning of the second circuit to Dar es Salaam the generators will have to operate at substantial leading power factors if both circuits are placed in service. If for example the 1992 average base load is taken as a minimum load in 1995, it is seen that the machines at Kidatu and Mtera will have to operate at leading power factors of around 0.85. Since the power output is low at these times, the operation is within the generator capabilities. However, a number of other factors may need to be considered in such situations. Firstly it is normal for a number of machines to be taken off the system at base load times. Secondly, machine stability aspects need to be examined as generation operating regimes are more restrictive for leading than lagging operation. Thirdly, it is possible that both machines at Mtera may not be available during certain base periods, thus requiring further var absorption at Kidatu and causing problems for the voltage control of the north western lines. A full examination of these aspects inclusive of stability studies in the network at base load is beyond the scope of this study. It could, however, be concluded that greater flexibility of operation would be possible if var absorption facilities were available at Ubungo.

4.52 The difficulties of high leading vars produced by the machines can also be avoided by disconnecting the second circuit (or one of its sections) during low load times. The studies show that with any one section of the second circuit out of service the situation is considerably improved. Hence this mode of operation could be resorted to if difficulties are anticipated for the stable operation of the system at base load. However, considerable step changes in voltages will be experienced with the switching on and off of the line sections.

System Operation During Outages

4.53 A basic reliability standard usually applied to transmission system planning is the "n-1" criteria, which requires the system loads (or as a minimum, the important load centers) to be maintained in the event of the outage of any one of the major transmission lines. The present TANESCO transmission system does not allow for such a contingency for any of its major loads. With the increase of system load over the coming years it would be necessary to place greater emphasis on reliability standards and allow some possibility of maintaining supply to important load centers in such circumstances. In particular with the introduction of the second circuit Kidatu-Morogoro-Dar es Salaam the network should be able to meet at least most of the load at Dar es Salaam with one of the line sections out of service. The incidence of line outages vary from short duration line trippings caused by atmospheric disturbances to longer duration outages caused by failure or damage to line hardware. With the increase of the service life of the existing transmission line it would also be reasonable to expect a greater incidence of the latter category and thus an added concern on maintaining adequate reliability standards are further justified.

4.54 Load flow studies have been conducted to determine the ability of the system to meet various outages. Some of the load flow studies specifically relate to certain outage conditions with a line section taken out of service. Other outage conditions can be deduced from the normal load flow results of previous years during which time the line to be disconnected was not in service (with the loading levels selected to provide the required bus loads for the condition studied). Outages which are meaningful in the context of system operation are (i) one of the line sections in the Kidatu-Morogoro-Ubungo lines, (ii) the Singida-Arusha connection and (iii) a line section in the north eastern network from Hale to Arusha. The latter two outages will be of relevance after the Singida-Arusha line is commissioned by about 1996. With respect to the Kidatu-Morogoro-Ubungo lines the outage of the Morogoro-Ubungo section is more demanding on the system than the Kidatu-Morogoro section and hence the study will be limited to the analysis of the former. With respect to item iii, the Hale-Same line outage will be considered. This condition will enable the Arusha and Moshi loads to be supplied by the north west leaving Hale to supply the load at Hale and Tanga and export any remaining power to the eastern load center of Ubungo-Ilala. The most severe outage in the northeast in the later years is clearly the outage of the Singida-Arusha line, which will require the entire load of the north east to be supplied by the power stations at Hale/Pangani and the Kidatu-Morogoro-Ubungo line. The following paragraphs describe the system capabilities of meeting the above outages during various future years.

4.55 The ability to maintain service during line outages will commence from 1993 when the Kidatu-Morogoro section of the second circuit is expected to be completed. Outage studies for the 1993 maximum load condition indicates that along with a 30 MW (and 20 MVAr) thermal generation at Ubungo a further 20 MVAr of compensation is required to support the system load if one of the Kidatu-Morogoro sections is outaged. At lower loading levels the 1993 system outage conditions can be deduced from the normal system operation of 1992 (since an outage of one of the Kidatu-Morogoro lines will correspond to the network conditions prevailing in 1992). Thus the results of the maximum system load of 1992 indicates that the load step 1 condition of 1993 will require 12 MW (and 7 MVAr) of thermal generation and 18 MVAr of reactive compensation. At a lower load level corresponding to load step 2 (maximum system load of 1991) 30 MVAr of compensation will provide the ability to supply the full load without resorting to thermal generation. The requirements indicated above (from maximum load to load step 2 of 1993) will also correspond exactly to the 1994 load conditions reduced by one load step (load step 1 to average mid load step 3). 4.56 The additional reliability to be gained by reactive compensation will acquire greater significance after 1995 when the second circuit is fully commissioned and when additional hydro generation (Hale/Pangani increased to 80 MW) is available in the north east. At the maximum load of 1995 a thermal generation of 25 MW will be required to meet the hydro generation shortfall. To meet the Morogoro-Ubungo outage condition 15 MVAr from the thermal generation together with a further 10 MVAr of var compensation will be required. When the load drops to load step 1 the system can operate without thermal injection if all hydro plant is fully operational. To support an outage of one of the Morogoro-Ubungo circuits during load steps 1 or 2 var compensation of around 15 MVAr is required for the various hydro generation combinations possible. The above operational conditions for 1995 could be related to the equivalent loading conditions during the years 1996 and 1997 with the system remaining unchanged (i.e., with the Singida-Arusha line unavailable).

4.57 From 1998 onwards, both the Singida-Arusha connection and the Kihansi power are expected to be available. An outage of the Singida-Arusha connection can be withstood without supply interruption during the 1998 maximum load condition by having a minimum of 20 MVAr of compensation at Ubungo together with 50 MVAr of compensation at Arusha and Moshi. Outages of both the Singida-Arusha connection and one circuit of the Morogoro-Ubungo line can be met satisfactorily if the compensation at Ubungo is raised to 30 MVAr. An outage of the connection between Hale and Same will separate the network once again with the loads at Arusha and Moshi transferred to the north western side. The compensation required at Ubungo to support this outage at the maximum load of 1998 exceeds the compensation required for the Singida-Arusha outage in view of the lack of mvar flow from Arusha-Moshi to Ubungo. For the above outage a minimum of 50 MVAr is required at Ubungo (HV voltage at Ubungo being 0.885 p.u.).

4.58 The outage studies described above indicate that about 30 MVAr at Ubungo and 30 MVAr at Arusha will provide the ability to cover most contingencies from 1995 to 1997 with minimal thermal support. If a further 20 MVAr is provided at Moshi, the full load of the system can be met for an outage of the Singida-Arusha line during 1988.

Slippage of Planned Investment

4.59 The results of the outage studies can also be used to ascertain the performance of the system in the event of the delay of introducing any of the planned developments. Delays in procurement of funds as well as in the award and management of construction projects are fairly common experiences with TANESCO. It would thus be prudent to have sufficient system capacity to be able to meet (say) the expected maximum load condition for at least one year of slippage for projects under construction and two years slippage for projects in the planning stage.

4.60 A special case of the ability to meet a slippage of planned investment is the flexibility provided to change the investment portfolio when new opportunities arise or there is a change of the conditions assumed for system planning. A matter of some concern in the present instance is the possibility of an extended delay of the Kihansi project (unexpected delays of hydro projects of this nature are fairly common occurrences). This fact coupled with the possibility of advancing the exploitation of the Songo Songo gas supply for power generation is of particular significance in TANESCO's strategic planning decisions. If such a situation arises the availability of sufficient capacitors at Ubungo will enable the Morogoro-Ubungo section of the second circuit to be delayed. The importance of this line will be greatly diminished if there is sufficient injection of thermal power at Ubungo. Hence TANESCO's ability to shift its priorities and options will be a substantial advantage to be considered for the introduction of reactive compensation measures.

4.61 Another possibility is a 220 kV development from Ubungo to Mombasa. This possibility is also connected with the gas generated power option at Ubungo. Studies have shown that if any power export to Kenya is to be considered the possibility of extending the proposed Singida-Arusha connection to Nairobi has only limited power transfer capability. The connection to Mombasa with substations at Hale and Tanga can be a viable option depending on the amount of power to be transported. If this possibility becomes promising it is possible that the extension of the proposed 220 kV system in the north east from Hale to Arusha could become more beneficial than the presently planned Singida-Arusha connection. The economic choice will depend on the expected load growth in the north eastern and north western sections, the power available for export and its value at the possible receiving points of Mombasa and Nairobi. The advantage of having reactive compensation installed at Arusha, however, is that if required by any change of circumstances TANESCO will have more flexibility in its ability to revise future investment options.

Loss Reduction Benefits

4.62 The preceding discussions related to the provision of the minimum reactive compensation requirements in order to maintain the system voltage during normal and exigency situations. The compensation provided at Arusha results in a flow of reactive power in a direction opposite to the active power due to the low capacity of the network and no loss reduction benefits will accrue with any increase of compensation. At Ubungo however, the compensation in excess of the amount required to maintain minimum voltages at any given loading condition will provide considerable loss reduction benefits. In addition the voltage profile could be considerably improved with additional capacitors and there will be a general improvement of reliability standards. These benefits will vary according to the loading and generation conditions prevailing at a given time. Some examples of the additional loss reduction benefits achievable by using compensation levels in excess of the minimum requirements are given in Table B.3 of Annex B. These benefits should clearly be taken into account in determining the extent of compensation to be employed.

Selection of var Compensating Systems

4.63 The foregoing paragraphs discussed the var compensation requirements necessary at Ubungo and Arusha in order to maintain a satisfactory system voltage profile. Additional loss reduction benefits derived from increasing the level of compensation over the minimum requirements have also been discussed. The studies conducted to cover a 10 year period from 1991 indicate the changing requirements of var compensation with time. The requirements also change with loading conditions which vary with the time of day. As discussed in para 4.5 the locations Ubungo and Arusha were selected as reasonable representations of the eastern and north eastern line extremities. It is now necessary to identify the types of compensation and the extent to which the compensation to be applied should be distributed (if so required) among adjacent locations.

Compensation Requirements at Ubungo

Of the two main locations requiring compensation the most pressing need is at 4.64 Ubungo. Further the compensation would have its maximum benefits in the immediate short term by enabling the system to meet the load growth expected in the years before the commissioning of the second circuit, Kidatu-Morogoro-Dar es Salaam. If the TANESCO system was equipped with suitable var compensation at the present time the benefits realized due to the ability to meet the load growth at satisfactory voltage levels and in avoiding thermal generation would be exceptionally high. In these early years the compensation requirements will vary widely with the loading conditions and the ideal solution would have been a variable var compensation system. If the system could handle variable var supply it would in addition provide benefits during network outages, tripping and energization of transmission lines, as well as during sudden load variations. Stable operation would even be possible in the event of a disturbance as heavy as the tripping or energization of the Zanzibar cable or either of the 220 kV circuits to Dar es Salaam (after the second line is introduced). However if action is now taken to obtain a variable var compensating system it could only be commissioned by about late 1993 or early 1994. This would leave a period of only just over one year to reap the high benefits from the period before the commissioning of the second circuit up to Ubungo. On the other hand switched capacitors could be introduced much faster and if acted upon immediately at least two years of benefits could be realized before the second circuit is completed up to Ubungo. The benefits will continue even after the second circuit has been commissioned as previous discussions of the various operating scenarios show.

In view of the urgency of the requirements therefore it is recommended that the quickest method of obtaining the required compensation be pursued. Tables C.5 of Annex C discussed in Section 5 indicate the benefits achievable from reactive compensation of 30 MVAr in two switchable banks followed by a third switchable bank of a further 15 MVAr. While the inclusion of the first two banks provide a benefit to cost ratio of 39 to 1 the addition of a third bank is also beneficial at a ratio of over 8 to 1. For this reason it is recommended that three banks of capacitors of 15 MVAr each be purchased on an immediate basis. If action is taken immediately (early 1992) it is possible for the capacitors to be in service by the beginning of 1993. The banks need to be switchable and control circuit breakers and associated equipment should be provided. Two of these banks may be placed at Ubungo at the 33 kV supply point earlier used by reactors. The third bank is recommended to be installed at Ilala in order to capture in addition, the loss reduction benefits on the Ubungo-Ilala line. This separation will also assist in reducing the excess capacitance on the system in the event of tripping of the Ilala line.

4.66 The installation will have a high benefit period up to the commissioning of the second circuit to Ubungo. Thereafter the benefits will be mainly in the reduction of system outages until additional power is transported along the Kidatu-Morogoro-Ubungo lines consequent to the commissioning of the Kihansi power plant. At this time the compensation required at Ubungo/Ilala will rise to about 70 MVAr. Thus the present application should be considered both as an immediate necessity and as an advancement of future requirements.

Compensation Requirements at Arusha

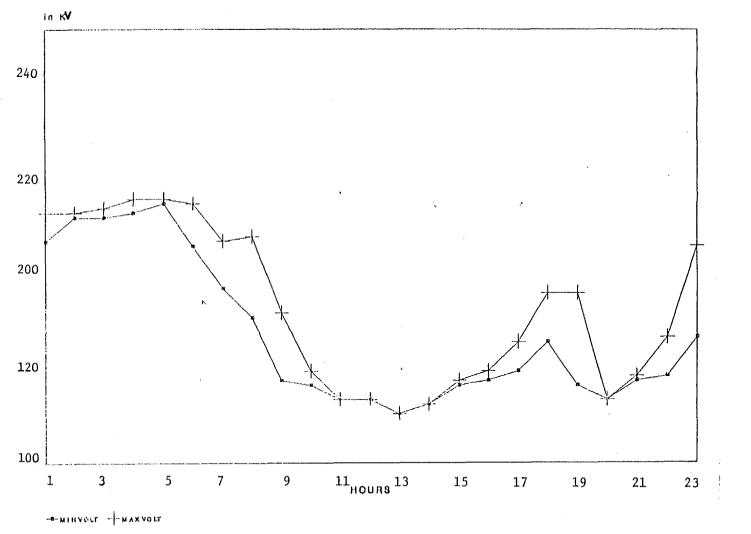
4.67 With respect to the reactive compensation requirements for the northeast the initial period of high benefits is considerably longer than for the application at Ubungo/Ilala. The ability to supply additional load consequent to the improvement of network voltages will also keep increasing with time until the Singida-Arusha line is introduced (presently expected in 1996). Further the recommendation in para 4.13 to install capacitors in the distribution system at Tanga could be acted upon immediately to provide some relief until the compensation at Arusha can be installed. After the Singida-Arusha connection is introduced the requirement for compensation will shift from capacitive to inductive for normal system operation while requirements to meet an outage of the new Singida-Arusha connection will remain capacitive. The above considerations need to be taken account of in determining the most suitable mode of application of the reactive compensation measures to be installed.

4.68 A major consideration in instances where var compensation is relatively high compared to the power flow on the lines is the variation of network voltages when changes are affected either to the compensation level or to other network operating parameters. Table B.4 in Annex B indicates the variations of (the steady state) system voltages to be expected for incremental changes of var compensation at various operating conditions. When network voltages are highly sensitive to the compensation provided, var injection is best accomplished by static var compensation systems (SVS) using thyristor controlled reactors (TCR). These SVS installations are capable of reacting within about one cycle to any alteration of system conditions and producing the exact level of compensation required to maintain the reference voltage at the preset value. If the compensation were to be provided by a mixture of switched capacitors a number of operational problems may arise. Fairly high voltage variations could be experienced in the network and sections of the system could also be subjected to unacceptable voltage levels both high and low for short periods of time. If switched capacitors are to be provided the size of each unit needs to be small (about 5 MVAr) and switching facilities will need to be provided for each unit. The operation will need to be coordinated by a voltage supervisory system to allow the units to be introduced or disconnected in sequence in accordance with the compensation requirements. It is possible that the precise coordination of the large number of switched units required to obtain satisfactory operation of the system for all normal system variations may not be technically feasible. Without the rapid response characteristics (which can be provided by the TCR unit of an SVS) additional problems such as hunting of switching operations is also to be expected in view of the high sensitivity of network voltages to var injection changes.

4.69 In addition to maintaining network voltages during normal operational changes of the system load and the generation pattern an SVS installation would be of invaluable benefit during network outages. The fast response characteristic of the SVS will enable network stability to be maintained following major system disturbances (such as line outages or generator trippings). Although difficult to quantify in precise terms considerable advantages are expected from the improved system stability provided by an SVS unit installed at Arusha.

4.70 In view of these operational benefits as well as the fact that the higher costs of SVS units are more than justified by economic evaluation (see Section 5) it is recommended that the compensation at Arusha be provided by an SVS unit. The unit would consist of a TCR and the required capacitor banks (including filters) providing a var variation from 0 to +30 2/ MVAr. Arusha has been selected for the northeast location, in consideration of the current installation of 5 MVAR of capacitors in the substation at Moshi (Kiyungi), and the requirement for reactive compensation at Arusha or Singida when the planned Singida to Arusha line is placed in operation (see para below).

4.71 When the Singida-Arusha line is in service the SVS unit would not be called upon to provide any substantial capacitive var injection duty under normal operation conditions. However the capacitive mode could be used to maintain continuity of supply during outages of the Singida-Arusha line. Alternatively the capacitor banks could be shifted to other locations at which var compensation would then be required. With the Singida-Arusha line in operation the compensation needs will change from capacitive to inductive. Hence the best technical solution would be to add circuit breaker control to the capacitor units to enable the SVS operating range to be increased to (say) -25 to +30 thus providing for the inductive requirements during normal operation and capacitive requirements during line outages.

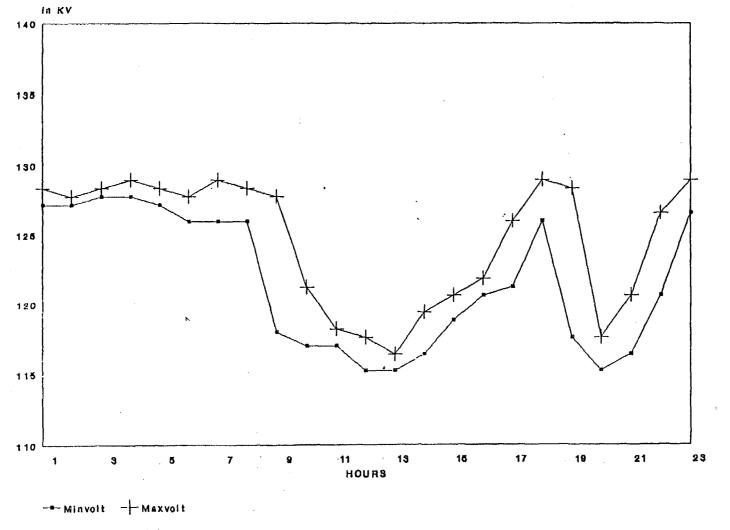

4.72 Although thyristor-controlled reactors can be purchased to operate at up to 33 kV, cost considerations make voltages of about 11 kV the optimum level if units operating at higher voltages cannot be connected directly to the system. The grid substation transformer capacity at Arusha energizing the 33 kV bus is inadequate to carry both the combined loads of the system and that of the SVS. Therefore since a new step down transformer would be required for the SVS unit to function at 33kV, operation of the SVS at 11 kV would be more economical. The capacitive units could be installed in three groups—one supplying the necessary filters for the suppression of harmonics and the other two providing the banks that will be subsequently converted to switched units when the inductive mode of operation is required.

(+) indicates capacitive compensation and (-) indicates inductive compensation.

2/

UBUNGO 220 KV BUS DAILY VOLTAGE PROFILE

;

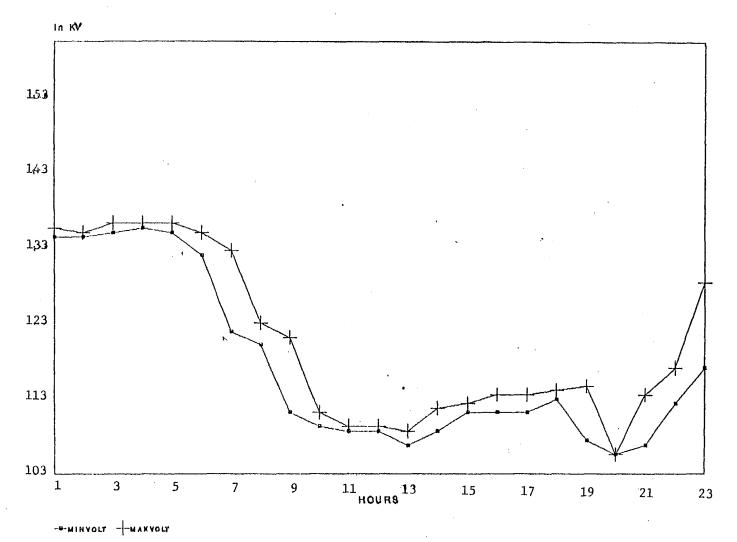

1

- 44 -

Figure 4.1 A

Note: Data collected on March 21, 1990

UBUNGO 132 KV BUS DAILY VOLTAGE PROFILE



- 45 -

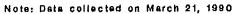
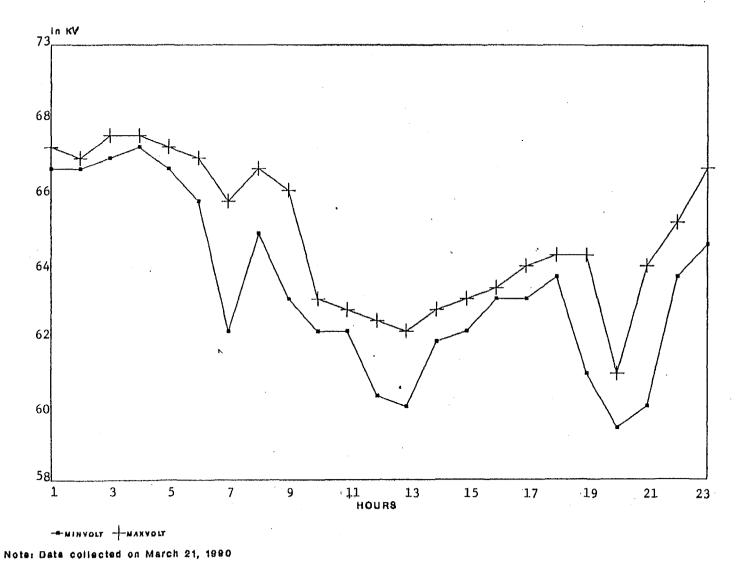

1

Figure 4.1 B

Noto:Data pollosted on March 21, 1990


KIYUNGI 132 KV BUS DAILY VOLTAGE PROFILE

- 46 -

Figure 4.2 A

- 47 -

£

5. ECONOMIC ANALYSIS OF PROPOSALS FOR POWER FACTOR COMPENSATION AT THE TRANSMISSION LEVEL

5.1 At present the loads (active and reactive) on the east and northeast sections of the TANESCO grid are considerably in excess of the capacity of the network if voltages are to be maintained within the limits required by statutory regulations and the range generally considered as being technically acceptable. The high reactive currents flowing through certain sections of the system result in high power and energy losses. Furthermore although the system is not currently generation constrained (if all commissioned plants are operational at rated power) the addition of new loads is restricted in a number of locations in the east and northeast due to the difficulty in maintaining satisfactory consumer supply voltages in those locations.

Benefits of Investment in Reactive Compensation

5.2 The power transfer capabilities of the network can be increased by application of reactive compensation measures. In addition a number of other subsidiary benefits can be achieved. For the reactive compensation applications under consideration the following economic benefits can be realized:

- (a) Increases in energy supply, above that which the network can currently sustain while maintaining satisfactory voltages
- (b) Reduction or elimination of thermal generation otherwise required for voltage support
- (c) Lower power and energy losses in certain sections of the network which currently experience high reactive power flows
- (d) Reduced operating and maintenance expenses
- (e) Reduced incidence of damage to equipment owned by TANESCO and by its consumers
- (f) Improved quality of supply to consumers and therefore greater consumer satisfaction
- (g) Reduced impact of any slippage or postponement of planned investment in transmission and generation as a result of the ability to transmit increased loads over existing circuits

(h) Possible postponement of transmission and generation investment.

5.3 Not all of these benefits can be accurately quantified. The data available is insufficient to allow development of realistic estimates of the economic value of reduced operating and maintenance expenses, of reduced incidence of equipment damage or of improved consumer satisfaction. In addition TANESCO is presently firmly committed to a generation and transmission expansion program over the period covered by this study and the recommendations presented in this report will have little or no effect on these investment plans. However the application of reactive compensation will enable the system to increase its load carrying capabilities and will therefore provide a crucial role in alleviating difficulties of meeting the network loads. This increased capability is of particular significance in view of the shortage of transmission capacity to meet the expected load with the developments currently planned. It will also assume added significance in the event of any unanticipated slippage of planned investment in transmission and generation projects. Another significant advantage is with respect to the possible change of investment plans, particularly in connection with the proposed use of natural gas from the Songo Songo gas field for power generation. The Government of Tanzania is now actively considering the early usage of this energy source in power generation. Once again the presence of reactive compensation measures will provide additional flexibility in changing investment planning decisions by increasing the critical time periods for new developments to be commissioned. In particular it may also be possible for the second line from Morogoro to Dar es Salaam to be substantially delayed if firm thermal generation is available at Dar es Salaam. However, it is not possible to quantify the extent of benefits provided in the event of unanticipated slippage of investment projects or in providing added flexibility of planning options. Therefore although these benefits are very real and pertinent in the context of TANESCO's system planning strategy, no credit is assigned to possible postponement of investment in generation and transmission in the present analysis. For these reasons the economic evaluation undertaken in this report will consider only a part of the benefits that will actually accrue from the proposals.

5.4 In the case of compensation to be provided at Ubungo the major portion of the benefits arise from the reduction of thermal generation that would otherwise be required at Ubungo up to the year of commissioning the second transmission circuit to Dar es Salaam to maintain minimum acceptable voltage levels. The ability to maintain system operations with the full network load during outages of any of the transmission circuits (when both circuits are installed) to Dar es Salaam has also been computed as benefits by estimating the increase in energy sales as a result of reduced outages. In addition the resulting loss reduction benefits have been evaluated.

5.5 In the case of compensation to be provided at Arusha the benefits evaluated are the value of the additional loads that can be connected to the system over and above the maximum load that can otherwise be supplied at an acceptable voltage. The maximum demands which can be supplied by the existing network (at the various bus bars), while maintaining satisfactory voltage conditions are in fact less than the loads supplied at present. Therefore the methodology employed for economic evaluation of increased consumption recognizes as benefits not only the new consumer demands which can be accommodated but also that increment of the existing demand which is the

cause of the unsatisfactory voltage conditions.

The Value of Unsupplied or Poorty Supplied Energy

5.6 The economic losses which occur due to deficiencies of the power system cannot be accurately quantified because of their varied and diverse nature. In general, such losses greatly exceed the cost of the measures which would be required to correct those deficiencies. However, an estimate of the value of the possible new sales which TANESCO is unable to supply (including that portion of additional sales which cause poor supply conditions in the network) may be obtained by determining the cost to TANESCO's consumers of providing such energy from alternative sources. The most practical alternative, and by far the most commonly applied in Tanzania, is the use of small diesel generators installed on the consumers' premises. Table C.1.1 in Annex C shows the cost (at border prices) of power supply from a 2 MW diesel generator. The table indicates that these costs vary approximately between \$0.12/kWh (all costs are stated in U.S. dollars) and \$0.33/kWh, depending on the degree of utilization of the plant. In a country such as Tanzania the actual costs may be much higher as is illustrated by the fact that the table indicates the investment cost of the plant to be \$800 /KW whereas the cost of a similar diesel plant being supplied to the Harbors Authority in Dar es Salaam has been reported to be as high as \$2000 /KW. Operation and maintenance costs of isolated diesel plant on the TANESCO system are also reported to be considerably higher than the comparable costs given in the table. The generator used as the basis of the calculations is rated at 2 MW which is a higher rating than that of the average autogenerating unit installed in Tanzania. Costs from smaller units would tend to be higher because of economies of scale. It may therefore be safely assumed that in Tanzania the overall costs of energy from diesel generating units installed as an alternative to grid supplied energy will be higher than the equivalent costs indicated in Table C.1.1.

5.7 An alternative method of quantifying the value of electric energy is to use the Long Range Marginal Cost (LRMC) or the Average Incremental Cost (AIC) of power supply as the economic value of the energy supplied. The AIC for the Tanzanian power supply has been calculated and is summarized in Table C.1.2. This table indicates that the AIC works out to US\$0.104 and \$0.094 per KWh at discount rates of 12 and 10 percent respectively for energy supplied at the distribution level.

5.8 Of the two methods of determining the value of energy not (or unsatisfactorily) supplied, the former, based on the installation of small diesel generators at individual load centers, may be considered as the medium term supply cost (requiring a lead time of about two to three years in the situation prevailing in Tanzania). The latter method is based on the optimal cost of long term supply options (with a lead time of roughly four to seven years). The poor voltages and the inability to supply consumer demand are current realities and the benefits attributed to the proposed investments are specifically those which would be realized in the immediate to medium term. Therefore the true energy cost to be used in evaluating any measures which would bring rapid relief to the network should be the short term costs, which would be higher than both alternative costs discussed above. However in order to ensure that the recommended solutions are truly

economical a conservative figure of \$0.10/KWh has been used in the evaluation of economic benefits. This figure is also conservative with respect to studies done elsewhere in Africa3/ where higher values have been obtained as the willingness to pay for the provision of electrical power.

The value of loss reduction benefits

5.9 Loss reduction achieved by reactive compensation occurs mainly during the day and night peak hours. Hence the value of these benefits will be closer to the peak power costs than to the average energy costs (discussed in the preceding paragraphs). However, once again US\$0.10/KWh has been selected to represent a conservative estimate of the benefits.

Cost of outage savings

5.10 The cost of announced as well as unannounced supply outages for connected consumers will be many times higher than the value of energy designed to prospective consumers. These costs are associated with a wide variation of circumstances ranging from high value items such as lost production to inconveniences of lower value such as leisure or enjoyment foregone. A study conducted as a part of the project using a Tanzanian research organization (Tanzanian Industrial Research and Development Organization) yielded the average value of US\$2.25 per kWh for unannounced outages for a selected sample of industrial organizations in Tanzania. With respect to classes of consumers not covered under the study (such as residential and commercial consumers) the value would be somewhat lower. Studies conducted by Acres International and USAID in 1992 yielded values ranging from US\$0.30 to US\$1.00 per kWh depending on the duration of outage as well as the type of economic activity interrupted as a result of the outage. Since the outages saved as a result of the reactive compensation measures proposed are at peak hours and at the major load centers a value at the higher limit is more appropriate. For the purpose of evaluating such benefits an estimated value of US\$1.00 per kWh has been taken to represent the value of such outage savings. This figure agrees with the studies conducted elsewhere where the cost of outages approximates to about five to ten times the LRMC of supply.

Cost of Compensation Equipment

5.11 Budgetary costs for various sizes of capacitors to be used in distribution lines along with the associated equipment required for their installation (at medium voltages of 11 and 33 kV) and at various capacities under switched and unswitched conditions are provided in Tables C.7.1 to C.7.3 in Annex C. The unit cost of the capacitors themselves (without support structures, switching and protection equipment, in \$/kVAr) do not vary with the voltage of application. The cost of switchgear however will vary substantially according to the operating voltage. For capacitors to be used at substations the additional cost will consist of the support structure, control equipment

3/ 1991 studies conducted for residential consumers produced values of US\$ 0.11 in Burundi and Rwanda and US\$ 0.18 to 0.20 in West Africa.

and switchgear. These costs are developed in the benefit to cost table for the Ubungo application (Table C.5 in Annex C).

5.12 Proposals including budgetary costs for static var compensation systems (SVS) with capacities of between 20 and 55 Mar employing combinations of a thyristor controlled reactor and fixed capacitor banks were obtained from four internationally recognized suppliers of such equipment. From these proposals estimates of the cost of installing SVS units were developed. These estimates are shown in Table C.4 in Annex C. The cost of installing the recommended SVS units is expected to vary from approximately \$90/kVAr to \$200/kVAr depending on the rating, the necessity for a step-down transformer and the number of switched capacitor banks required. The proposal for the SVS unit at Arusha is for an output variation from 0 to 30 Mar without the provision of circuit breakers at the initial stage. The expected cost for such a system based on international competitive bidding procedures is expected to be around US\$4.25 million. However there are only a limited number of suppliers of this equipment and the value of US\$5 million is taken for the economic analysis.

Calculation of benefits and benefit to cost ratios

Compensation to be provided at Ubungo/Ilala

5.13 In the immediate term the reactive compensation to be provided at Ubungo will result in a saving of thermal generation otherwise required to support the voltage up to the commissioning of the second 220 kV circuit to Ubungo. The load flow studies indicate that up to 10MW of thermal generation can be avoided during the load steps 1 and 2 of 1993 and load steps 2 and 3 of 1994. From 1995 onwards savings will accrue through load sheddings avoided during line outages. These benefits have been computed in Tables C5.2 in Annex C. In addition to the above benefits the installation of the recommended amount of capacitors will provide loss reduction benefits at various loading conditions (see para 5.14 below). After 1998 when generation from Kihansi should be available the loading on the Kidatu-Morogoro-Ubungo lines will increase considerably and the compensation required will greatly exceed the present recommendations. Thus, in the period after 1998, high benefits will again be reaped from the reactive compensation measures. However, in order to focus on the benefits that will accrue in the short term the benefits after 1998 are not evaluated. Instead, the discounted value of the capacitors in 1998 is subtracted from the economic cost in the benefit/cost analysis.

5.14 The loss reduction component of the benefits have been computed from the results of the load flow studies conducted at a number of operating periods in different years with the application of varying amounts of compensation (see Section 4 para 4.62). The results of these studies are summarized in Table B.3 of Annex B. Loss reduction benefits will be high when there is a necessity to transport a large amount of reactive power along the Kidatu-Morogoro-Ubungo lines in the absence of reactive compensation. Conversely the benefits will be low when either the power transfer along this line is low or when there is sufficient thermal generation at Ubungo to supply most of the required reactive power. Due to the complexity of accommodating all operating conditions only the periods during which the benefits are substantial have been computed. Table C 5.1 in Annex C provides the loss savings evaluated for the recommended compensation at different operating periods. The benefits indicated are the power and energy savings resulting from the application of the recommended amount of compensation in comparison with the condition when no compensation is applied. In some of the operating periods considered however the system voltages are lower than acceptable levels in the absence of reactive compensation. If the network load is to be supported without reactive compensation, thermal generation is required to be provided during these periods as indicated in para 5.13 above. Thus it is more appropriate to compute the value of saved generation during these periods rather than that of loss reduction. (Since the capacitors will not produce substantial loss reduction benefits with the thermal generation operational in these periods both benefits cannot be counted).

5.15 The benefit to cost ratios computed in Tables C5.1 and C5.2 in Annex C have been summarized for various combinations of benefits and are presented in Table 5.1 below.

Benefits considered	30 Mar Application	Additional 15 Mar	Total 45 Mar application
Loss reduction benefits only (with no generation supplied for voltage improvement)	8.8	2.5	6.7
Loss reduction benefits only (with generation supplied for voltage improvement)	5.0	0.9	3.6
Avoided generation and outages	30.1	6.0	22.1
Avoided generation and outages plus loss reduction	39.0	8.6	28.8

Table 5.1. Benefit-to-Cost Ratios for Capacitor Application at Ubungo/Ilala

Payback period considering all benefits = 3.0 months

5.16 It is clear that the proposal is extremely beneficial with high benefit to cost ratios as well as quick pay back. In addition the benefits remain high even with substantial changes to the capital costs as well as the rates used to value the benefits. It is important to realize that the benefits will decline with delay of implementation of the proposal. Thus early implementation of the proposals is a key element to their success.

Compensation to be Provided at Arusha

5.17 Without reactive compensation at Arusha no new loads could be added to the system at Moshi or Arusha as network voltages are already depressed below acceptable levels. Even at

present loading levels there is considerable load shedding during peak hours and new connections are withheld in certain areas which experience severe voltage problems. When the generation at Hale is weak the problems are further compounded as reactive injection at this point will also be low. In the years before the commissioning of new Pangani Falls there will be difficulties in maintaining the Hale voltage at a high value (required to keep the line end voltages acceptable) when operating Hale and Moshi at their firm capacities. In such circumstances the compensation provided at Arusha will also benefit Tanga by increasing the var flow from Hale to Chalinze. Correspondingly the compensation provided at Tanga will also benefit Arusha.

5.18 The benefits of the compensation provided at Arusha are evaluated by the increased load which can be supplied at Arusha and Moshi. The secondary benefits at Tanga have not been taken account of. (These benefits will only be present when the generation at Hale is low and it would be difficult to quantify such benefits sufficiently accurately). The benefits are evaluated only up to commissioning of the Singida-Arusha line. There will however be continuing benefits due to the ability to meet system outages (of the Singida-Arusha line or any of the line sections between Hale and Arusha) as well as the possibility of supplying any inductive compensation necessary to stabilize network voltages when the Singida-Arusha line is introduced. (By installing circuit breakers on the capacitor units of the SVS, it could be made to operate in the reactive mode as well). Due to the very long length of the Singida-Arusha line (approx. 300 km) the provision of variable inductive supply will be a necessity when this line is introduced. The required inductive compensation could be provided (though less effectively) by other means such as switched or saturated reactors. Thus in order to allow for the continuing benefits after the commissioning of this line the net economic cost of the proposal is computed by crediting 30 percent of the total cost of the SVS unit (considered to represent the alternative cost of inductive compensation) to be effective 1 year before the line is commissioned. The cost benefit analysis of the proposal is provided in Table C6 in Annex C and indicates a benefit/cost ratios of 5.0 and 3.1 respectively for the cost of the proposal being computed with and without the credit for continuing benefits mentioned above (the SVS installation commissioned by end 1993 and Singida-Arusha line to be commissioned by end 1995). It is seen that with delays in the commissioning of this line the benefit/cost ratio of the reactive compensation will increase substantially.

5.19 An alternative solution to enable TANESCO to meet the expected load increases in Moshi and Arusha is to install switched capacitors (preferably 3 x 5 MVAr each at Moshi and Arusha). This solution will give a lower level of technical performance and much care will have to be exercised in the design of the control systems to ensure that satisfactory voltage levels are maintained and other technical problems (such as possible hunting of circuit breaker operations) are avoided. However if TANESCO is unable to procure the necessary funds for the recommended solution with the SVS installation the next best alternative is to proceed with the installation of switched capacitors thus being able to meet the expected load increases of the two cities although at a lower level of technical performance. Accordingly Table C6 in Annex C also provides a cost benefit analysis for this option. An economic comparison of the two options is not feasible as the technical advantages of the superior solution are not readily quantifiable. Table 5.2 provides a summary of the benefit to cost ratios and pay back periods achievable for the two options including their sensitivity to the capital costs used as well as to the valuation of benefits.

5.20 The benefit-to-cost ratios and pay back periods obtained for the compensation proposals for both Ubungo and Arusha clearly indicate that it would very advantageous for TANESCO to install the recommended reactive compensation devices as quickly as possible. The network is already unable to support the current load and delays in providing the necessary solutions will result in considerable losses to TANESCO as well as to the national economy. Thus the urgency of the requirements cannot be over stressed.

Table 5.2. Benefit-to-lost Ratios for Reactive Compensation at Arusha

Years of benefits counted	SVS Ia B/C ratio 1	nstallation B/C ratio 2	Switched Capacities
With Commissioning in 1993 beginning:			
1993 and 1994	3.3	5.5	6.6
1993 to 1995	4.7	7.5	9.6
1993 to 1996	6.3	9.5	12.8
1993 to 1997	7.9	11.5	16.2
With Commissioning in 1994 beginning:			
1994 only	1.7	2.9	3.4
1994 to 1995	3.1	5.0	6.4
1994 to 1996	4.7	7.1	9.6
1994 to 1997	6.4	9.2	13.0

Note: B/C ratio 1

is made without giving consideration to the value of the SVS equipment after commissioning the Singida-Arusha line.

B/C ratio 2

2 is made with a rebate of half the value of the SVS given at time of construction of the new line.

6. DISTRIBUTION SYSTEM DEVELOPMENT AND PLANNING GUIDELINES

Background

6.1 More than 75 percent of the existing load on the TANESCO system is concentrated in the cities (and environs) of Dar es Salaam, Tanga, Moshi, and Arusha. Furthermore, the highest load growth rates are in these same areas. Because of the importance of these areas, and also because of time limitations, the present study is limited to their distribution systems (the 33 kV and lower voltage networks). Overall distribution network losses are 13 percent for power and 8.6 percent for energy (see section 3). For the 33 kV lines, power and energy losses are 2.26 percent and 1.69 percent, respectively. For the 11 kV lines, the losses are 2.44 percent and 1.74 percent, respectively. Aggregate values, however, do not sufficiently indicate the complexity of the problem of poor performance or overloading of particular areas of the network. This is because distribution systems are typically nonhomogeneous, and the poor performance and high loss levels of a number of feeders are masked by a relatively large number of others with satisfactory performance characteristics. In addition, the network sections that are already stressed are most often the ones subjected to further high increases in load demand, so the situation becomes more serious as time passes.

6.2 The network studies conducted on individual feeders indicate that a number of supply areas are presently in need of considerable reinforcement and rehabilitation because of high load growth during the last few years (averaging to as much as 9 percent per annum) in combination with a lack of adequate investment and planning. The voltage levels at some of the locations are so poor that existing loads are restricted, and a moratorium is imposed on new connections. In part, these low voltages stem from poor voltage conditions in the transmission system (discussed in sections 4 and 5). But rectifying the input voltage levels to the distribution networks alone will not be enough to alleviate the poor supply standards experienced by the ultimate consumers. The distribution systems themselves need considerable inputs and carefully planned development to reduce the high losses and improve the reliability of supply in a number of specific areas. Further, networks that have deteriorated because of poor maintenance and overloading of equipment over a number of years also need considerable investment for rehabilitation.

6.3 Over the last six years two major distribution development projects were undertaken: the Dar es Salaam Rehabilitation Project, funded by the Japan International Corporation Association (JICA), and the National Rehabilitation Project funded by the International Development Association (IDA). The Dar es Salaam project carried out certain major improvements to the primary supply system of that city. The work included augmenting the capacity of the Ilala Grid Substation, introducing two new primary (33/11 kV) substations, and increasing the capacity of the 33 kV subtransmission network by increasing the conductor sizes of a number of major 33 kV feeders. Improvements to the secondary distribution facilities however, were limited to certain parts of the city. In the areas covered, approximately one hundred new distribution transformers were introduced, low voltage (LV) systems were strengthened, and network rehabilitation was carried out. The IDA-sponsored National Rehabilitation Project addressed all three sectors of the power system: generation, transmission, and distribution. Only about 30 percent of project funds were allocated for distribution system development, spread among 11 towns. The project was limited mainly to rehabilitation and reconductoring of some lines, addition of transformer stations, and other augmentation work (such as replacement of overloaded transformers). Planned network development was not addressed in a comprehensive manner. As a result, no new primary injection points or major system developments were introduced.

6.4 Despite certain limitations of the two projects, TANESCO's distribution systems benefitted greatly from them, and without them much of the load addition from 1986 to date would not have been possible. However, realization of suppressed demand and the addition of new loads have again reduced many parts of the network to poor operating condition, high system losses, and poor reliability. The situation is compounded by the fact that TANESCO was unable to supplement the work carried out by these two projects with regular and sufficient network improvement, mainly because it lacked sufficient foreign exchange.

6.5 Another matter of concern with respect to the distribution system is that a further release of suppressed demand will occur when the developments contemplated to improve the transmission network voltages are commissioned (TANESCO is already actively pursuing the recommendations contained in Section 5 of this report, and these developments are expected to be in place within the next two years). Thus, substantial improvements in the distribution networks are urgent. The improvements must be designed to cater to the expected load growth in the medium term (the next 5 to 10 years) and blend with the long-term planning possibilities. The network also needs to be expanded to cover a number of urban developments presently in progress, and the resulting load development should be anticipated in the system development plans.

Establishment of a Distribution Planning Department

6.6 Distribution networks comprise a vast number of line segments spread over large geographic areas. Any effective development planning of these networks requires the systematic collection of a large amount of network data. Such data consists of the physical characteristics of the existing systems (particularly conductor and transformer sizes), network loads (preferably at different times of the day), and expected growth rates. The data to be collected are voluminous and need also to be suitably organized to model the systems so that their performance can be subjected to the required technical studies. These technical studies will yield information on a number of important aspects, particularly with respect to system losses, voltage levels, and conductor loadings. The ability to perform these studies for different network connections as well as alternative network development proposals for the loading conditions of selected future years make them particularly important in selecting between various possible alternative development proposals. As in most power utilities in developing countries, the distribution planning function in TANESCO had not been adequately institutionalized. The documented data on the distribution systems were inadequate to undertake any comprehensive distribution planning. Network layouts on geographical maps, which constitute the first step in any distribution planning exercise, were unavailable in many locations, and line diagrams that were available were often outdated. Load readings on important feeders had not been taken, and whatever information that was available was poorly documented and not utilized by the planning staff. Because of the shortage of funds to undertake any major system improvements no serious attempts were made to prepare comprehensive development proposals. A notable exception is the planning study for Dar es Salaam carried out in 1987; but such efforts were not followed up to develop the data base or the planning capabilities of the relevant staff. Further, the improvements that were planned or considered were only short-term measures to resolve specific local issues, and system-wide network studies were not carried out.

6.7 A major objective of the current project was therefore to transfer the technology required and establish within TANESCO a distribution planning department capable of applying state-of-the-art techniques. This is one function that can not be adequately substituted for by external consultancy services obtained from time to time. The long-term data gathering and documentation required can be carried out effectively only by TANESCO personnel who are well acquainted with the networks and other relevant local conditions. Further militating against the use of consultants is the fact that the data collection phase is time consuming and requires only limited technical knowledge. Moreover, much of the required data-particularly data related to the past such as load readings-are already available in various departments within TANESCO. The network planning studies to be conducted are also fairly repetitive and can be grasped easily by the technical staff of the utilities in developing countries. Hence, the project work was carried out by establishing a separate unit within TANESCO to undertake the systematic collection, documentation, and analysis of the data.

6.8 The new unit established functioned as a centralized distribution planning department collecting data from the field, coordinating with the various zonal and regional offices (distribution centers), establishing a centralized data base, and performing the necessary studies. The staff of the unit was trained in the various techniques of distribution system planning. They were introduced to state-of-the-art technology in the instrumentation to be used for gathering system data and in conducting the studies using distribution planning software.

6.9 All aspects of training necessary to enable the TANESCO planning unit to perform unaided after the ESMAP study is completed were provided. The instrumentation used for the data collection exercise contained electronic logging equipment that can store the load characteristics of power lines or consumer installations at predetermined intervals for subsequent downloading to a computer in spreadsheet format. A set of Lotus "macros" was established to retrieve important characteristics such as load factors, loss factors, and power factor at selected time periods from the information downloaded to the spreadsheets. A computer workstation was provided, consisting of an IBM PS2 unit, a digitizer, and a plotter. The distribution planning software supplied consisted of a package of programs from Messrs. Scott & Scott of Seattle, USA. The programs in CMED (Computerized Mapping and Engineering Data) enabled the assimilation of the physical data and electrical characteristics of networks directly off system maps using the digitizer. The programs in DPA (for distribution primary analysis) enabled this data to be used for system modelling and analysis. The networks are modeled by representing the distribution lines by a number of sections (with the connected load within the section treated as a point load acting at the center of the section). The analysis programs enable load-flow studies to be conducted, providing information on the power carried along various sections, the voltage level at any system location (including the terminal voltage drop), and line losses. The programs also include the capability of providing load growth rates in individual sections to enable analysis of system performance for a given future year. It also enables the location of a given number of capacitors to be optimized for minimizing system losses on a particular feeder.

6.10 In addition to the network analysis programs described above, an alternative procedure involving a less rigorous methodology has also been developed to order cover the analysis of all the networks to be studied within the available time frame. The latter procedure enables the (approximate) determination of the principal characteristics required (total line losses and tail-end voltage drop) using certain simplifications and requiring only basic network information. A description of the methodology used for these simplified calculations is provided in Annex D. The results of these studies have been checked with the results of the more rigorous analysis where the computerized data base has been sufficiently developed, and they have been found acceptable. The use of this procedure has made it possible to undertake the study of all the medium voltage (11 and 33 kV) lines in the study area consisting of the load centers at Dar es Salaam, Arusha, Moshi, and Tanga.

6.11 The calculations described above have provided the losses and tail-end voltages of existing networks at the present loading levels as well as at those expected in future years. In particular, the year 1995 has been selected as representative of the period in which the proposed developments could be commissioned. Using the results of these studies, it was possible to identify the specific areas of the networks that need to be developed. The next step is to make a number of proposals to improve system performance and to subject these proposals to the network computations discussed above, in order to determine the operating characteristics to be expected from the proposed systems. The proposals that are technically acceptable are then subjected to an economic analysis using as benefits the network loss reduction and reliability improvements that are to be achieved. The latter benefits are computed by determining the additional load that can be supplied by extending the feeders beyond their normal operating positions. A fuller discussion of the methodology used for the economic analysis is given in paras 6.13 to 6.18 below. Such analyses, conducted for a number of alternative development proposals, also enable comparisons of their relative merits.

6.12 The distribution system studies conducted have yielded a wealth of information on the physical networks as well as on the load characteristics of system components and individual consumers. The value of this data base transcends the ability to formulate a set of proposals for the improvement of the present system. The information collected and the techniques introduced would be invaluable in improving many aspects of TANESCO's long-term planning capabilities. Distribution system planning can henceforth be done with a full knowledge of the capabilities of the future systems proposed. The information collected, as well as other data generated during the studies, can also be invaluable in load forecasting, load management, and tariff formulations exercises. Some items of particular importance are loading densities by geographical localities or feeder coverage, consumer characteristics revealed by their load duration curves, diversity factors for feeders and consumer groups, load factors, loss factors, and power factors of various system components. The establishment of computerized system maps and the association of the electrical data to such a system greatly enhances the value of the data base. One aspect that needs to be emphasized is the necessity of maintaining the data base keeping it current at all times, with regular updates of changes in the system. A concerted effort also needs to be made to increase the application areas and usage of the data gathered. This is the only way to increase the companywide awareness of the importance of the technology enhancement that has been introduced. The establishment of the study unit as a permanent branch within the organization of the Deputy Managing Director (Operations) augurs well for the continuation of the unit to produce useful work after the conclusion of the ESMAP studies.

Economic Analysis of Development Proposals

6.13 The improvements to the distribution systems proposed in the present study can be classified as follows:

- (a) System development works for the purpose of loss reduction and improvement of reliability levels;
- (b) Expansion of the network to new areas to meet urban development needs; and
- (c) Physical rehabilitation of existing networks.

6.14 An economic evaluation of the proposals under the first category can be made by determining the extent of loss reduction and reliability improvements that will be achieved over an identified time period. Load flow studies carried out on the existing and proposed systems directly provide the value of loss reduction benefits. The losses derived from these studies are in kilo Watts (kW) and are related to the time and date for which the load flow is valid (usually peak time and applicable for a particular year). The peak time losses can be converted to energy losses (for a whole year) by using the loss load factor. The losses in subsequent years increase in proportion to the square of the load growth rate as the line losses are proportional to the square of the current carried. Thus system losses and correspondingly the loss reduction benefits of development proposals increase substantially each year, particularly if the load growth of the area is high.

6.15 Reliability benefits arise from saved outages as a result of the ability to feed sections of the network from more than one feeder (thus allowing for alternative feeding possibilities in the event of outages). Such 'saved outages' have been estimated by the total expected annual units consumed multiplied by the estimated per unit increase of reliability. The reliability benefits are thus proportional to the system load and the increases in future years are directly proportional to the growth rate (until the load increases to a level that does not allow for alternative feeding possibilities).

6.16 The methodology used to compute the loss reduction and reliability benefits over a period of future years is detailed in Annex D. The multiplying factors (for varying rates of load growth) to obtain aggregate values for loss reduction and reliability benefits over a given period of years are also provided in two tables. The Average Incremental Costs (AIC) of power supply in the TANESCO system at various voltage levels have been computed and the results are presented in Table C 1.2 of Annex C (see also paras 5.6 to 5.9). The value at the distribution level at 10 percent interest rate, \$0.094 per kWh, has been used as the cost of loss savings from the proposed developments. With respect to the reliability improvements the value of outages saved is generally many times the cost of the normal power supply. A discussion on the value of reliability benefits are presented at para. 5.10 in Section 5. For the distribution system developments the value of the energy saved by reduced outages have been estimated at five times the AIC of power. However in order to test the sensitivity of the results to lover values the reliability benefit computations have been repeated at values as low as twice the cost of energy.

6.17 The second category of work covered in the study (see para 6.13) is the expansion of the existing distribution systems to supply new areas where substantial urban development is already in progress. Providing electricity to these areas is expected to enhance the development process and correspondingly increase the rate of consumption growth within a short period. The economic benefits realized from this work is clearly the value of the expected additional sales. The best representative figure for such new sales is the cost of alternative production given by the cost incurred if small diesel plants are employed (see Table C1.2 of Annex C and discussion in previous para). In evaluating the cost of supply the energy costs attributable to the upstream sections (generation and transmission developments) necessary to bring supply to the point of commencement of the distribution investment need to be added to the investment costs. Alternatively the net benefits of the additional sales are computed based on the difference in value between the alternative supply costs (of independent diesel generation, which is at distribution level) and the AIC of supply at the transmission level and these benefits are compared with the cost of the investment. The latter method has been used in the computations.

6.18 The third category of work envisaged in the proposed development is the rehabilitation of existing networks which have deteriorated due to poor maintenance as well as by natural ageing. The upgrading of these networks are more or less mandatory for TANESCO which has an obligation and even a contractual commitment to continue to supply the existing consumers. In fact, due to the above reason this work should be given priority over the other two components. The economic value of the work is in maintaining the assets of the company and its ability to continue profitable operations. Considering the state of the network components marked for rehabilitation it is quite evident that the alternative cost (at present value) of postponement of the rehabilitation works (which inevitably will result in more extensive network replacement at a latter date) together with the cost of outages in the intervening period will be much higher. It is thus considered that the specific economic justification of rehabilitation works identified are superfluous.

Nevertheless, an approximate cost benefit computation is presented based on the outage savings estimated to be achieved by rehabilitating the networks. What is more important is to ensure that an effort is made to ensure that the nature and extent of the rehabilitation works undertaken are consistent with optimum cost effectiveness. This cannot be achieved by any specific cost/benefit computations but needs to be made by good engineering judgement.

Existing Distribution Networks

6.19 As discussed at para 6.6 there were no specific guidelines or standards which TANESCO's distribution planning engineers could have used for measuring the performance of existing networks or for preparing proposals to meet the load increases expected in the future. This situation resulted in the networks being haphazardly extended or loaded without consideration for system performance such as voltage and loss levels, as well as reliability considerations. Unlike generation and transmission projects which are necessarily lumpy and staggered, distribution system development should be a continuous process of meeting the gradually increasing load demand in the various locations. In order to proceed methodically with the development of the distribution systems to cope with this continuously increasing load demand, TANESCO needs to adopt a set of procedures, guidelines and performance criteria. These rules need, of course, to be reviewed and modified from time to time; however it is important that system planners have at any given time a set of rules and procedures by which to measure network performance and to plan development works. They should not have to wait until network performance is so intolerable for the consumer that crisis solutions become necessary.

6.20 As previously discussed, major distribution system reinforcement and expansion works have been undertaken by a number of externally funded projects. These projects were often confined to certain areas of supply or had other limitations defining their scope of work to specific activities (such as rehabilitation or the development of a specific area). Thus these activities have not produced any company-wide guidelines which can be applied for the development of distribution systems. On the other hand these projects as well as TANESCO's own practices built up over a number of years have introduced certain system configurations such as voltage levels, equipment and conductor sizes etc. Further these characteristics are so widespread within the system that any new arrangement or alteration needs to take account of the cost of alterations to the existing networks where this is required. An appropriate strategy would therefore be to examine the existing network characteristics, evaluate their appropriateness and then examine opportunities for improvements, rationalizations and developments of new concepts in the context of the resulting economic benefits.

6.21 The existing primary distribution networks are based on network voltage levels of 33 and 11 kV. The 11 kV systems are generally restricted to developed urban areas while the 33 kV networks provide supply to the 33/11 kV substations and the larger bulk consumers. In low density (rural) areas the 33 kV networks run for long distances and supply consumers either directly off step down transformers or from LV lines connected to such transformers. In some instances the 11 kV lines are also extended for long distances, often commencing from a town and extended to over 20 or 30 km to supply rural loads. Many of the high load carrying conductors have been uprated from a number of lower gauges to 100 or 150 mm. sq. during the course of previous distribution development projects. Other conductor sizes in use for primary distribution are 50 and 35 mm. sq. The step down transformers providing supply to the LV network range from 50 to as high as 630 kVA. Many of these are of the higher ratings (200 kVA and over) and are combined with the use of long secondaries. In most heavily loaded areas 100 mm. sq. conductors have been introduced for LV feeders. The studies conducted by modeling the feeders and direct measurements performed indicate that a number of poorly performing MV feeders have peak line end voltages which drop to as low as 80 percent of nominal and peak loss levels as high as 15 percent of the power supplied.

Planning Concepts

6.22 The major load centers in the country already have extensive 33 and 11 kV networks and hence it is not considered economical to introduce any other voltage level (such as 22 kV) at this time. Further, a review of the feeder losses and tail end voltages of the MV systems indicate that 150 and 100 mm. sq. ACSR conductor could continue to perform as the standard conductor cross sections of the main feeders for the loading levels that are to be expected in the foreseeable future. However, computations carried out (as well as studies carried out eleswhere) indicate that the economic loading level of conductors is in the region of 25 to 40 percent of thermal limits. Thus the network configurations need to be designed to provide loading conditions not exceeding these values. Such reduction of loading levels is best achieved by increasing the number of MV feeders and 33/11kV substations. This strategy will not only reduce network losses but also allow for alternate supply possibilities to be arranged in the event of outages on the normal mode of supply.

6.23 As discribed in para 6.21 a number of primary distribution lines which commence from major load centers have been extended over excessive distances without regard to the voltage drop that will be experienced at the line extremities. In addition, the reliability of the more importent loads located at the commencement of the feeder is affected as suitable interupting devices are not installed along the line. In many of these instances the 11kV lines which have been so extended can be economically uprated to 33kV operation (line losses reducing by a factor of nine from the former value). The construction work involved will entail the change out of line cross arms, insulators and transformers along the feeder. In instances where the loads closer to the commencement of the feeder requires a higher reliability standard the existing 11 kV line can be retained to feed these loads and a new 33 kV line could pick up the load of the rest of the feeder by connecting to the section which is uprated.

6.24 In addition to the 11 kV lines there are also a number of 33 kV lines where the loads and/or the distances are still too great to be supported at this voltage (distances exceeding 100 km have been encounted). In many of these instances the loads are also too small for the justification of the next higher standard voltage, 132 kV, particularly in view of the high cost of the step down substations, 132/33 kV or 132/11 kV which will then be required. The use of 66 kV networks to supply these loads could often prove to be economical. (This voltage was formally in use extensively in the system but almost all such networks have now been replaced by 132 kV). However the design considerations to be used for these 66 kV system should follow those for rural networks (with minimum use of switchgear) in order to keep the costs reduced in line with the level of importance of the load. Sometimes the existence of decommissioned 66 kV networks available in close proximity allows salvaged equipment to be used in order to reduce investment costs. An example of the use of 66 kV as a network voltage is seen from the proposals for the Marangu - Rombo area dealt with in para 10.6

6.25 Another concept that needs to be developed is the decentralization of the LV systems. During previous distribution development projects a number of additional MV/LV transformers have been introduced. This process needs to be continued further and lower capacity transformers employed to serve smaller areas of coverage. Where feasible it will also be prudent to obtain supply to the LV distribution network from a number of transformers installed to feed bulk consumers. With this practice one could also take advantage of the loading diversity between most bulk supplies (which operate in the day time hours) and the LV networks (which usually have their peak at night).

Planning Guidelines

6.26 The results of detailed system studies for a large number of MV networks are presented in the chapters to follow. These studies also include the economic cost benefit analysis of proposed alternatives. Based on the knowledge gained from these studies it is possible to establish a set of general guidelines which would approach optimum system performance levels with respect to network losses and supply reliability. These guidelines may be used as performance indicators for the continued development of TANESCO's distribution systems. It must however be emphasized that major network developments must be subjected to system studies and economic analyses as performed for the proposals contained in this report. The guidelines are to be used mainly to provide general acceptability criteria. Further in particular instances economic analysis may dictate the need to deviate from the standards of performance that are provided in the guidelines.

(A) MV systems in City areas:

- A 1. A primary MV system at 33 kV, fed off the grid substations shall be used to feed 33/11 kV substations and where possible large bulk supplies (preferably consumers over 1 MVA).
- A 2. Alternative 33 kV supply routes shall be provided to the 33/11 substations and bulk supplies over 5 MVA.
- A 3. Standard ratings of the 33/11 kV substations shall be 2 x 10, 1 x 15, 2 x 5, and 1 x

5 MVA. In general substations of smaller capacities are not expected to be economic as 33 kV could continue to be used for the downstream sections. However where existing 11 kV networks or other special considerations exist substations of $1 \ge 2.5$ MVA may be considered.

- A 4. Standard sizes of 150 and 100 mm. sq. ACSR <u>4</u>/ shall be used for the main 33 and 11 kV feeders. The branch lines (where the currents to be carried are not expected to exceed 50 Amps) will be based on 50 mm. sq. ACSR.
- A 5. The normal operating peak currents shall not exceed 200 Amps for 150 mm. sq. conductor and 150 Amps. for 100 mm. sq. conductor. Where these values would be exceeded double circuit construction or additional feeders shall be provided.
- A 6. Insulated conductors and underground cables will not normally be used. Such construction will only be resorted to when special construction difficulties such as maintaining clearances are encountered.
- A 7. The 11 kV feeders shall be erected and operated as 'open rings' from the same substation or be fed from adjacent substations at either end with a normally open position along the way. The entire feeder shall be capable of being fed from one source.
- (B) MV systems in rural areas
 - B 1. The normal MV distribution voltage shall be 33 kV for rural areas. Substations of 33/11 kV and 11 kV distributors shall only be used if it can be demonstrated that the total costs (inclusive of the 33/11 kV substation and additional network losses) will be less than for a 33 kV network development.
 - B 2. When long transmission distances are involved to lightly loaded areas 33 kV lines may not be able to satisfy the performance criteria detailed in section D below. In such instances the use of sub transmission lines at 66 kV shall be considered. When the use of such an intermediary voltage appears to be advantageous the feasibility of constructing the line at 132 kV and operating it at 66 kV for an initial period should also be investigated.
 - B 3. The uprating of existing 11 kV distributors to 33 kV shall be evaluated when the loading density is low and line lengths are long.

^{4/} ACSR - Aluminum conductor steel reinforced.

- 66 -

(C) LV networks

- C 1. The use of a larger number of transformers and smaller supply areas from each transformer shall be the main strategy of development. This should lead to over 80 percent of the transformers being of the ratings between 50 and 200 kVA. It is found that many consumer transformers exhibit peak loads during the day time periods. These can be effectively used to feed the LV distribution system during the night time, thus utilizing the load diversity between the consumer groups and enabling the total load to be supplied by a lower installed capacity. The peak loading of transformers shall be between 75 percent and 100 percent of nameplate rating.
- C 2. 100 and 50 mm. sq. conductors shall continue to be used for the main feeders of LV systems.
- C 3. In city areas all outgoing feeders shall be three phase. Special efforts shall be made to achieve a good load balance right along the feeders and distributors by systematic assignment of successive loads to each of the three phases. Regular (possibly annual) cheks of phase balances are to be made and adjustments made as necessary. Any single phase branches shall be restricted to the supply of less than eight consumers.
- C 4. In rural areas the use of single phase transformers shall be considered for the supply to small localities below 50 kVA that are situated close to the MV lines.
- (D) Target performance criteria for network planning
 - D 1. Systematic load forecasting shall be undertaken to provide the basic inputs to network planning. The forecasts shall be prepared in a sufficiently decentralized manner to determine the requirements of each small area of local distribution. The loading densities of existing systems, both on the LV retail network and the MV feeders shall be calculated regularly to provide information on the load growth in these particular areas as well as information on typical loading patterns to be expected in other developing areas.
 - D 2. The following maximum limits for peak power loss and voltage drop levels shall be used for network planning:

	Peak Power Loss	Peak Voltage Drop
MV feeders, City areas	4.0%	6%
MV feeders, Rural areas	5.5%	9%
LV feeders, City areas	3.0%	5%
LV feeders, Rural areas	5.0%	9%

D 3. In order to assist network planners to predict the operating characteristics of the conductors used in the system a set of graphs indicating the maximum line distance that can be allowed for varying loading levels in order to maintain the line end voltage drop below indicated values have been prepared during the study for (a) lines loaded at their extremities and (b) those with typical load distribution characteristics. Those that pertain to the maximum voltage drops indicated in the table above are given in a set of charts (D2) in Annex D.

7. REACTIVE COMPENSATION ON THE DISTRIBUTION SYSTEM

General Considerations and Methodology

7.1 The previous section detailed the methodology of the studies that need to be performed to reduce losses and improve the reliability of TANESCO's distribution systems. These studies have been performed for the networks in Dar es Salaam, Tanga, Moshi, and Arusha and proposals to bring the systems up to economically acceptable standards are presented in Sections 8 to 12. However, because of difficulties in financing and other logistical problems, TANESCO will likely require at least four to seven years to complete the work planned. In the meantime, substantial relief to the poorly performing sections of the distribution system can be achieved through reactive compensation. The present section deals exclusively with reactive compensation measures that could be economically applied in the short term on the existing distribution feeders.

7.2 Ideally, reactive compensation should be located as close to the reactive loads as possible to obtain the greatest benefits in loss reduction. This is so because, with compensation installed at the source of the reactive demand, the current—and therefore the losses—are reduced in all components upstream of that source. In contrast, if the compensation is placed between the source of reactive demand and the source of input power, the current is reduced only upstream of the compensation.

7.3 A number of considerations complicate the application of the general principle of installing compensation at the source of reactive demand, however. These are:

- The fact that compensation may be uneconomical at downstream locations individually, but the summation of the loads further upstream may provide economic opportunities.
- The need to vary the compensation by switching off excess capacitance as the reactive load reduces (usually with reduction in active power) could be eliminated by placing the capacities sufficiently upstream.
- Since costs of switching and isolation greatly exceed that of the capacitor banks, considerable economies of scale are realized for larger capacitor installations (which require that capacities are placed further upstream), particularly when switched operation is required (see para. 7.9).

7.4 In view of these factors, the most economical program of reactive compensation for a given distribution system must be determined by a study of the loss reduction benefits obtained by the application of various sizes of switched and unswitched capacitors at various locations and a comparison of the benefits with the costs of the respective applications. Several points should be noted about loss reductions provided by the use of capacitors for reactive compensation. First, as the load decreases, the benefits for a particular application decrease substantially; therefore, most of the benefits are realized during the day and night peak load periods. In fact, overcompensation can occur during base load, resulting in a small increase of losses. Second, the benefits of each successive kVAr of capacitance installed on any given feeder decrease incrementally with increases in power factor caused by the previous applications, creating an optimal point beyond which the benefits obtained from additional capacitance on the feeder will not be commensurate with the additional investment required. The initial capacitor installations in a system will thus provide the highest benefits, and in each successive installation thereafter the incremental benefits will decline proportionally. Finally, benefits will continue to be realized upstream of a particular feeder of the distribution system considered, even after they are fully realized in that feeder itself. This is because improvement of the power factors downstream will also improve the power factor in all upstream sections (as noted in para 7.2 above). This also implies that the benefits to be computed should also include the relevant upstream sections of the network.

7.5 The results of a large number of studies on capacitor applications in distribution systems indicate that the compensation requirements close to optimal application can be determined by using the following procedure. Firstly, the requirements in the peripheral sections of the networks which would operate without overcompensation at system base load are identified. Thereafter further applications at suitable upstream locations are examined in a successive manner always maintaining approximately full compensation at base load. At each stage the loss reduction benefits (of both power and energy) should be computed and analyzed for economic acceptability. Clearly those feeders exhibiting excessive voltage drops and power losses will yield the highest benefits and particular attention needs to be given to such feeders. The benefits over the initial years when the existing distribution system is expected to remain unchanged will be high and would in fact increase as the load grows. However, major network developments to reduce network losses and improve reliability of supply have been identified in Sections 8 to 11. These developments will introduce new feeders and substations and would cause substantial alterations to the existing network arrangements particularly in lines exhibiting high losses at present. With the introduction of such developments (expected to be effective over the next four to seven years) a substantial reduction of benefits of the capacitor applications are to be expected. At this stage the suitability of retaining the capacitors in the existing locations should be examined by conducting new power flow studies. Sometimes this is possible due to the increased load at that time. If their retention is not justified or better locations are identified they can be transferred (as an entirety or only the excess quantity) to other locations requiring reactive compensation for optimum system performance.

7.6 The feeders that would benefit from var compensation measures were identified from the network studies carried out (as detailed in Section 6) and additional information on their physical characteristics and loading conditions were obtained, in particular the power factor at various times of the day. The losses currently being experienced on these feeders were calculated using both the approximate analysis methodology and the computer software for network analysis. Thereafter, the improvement of system losses by the application of capacitors of various sizes was determined. The software enabled the selection of the locations along the relevant feeders at which capacitor installations would provide the maximum benefits in loss reduction. A discussion of the loss reduction computations made at various voltage levels is provided in paras 7.12 to 7.14 below, and a summary of the results and corresponding benefit/cost ratios is presented in Tables C.8, C.9, and C.10 in Annex C.

Economics of Capacitor Installation for Power Factor Control

7.7 Capacitors are installed on distributions systems to control the system power factor and thereby reduce losses and improve voltage regulation. The benefits listed in para. 5.2 in section 5 for the transmission system are applicable to reactive compensation on the distribution system as well. However, although the primary objectives of the reactive power control measures proposed for the transmission system are voltage improvement and the consequent ability to supply additional loads, the predominant benefits resulting from capacitor installation on the distribution system are loss reduction (and to a lesser extent voltage improvement). In the TANESCO system the correction of distribution system voltages to conform to acceptable limits is achieved primarily by (a) adjustment of the transmission system voltage (discussed in Sections 4 and 5), and (b) changes to the physical configuration of the distribution system by increasing the number of feeders and/or new transformer stations (discussed in Sections 8 to 11). Further, although the introduction of capacitors will enable some new consumers to be supplied in certain networks presently exhibiting poor voltages, it is not feasible to identify and quantify such benefits. The economic benefits obtained are therefore evaluated only on the basis of the reduction in energy losses experienced on the feeder as a result of the improved power factor. The value placed on each unit of energy by which losses have been reduced was taken as the same as that used for increases in consumer sales and reduction of losses in the evaluation of transmission voltage improvement measures, namely US\$0.092/kWh (see para. 5.8, Section 5).

7.8 In general, the loading of the lines (on which loss reduction benefits are achieved) will increase with time. Further, the yearly benefits of a particular capacitor application will increase at a higher rate than the rate of load growth because an uncompensated line will experience a rate of increase of line losses equal to the square of the load growth rate. Detailed studies have revealed that the rate of increase of loss reduction benefits from capacitor applications has been closer to the rate of increase of uncompensated feeder losses than the rate of increase of the feeder load growth. If the lower value of the feeder load growth rate is assumed as being the rate of increase of benefits from capacitor applications, the present worth factor for loss reduction benefits over a period of 10 years (at an interest rate of 10 percent) would work out to 11.5, 10.5, and 9.6 for load growth rates of 11, 9, and 7 percent, respectively. The present worth factors over a period of 6 years would be 7.2, 6.8, and 6.5, respectively, at the same load growth rates given above. In computing the benefits of capacitor applications in the distribution system, a conservative estimate of 6.0 has been used for the present worth factor.

Cost of Capacitor Installations

7.9 The cost of capacitor installations on the distribution system was estimated by determining the market costs of the individual components and the installation costs applicable to Tanzania. Equipment costs for capacitors, switches and other ancillaries are shown in Table C 7.1. in Annex C. The installed costs of unswitched capacitors are presented in Table C 7.2 and for switched capacitors in Table C 7.3. For unswitched capacitor banks rated between 50 and 600 kVAr the estimates of installed costs range from \$ 46/kVAr to \$ 5.2/kVAr respectively (all costs are stated in United States dollars at mid 1991 prices) for installation on the 11 kV system and from \$ 65/kVAr to \$ 6.7/kVAr for operation at 33 kV. Specific costs for switched banks of similar ratings range between \$ 72.3 and \$ 7.4/kVAr installed on the 11 kV system and between \$ 166.7 and \$ 15.3/kVAr if installed on the 33 kV system. Installation of the capacitors on the 11 kV system (instead of 33 kV) will provide the dual benefits of greater reduction in losses as well as lower investment costs. It will be seen from the tables that the specific costs of capacitor banks rated less than about 200 kVAr are too high for their application on the TANESCO system to be economical.

7.10 For efficient inventory management, the ratings of capacitor banks applied on the distribution lines should be restricted to a small number of standard sizes. The calculations made during the course of the study showed that for the loading conditions experienced in the TANESCO system, banks with standard ratings of 600 kVAr would be best suited for the first stage of application for the most heavily loaded feeders. When placed at the substation busbars (i.e., at 11 kV), the ratings could be as large as required in each case, generally providing up to full compensation at base load. Capacitors varying from 1,000 to 3,000 MVA could be used at the various substations.

Computation of Loss Reduction Benefits

7.11 Loss reduction benefits (in terms of kilowatts saved for a given loading condition) for the various feeders and networks studied have been obtained using both the approximate spreadsheet methodology (see Annex D) and the software package mentioned earlier. The software program used also selects the location at which a given capacitance should be installed to maximize the loss reduction benefits. However, as the analysis using the software package has not been completed for the entirety of the systems in the four study areas, the results of the spreadsheet computations have been selected for the analysis. The loss reduction benefits are usually highest when the feeder is carrying its maximum load. At lower loads (off peak, usually represented by shoulder and base-load steps), the loss reduction achieved will be lower than at peak. The situation is complicated, however, by the fact that the power factor of the feeders vary considerably between the different periods of the day. In many instances, the daytime power factor is substantially worse than at night, even if the loading of the feeder is higher during the latter period. Further, a simple relationship is not available between the loss reduction (of capacitor applications) at the different times of day as in the case of loss reduction achieved by reduction of feeder currents or conductor resistances. In view of these complications, the reduction of energy losses (in kWh) achieved by capacitor applications are computed for most applications by determining the loss reduction achievable at the three selected steps of the load duration curve; peak, shoulder (mid load) and base load. Multiplying the loss reduction at each level by the duration for that level and adding the resulting energy losses for all three tiers will yield the total loss reduction over the period considered (usually one year). Alternatively, the energy savings can be calculated from the peak load power loss reduction by use of the *loss reduction load factor*—a factor that will convert the reduction in power losses at times of peak demand achieved by specific corrective measures to the corresponding energy loss reduction load factor and 8,760 (hours per year) will provide the annual reduction in energy losses (in kWH). As with the loss reduction benefits (noted in para 7.4 above), the loss reduction load factor will also be higher for the application of the first capacitor bank and will decrease thereafter for successive applications. This is because with a fixed capacitor in the system the power factor will keep increasing as the load decreases from peak load to base load. Using the three-tiered load duration curve as before the loss reduction load factor can be computed from the loss reduction at each load condition using the following formula:

loss reduction load factor

$$-\frac{(\Delta P_p \times T_p) + (\Delta P_m \times T_m) + (\Delta P_b \times T_b)}{\Delta P_p \times (T_p + T_m + T_b)}$$

where $\Delta P_p, T_p$ refer to the peak loss reduction and time in hours (per year), respectively. The corresponding values for shoulder (mid) load and base load are given by the subscripts m and b, respectively. When the loss reduction load factor method is employed, only the peak loss reduction is determined, and a suitable loss reduction load factor is selected using the factors determined for feeders having similar loading characteristics. The studies carried out indicate that for the heavily loaded feeders, the first application of banks of 600 kVA rating gives loss reduction load factors of about 70 percent or higher, whereas subsequent applications produce loss reduction load factors of between 60 to 40 percent.

Loss Reduction Benefits at Various Voltage Levels

7.12 Drawing F1-1 in Annex F shows the 33 kV network in Dar es Salaam, which is supplied by the grid substations at Ubungo (220/132/33 kV) and Ilala (132/33 kV). The drawing shows the geographical layout of the 33 kV feeders from these grid substations to the 33/11 kV distribution substations and the major consumers fed at this voltage. Drawing F.2 in Annex F shows the 11 kV network, which obtains supply from the above substations and performs the distribution function to the various areas of the city. The benefits of capacitor applications have been computed in three stages. First, the loss reduction benefits on the 11 kV lines themselves by the application of capacitors on these lines have been computed. Next, benefits on the 33 kV lines because of the capacitors considered earlier (installed on the 11 kV lines downstream), followed by new applications at the 33/11 kV substations (usually at the 11 kV bus bars), were computed. Finally, the transmission load flow program was used to compute the loss reduction that will be achieved on the transmission system (in particular in the 132 kV line from Ubungo to Ilala) for the applications already selected at a lower voltage level.

7.13 Table C8 A and B in Annex C provides the results of the capacitor application studies on 11 kV feeders at Dar es Salaam. In section A, the feeders are modeled according to the present network arrangement. In section B, the arrangement is altered to represent the changes that will be introduced by the system development proposals recommended in section 8 of this report. Applications of 300 and 600 kVA have been studied on a large number of feeders, and the tables provide details of power factor improvement and loss reduction achieved at the three load steps. The energy savings achievable for the network loads of 1991 and 1995, together with the loss reduction load factor and the rate of increase of benefits (over the period 1991 to 1992), are also computed. The latter two figures provide valuable information on the characteristics of loss reduction benefits of capacitor applications and may be used for feeders exhibiting similar loading characteristics. Section B of Table C8 provides information on the reduction of the benefits realizable from feeders that undergo changes consequent to the introduction of the recommended network improvements.

7.14 The benefits realizable in the 33 kV networks are presented in Table C9 of Annex 9. The network alterations described above cause only minor changes in this case (restricted mainly to the Wazo hill feeders I and II) and are indicated in the table. A summary of the benefits achievable in the transmission system is presented in Table C10 of Annex C. Loss reduction benefits in the transmission system are presented with the system conditions as at present for the network loads of 1992, with the introduction of the second circuit Kidatu to Morogoro for the loads in year 1993 and with the completion of the second circuit up to Dar es Salaam for the loads of year 1995. It is seen that substantial benefits are realized for the initial years but reduce considerably when the proposed transmission line developments are commissioned. Thus, a peak time loss reduction of 320 kW and 195 kW per 1000 kVAr of capacitor application are obtained for the whole system for the initial installation and when the total capacitor installation increases from 7,000 to 8,000, respectively. For the subsequent years studied, namely 1993 and 1995, the corresponding benefits reduce to 25 and 89 kW in 1993 and 16 and 59 kW in 1995, respectively. These reductions are caused by the increased reactive generation of the transmission lines as well as the improved system voltages in the later two years. Even the loss reduction of the Ubungo-Ilala line shows a corresponding reduction, varying from 20 to 10 kW per 1,000 kVAr of compensation. In computing the economic benefits of the capacitor applications only, the benefits along the Ubungo-Ilala line (for capacitors placed on lines downstream of Ilala) is considered, at a conservative figure of 10 kW per 1000 kVAr. The benefits for the overall system have been omitted, particularly in view of the recommendations to install other reactive compensation equipment for the transmission system-whose introduction will greatly reduce the benefits that can be achieved by the capacitors in the distribution network. The larger quantities and switching facilities required by the compensation for the transmission system also do not allow its function to be provided solely by the compensation in the distribution networks.

Recommendations for Reactive Compensation on the Distribution System

7.15 Based on the results of the benefits at various voltage levels, ten 11 kV feeders have been selected in Dar es Salaam for capacitor applications by units of 600 kVAr each. The benefits computed at each level are assembled in Table C11 (section A) of Annex C to present the total benefits that can be attributed to a particular application. In considering upstream benefits on the 33 kV lines for applications at 11 kV, each application associated with a particular 33 kV line is taken in turn, and only incremental benefits are credited. The installations are expected to be commissioned in 1993, and the benefits based on the existing system is assumed to occur up to 1996. Thereafter the 11 and 33 kV networks are assumed to be altered by the proposed system developments (given in section 8). An examination of the results of capacitor applications after the new developments are introduced (see Table C8B) indicates that most of the high-benefit applications in the earlier system now show a substantially low level of benefits. This is particularly because it is the poorly performing feeders that are substantially altered in the new developments. It is therefore proposed that the capacitors be removed from their former application and reassigned to feeders that produce better loss reduction benefits. The best locations for their reallocation are presented in section B of Table C11, and the benefits are computed for the years 1997 to 2008, providing for a 15-year lifetime. These benefits are added on to the benefits computed for 1993 to 1996, and the total discounted benefits and the resulting benefit to cost ratios are given in section A of Table C11.

7.16 It is seen that the selected applications have very high benefit-to-cost ratios (ranging from 12.5:1 to 43:1) and low payback periods (ranging from 9 to 1.5 months), indicating the highly profitable nature of the use of reactive compensation measures in the distribution system, particularly as short-term measures. The overall benefit-to-cost ratio for the 10 applications in the 11 kV lines works out to 23:1, and a total of 1.4 MWh per year of energy can be saved at 1991 load levels.

7.17 In addition to the capacitors placed on the 11 kV network, additional compensation can be effectively employed at a number of 33/11 kV substations. The loss-reduction benefits that can be achieved on the 33 kV lines is seen from Table C9 in Annex C. Benefits that can be assigned to the application at the substations are only those that are incremental to the applications already considered at 11 kV. A computation of the benefit-to-cost ratios and payback periods of selected applications at the substations are presented at Table C12 of Annex C. It is seen that about 5,300 MVAr of additional capacitors can be economically employed at the substations selected. Even after allowing for only the incremental benefits, the benefit-to-cost ratios for these applications still remain substantially high (varying from 8.7:1 to 17:1).

7.18 As discussed earlier, the installation of capacitors in the distribution system improves the power factor and reduce losses in the transmission system. The capacitors will thus assist the transmission system operation during system peak and at other heavy load times (when a reduction of the power factor is desired). The proposals in this section recommend the installation of 15.3 MVAr of capacitors in unswitched mode. In para. 4.10 of Section 4, a recommendation was also made for an unswitched 20 MVAr reactor to be installed at Ras Kiromany. The capacitors recommended in the distribution system may be considered to offest most of the reactive vars introduced by the reactor at Ras Kiromany. This further means that the cost of the additional 20 MVAr of compensation included in the economic evaluation of the proposal to shift the reactor to Ras Kiromany could be reduced substantially from the analysis when all the proposals are considered together.

7.19 In para. 4.11 of Section 4, the necessity for compensation of the reactive load at the Tanga grid substation was discussed. The benefits of this investment (loss reduction on the 132 and 33 kV lines) are evaluated in Table C 3. Clearly, compensation would be best provided at or as close as possible to the cement factory, which is the major consumer supplied from this station and is fed by an 11-km-long 33 kV feeder. Since this compensation is to be applied at distribution level, details of the recommendation are included in this section.

7.20 The compensation at Tanga and at two other installations selected at Dar es Salaam-Wazo Hill and ALAF-are primarily dependent on the power factors of the large factories supplied at these locations. The studies conducted on the basis of power factors determined by measurements at these locations take into account any compensation presently employed. Installation of compensation at these locations must be carefully coordinated with the major consumers, who may have plans of their own for improving the power factor of their operations.

Summary of Recommendations

7.21 In consideration of the loss reduction benefits presented in Tables C.8 to C.12 of Annex C and the discussion above, it is concluded that very high economic benefits will be achieved by proceeding with the early application of reactive compensation measures in the distribution system. A summary of the applications selected on the lines as well as the substations is provided at Table 7.1, along with the benefit-to-cost ratios and payback periods. With respect to the installation of capacitors at consumer substations, careful coordination is required with the consumers' own programs.

7.22 Total distribution system energy losses are estimated at about 7.3 percent of gross generation (see Section 3). This percentage corresponds to approximately 100 GWh per annum. The loss reduction that would be achieved by implementation of the recommendations made above for installation of capacitors would result in reduction of distribution losses by about 2.5 percent (which represents 0.2 percent of the total energy produced). The major reduction in technical losses to be achieved on the distribution system will be accomplished by various network improvement measures dealt with in Sections 8 to 11. The reactive compensation measures proposed for the distribution system in this section provide loss savings (at present loading levels) of 2.8 GWh/year, an overall benefit/cost ratio exceeding 10/1 and a payback period less than 7 months.

Table 7.1. Capacitors Recommended for Installation in the Distribution System

Feeder	Change location	capac/ size	Total units MWh/year			VC atio
Installed	(after 1996)	kVAr	1991	1995	months	
On 11 kV lines						
K4, Industrial	Kigam F1	600	295	339	1.4	39.7
K3, Kilwa road	Kigam F2	600	130	133	3.1	18.5
Port	Port	600	129	181	3.1	20.7
O3, Packers	04, Kinondoni	600	170	174	2.4	22.0
D10, Magomeni	D2,Town1	600	105	94	3.9	13.3
MK1, Msasani	MK4, north east	600	61	87	6.6	12.5
MK2, Tandale	F31, Industrial	600	131	211	3.1	31.2
Kunduchi	F2, RTD	600	274	492	1.5	43.1
U1, Kisiwani	U1, Kisiwani	600	57	99	7.1	15.1
U2, Menzeese	Lugalo	600	50	67	8.1	13.9
TOTAL APPLICA	TIONS ON 11 KV LI	NES	1402	1877		23.0

AT 33/11 kV Substations and consumer installations

.

ALAF	500	53	59	8.6	15.8
WAZO HILL CEMENT FACTORY	3000	450	566	6.1	8.7
KURASINI	600	49	72	11.2	20.9
OYSTER BAY	600	59	69	9.3	16.0
MBEZI	600	33	53	16.6	17.1
TOTAL APPLICATIONS AT SS. DAR ES SALAAM	5300	644	819	7.5	12.5
TANGA CEMENT FACTORY	2 x 4000	815	13492	5.3	21.0
Total for applications on lines and substations		2861	4045	2.9	

-

8. DEVELOPMENT PROPOSALS FOR DAR ES SALAAM

The present distribution system

8.1 The present peak load on the Dar es Salaam network is approximately 110 MVA and is supplied from the transmission network by two grid substations, one at Ubungo (2 x 50 MVA) and the other at Ilala (2 x 45 MVA). Four bulk consumers (Wazo hill cement factory, ALAF, Tazara and Friendship Textiles) supplied at 33 kV contribute 20 MW and the rest of the load (90 MW) is distributed along the 11 kV network supplied by eleven 33/11 kV (primary) step down transformers. The present feeder loads on the 33 and 11 kV network as well as calculated peak losses and end voltages are presented in Table A.2.1 of Annex A.

8.2 The present overall loss level (2.2 percent at peak) on the 33 kV system is generally acceptable. Currently the only feeder exhibiting an excessive loss level is the Wazo Hill II feeder (supplying the Wazo Hill cement factory) with present peak losses of 4.9 percent (and a terminal voltage drop of 5.7 percent). The load on Wazo Hill I feeder will also increase substantially over the next few years and the network covering the area supplied by the two feeders will need suitable augmentation. In addition the Factory Zone III feeder also shows a moderately high peak power loss of 4.1 percent. Proposals to reduce the losses on the Wazo Hill I feeder (while catering for the expected load increases) are provided in this report. The losses on the Factory Zone III feeder are best reduced with the altered feeding arrangements to be made consequent to the second 220/132 grid substation expected to be introduced in Dar es Salaam (see para 8.11) along with the introduction of the second Kidatu-Morogoro-Dar es Salaam 220 kV line. Thus possible improvements to this feeder are not considered to be economical at this stage.

8.3 The overall losses in the 11 kV system (averaging about 3 percent at the 1991 peak) are also not excessive. However there are a few feeders that individually exhibit excessive losses and line end voltage drops. Five of the worst performing feeders are the Kunduchi feeder from Mbezi, Industrial feeder from Kurasini, O4 and O6 feeders from Oyster Bay and the MK2 feeder from Mickocheni. The first of the above feeders already has a peak losses exceeding 10 percent while that of the others range from 5 to 8 percent. The loss levels of all feeders would however increase with load growth if system improvements are not carried out. Thus in order to ascertain the state of the system in the future a calculation of the losses and voltage drops to be expected in 1995 in the absence of any system development works is also provided in Table A.2.1. The loading densities of the areas as supplied by the existing feeding arrangements provide important information particularly in estimation of load growth both for the existing networks as well as for future expansions and are presented in Table A.5 of Annex A. In the following paragraphs various areas of the network that require improvements are examined and solutions proposed to overcome excessive loss levels and poor reliability conditions. The proposals are intended to provide economically acceptable network configurations over the next five to ten years allowing for some

- 78 -

additional investment that may be required due to various local load development not currently identifiable. Loss reduction and reliability benefits for the development proposals are computed as discussed at Section 6 and cost benefit analyses of the proposals are also presented. While these proposals primarily cater to the development of the existing systems the capacities of the substations and main feeders are also configured to accommodate the expansion of the networks to new areas that would be electrified shortly.

Network Development proposals

Wazo Hill and Kunduchi areas

8.4 The area north west of the Msasani Bay has a load of about 7 MW at a cement factory at Wazo Hill with a large number of tourist hotels along the Kunduchi and Mbezi beach fronts. The 33 kV Wazo Hill feeders from Ubungo feed the loads; with feeder No II supplying the Cement factory and feeder No I supplying the Mbezi Substation. Mbezi and Kunduchi areas are supplied from 11 kV feeders from the latter. A new housing development has commenced stretching from Mbezi and extending north along Tegeta and Boku up to Ras Kiromany. An urban development plan has also been prepared for the area and water supply, schools and community facilities are in the process of being developed. In addition tourist hotels are also expanding and new ventures are being introduced. The 11 kV feeder supplying the area presently has the highest percentage losses (11.5 percent) and clearly will not be in a position to pick up any additional load. Thus a network rearrangement with additional injection from the subtransmission system is very desirable. The 132 kV line to Zanzibar via Ras Kiromany passes through the area in close proximity to the cement factory. This line is very lightly loaded and increasing the load on the line would also help in controlling the transmission system voltages at the line extremity. A suitable location has been identified for a proposed grid substation close to the Bagamoyo road. The identified location lies approximately mid way between the two load centers, 2.5 km from the cement factory and 2.0 km from the Kunduchi area. Two short double circuit 33 kV feeders from the grid substation could be constructed, one to the Cement Factory and the other to a new 33/11 kV substation at Kunduchi. An economic analysis of this proposal is presented in Table E.1.1 and is found to be very economical with a benefit to cost ratio of 8.0. The benefits from the proposed system consist of a substantial loss reduction by transferring load from the 33 kV system to the 132 kV system, introduction of new capacity to cater to the growing load demand in the Kunduchi area and the improvement of reliability to the cement factory as well as the Kunduchi-Mbezi areas. The substation at Kunduchi will be of initial capacity of 5 MVA (with provision for expansion to 2 x 5 MVA when the load grows sufficiently). The new substation will have 5 feeders: north along Bagamoyo Road, north along the Kunduchi beach, west to feed some local distribution, and two circuits south along Bagamoyo Road.

The Msasani Peninsular

8.5 The Msasani peninsula is presently fed by Feeders O 3 and O 6 from the Oyster Bay primary substation together with feeder MK 1 from the Mikochnai primary substation. Feeder O3 in particular is heavily loaded and exhibits high losses. The two primary substations are situated at a considerable distance from the main load center and the arrangement of the feeders does not provide sufficient reliability. This is a significant disadvantage since the area covers the best residential district in the city. The load growth over the last few years has been quite substantial and is expected to be maintained at a high rate for a few more years before reaching saturation levels. The high growth rate will cause the network performance to worsen in the coming years. In addition to the poor performance of the feeders the two substations supplying the feeders are also heavily loaded. Oyster Bay substation is already loaded up to its capacity and it is expected that the Mikochani substation will reach its design rating by 1995. Thus an additional supply point within the peninsula is clearly required at a very early date. Obtaining suitable land at the center of the peninsula (approximating to the load center) is difficult due to the prime value of land in the area. TANESCO has however been able to secure a site a short distance away. The feeders from the proposed substation have therefore been designed from this location and the loss reduction benefits and capital costs computed accordingly. The cost benefit analysis of the proposal is presented in Table E 1.2 of Annex E. It is however recommended that efforts be made to obtain a more central location, which will further increase both the loss reduction and reliability benefits.

The City Center area

8.6 The existing city center substation has the highest load among the primary substations in Dar es Salaam. Many large buildings presently under construction will cause a substantial increase of load in the near future. In planning the developments required a growth rate of 7 percent has been used for the period up to 1993. Thereafter, the growth rate is assumed to level off gradually down to 2 percent to account for the saturation that would occur as the available land is built up. Although the network losses are quite low in the existing feeders off the City Center substation due to the short distances, the feeders are highly loaded, two of them being in the range of 250 to 300 Amps and two others being in the range of 150 to 200 Amps. The high loading of the feeders prevents their extension for exigency situations. Being the administrative and commercial center of the country the area should have a high reliability of supply. A suitable site for an additional primary substation has been located at Sokoine Drive, which is situated in the area experiencing the highest load growth. The cost/benefit analysis of the introduction of an additional primary substation (33/11 kV, 15 MVA) at this location is given in Table E 1.3 of Annex E. In the absence of this development the capacity of existing primary substation at City Center would need to be augmented in the near future. This alternative investment required and the high value to be assigned to reliability benefits are specific advantages of the proposal and a benefit to cost ratio of 18.6 is attainable.

Kidongo-Chekundu and Chang'ombe areas

The area along Pugu road south of Ilala is another location that can benefit by 8.7 injection from the 33 kV system. The southern section is fed by two feeders one from Kurasini and the other from Ilala. Both these feeders are loaded at the line extremities. The feeder from Kurasini in particular has a very high loss level (7.3 percent at peak). The western side, closer to the city is fed by feeders D 2 and D 9 from Ilala and feeder C 5 from City Center. These feeders do not have high losses due to the short distances. However the loading levels are high (close to 200 Amps) and the loads supplied do not have sufficient alternate feeding possibilities. TANESCO is presently considering the possibility of two substations one at Kidongo-Chekundu (for the western section) and the other at Chang'ombe (for the southern section) and sites for the two substations have already been identified. Possible 11 kV connections investigated if both substations are to be constructed give quite low loading levels for the substations as well as the feeders. The introduction of a single substation would suffice for the next ten years or so and the Chang'ombe site is considered to be the more economic to be introduced at the first stage. A substation at this site is capable of reducing the high losses of the Industrial and the D 1 feeders as well as in providing the reliability back up for the Kidongo-Chekundu areas. The new substation will feed a double circuit line along Pugu road. These circuits would take over the existing D 1 feeder load (Keko Mwanga area) and the end portion of the port access feeder (north Kurasini). The latter area will now obtain supply from a rearrangement of the feeders D 1, D 2 and D 9 from Ilala. Part of the load of the D 3 feeder from Ilala will also be transferred to a new feeder from the proposed Chang'ombe substation. The cost benefit analysis of this proposal is presented in Table E 1.4 and is justifiable with a benefit to cost ratio of 12.6.

Magomeni, Manzese and Tandale areas

8.8 The area between Ilala and Ubungo on either side of the Morogoro road is of medium load density with a mixture of residential and industrial load. The area is fed from the line extremities of four feeders one each from the primary substations Ilala (D 10), Oyster Bay (O 4), Mikocheni (MK 2) and Ubungo (U 2). The loading levels and feeder lengths can be approximately halved by a suitably located primary substation. It may be noted that such an arrangement will reduce the network losses to one eighth of the former value resulting in a loss reduction of approximately 88 percent! At present TANESCO is considering a site for a future substation at Magomeni. However the location selected is not so centrally situated as to enable the reduction of the load on most heavily loaded feeder, MK 2. This feeder is one of the five most poorly performing feeders in Dar es Salaam with peak losses of 4.7 percent and a voltage drop of 8.0 percent. Thus any development proposals for this area should address the poor performance of feeder MK 2. It is thus recommended that the proposed substation be shifted towards Mwembe-Chai so that the ends of the four feeders mentioned above can be connected to the new substation. A cost / benefit analysis of this proposal is given in Table E 1.5 of Annex E and yields a very economic ratio of 31.2.

Load development in the southern and south western suburbs

A number of new developments are taking place in the southern and south western suburbs of the city. The areas with the highest load growths consist of Tabata (in the western side, a short distance north of the airport), Temeke-Yombo (south of Pugu road and east of Kurasini) and Mbagala (south of Kurasini). Studies were made to ascertain the system improvements that are required to ensure that the load growth can be met at technically satisfactory and economically optimum levels. The Tabata area is only about 3 km away from the primary substation at Factory Zone II and a separate primary substation would not be required at the loading levels to be expected in the medium term. The new load should therefore be met by additional 11 kV feeders as required by the load concentrations. The specific development of the networks in this area may also be postponed until a firm decision is taken on the location of the proposed receiving substation for the additional 220 kV circuit from Kidatu.

8.10 In the Mbagala area a 33 kV line has already been constructed from Kurasini to feed a glass factory, which, however, failed to go into production. This line, currently unused, could be used to connect a new primary substation that could then reduce the supply length of the existing Kilwa road feeder from Kurasini. The new substation could in fact separate the Kilwa Road feeder to 3 portions, two being fed from the new Mbagala substation (on either side) and the remaining section being fed from Kurasini. The Temeke-Yombo areas can also be supplied from the new Mbagala and existing Kurasini substations by constructing the required 11 kV lines. The cost benefit analysis of the proposal is given in Table E 1.6 of Annex E and indicates a very economic ratio of 14.0

Future transmission developments and overall feeding arrangements for Dar es Salaam

A second 220 kV transmission line is planned for construction from Kidatu to Dar 8.11 es Salaam (the first stage up to Morogoro being already under construction) to rectify network voltages, improve reliability and reduce system losses. This additional circuit will also be particularly useful with the commissioning of the Kihansi project by about 1989. TANESCO is presently considering a new step down station in the Temeke area (south of Ubungo) to receive power from the new line. This option is clearly advantageous for a number of reasons. Firstly it enables an additional injection point to the distribution network to be provided instead of increasing the capacity of the existing step down station thus improving the reliability of the network. To maximize the system reliability transmission connections should be provided from the new station to Ubungo (preferably at 220 kV) and Ilala (at 132 kV). The network will then form a solid interconnection between the three feeding points of the Dar es Salaam area providing optimum security of supply to each point. Secondly, feeders from the new station can rationalize the 33 kV network reducing a number of feeder lengths considerably. In particular the Temeke area is situated close to the load concentrations at Pugu Road (consisting of the Factory Zones I & II, and the directly supplied industries TAZARA and ALAF) and it will be logical to transfer these loads to the new station. Further supply can also be conveniently provided to Kurasini and the proposed Mbagala substations. Due to the expected development of the new receiving substation in the

Temeke area the development proposals for Temeke and Tabata areas are best postponed until the location and arrangements for the new receiving station is finalized.

8.12 In contrast, the area north of Ubungo is unlikely to receive any additional transmission connections for the foreseeable future. Thus it would be prudent to proceed with the early introduction of a 132 step down station at Wazo hill utilizing the existing line to Zanzibar (see para 8.4). An examination of the existing grid substations and the two proposals indicate that the network would be geographically well positioned to provide the city and suburbs of Dar es Salaam with an efficient power supply system. Ubungo and Ilala already provide two main supply points with Ilala conveniently located to feed the city center area. Future load growth is expected towards the north and south of the presently developed areas and convenient locations for grid substations are proposed for both. Adequate 33 kV network routing possibilities are also available to provide the required supply lines and interconnections. The proposed primary substation development envisaged in this report is also observed to blend well with the anticipated transmission development. TANESCO should therefore pursue the identified options as early as time permits.

Summary of MV development proposals for Dar es Salaam

8.13 The system development proposals described above for the city of Dar es Salaam are summarized below. These proposals aim to reduce network losses to economic levels, improve reliability of operation and provide the necessary capacity for the expected future load.

Item	Ref. to C/B table	Cost in US\$ 000	B/C Ratio
Grid SS <u>5</u> / at Wazo & Pr. SS	E.1.1	2278	7.9
Pr. SS at Msasani	E.1.2	983	11.7
Pr. SS at City Center	E.1.3	898	18.6
Pr. SS at Chang'ombe	E.1.4	555	12.6
Pr. SS at Mwembe-Chai	E.1.5	651	31.2
Pr. SS at Mbagala	E.1.5	493	14.0

SS denotes substation and Pr. SS denotes primary subatation (33/11 kV)

5/

9. SYSTEM DEVELOPMENT PROPOSALS FOR TANGA REGION

The Present Distribution System

9.1 The area studied under the Tanga region extends much beyond the Tanga town and its environs. It covers nearly 100 kilometers westward from the coast and about 80 kilometers along the North-South direction. Supply to the distribution network is provided from two main sources. The Tanga town, adjoining areas westward, and the coastal belt are supplied from the 132/33 kV grid substation at Majani Mapana (2 X 20 MVA). The inland area is supplied from the Hale complex (power plant and 132/33 kV grid substation) and the Pangani power station feeding directly on to the 33 kV lines. The largest load in the region is the Tanga Cement Factory, which is supplied by an 11 km double circuit 33 kV line from the Majani Mapana grid substation. The Tanga town has an 11 kV distribution system fed from a 33/11 kV substation situated adjacent to the grid substation. More than 20 other small capacity (300 to 2000 KVA) 33/11 kV substations are dispersed over the region to feed small 11 kV townships networks. Supplies are also provided to some localities and bulk consumers, notably sisal and tea estates, by the 33 kV network. The feeder losses and voltage drops on the 11 and 33 kV lines in the region are given in Table A 2.2 of Annex A for the present loads and those expected in 1995.

9.2 Because of the poor voltages received from the transmission system, the Tanga Cement Factory is restrained from operating at its full capacity. However, the deficiencies of the transmission system are anticipated to be resolved within the next two years, and the distribution system should then be capable of providing the full load expected from this consumer in the most economic manner.6/ In addition to the restriction on the load of the Tanga Cement Factory, a load of about 2.0 to 2.5 MW is shed at system peak due to the capacity shortage at the Majani Mapana 33/11 kV substation. The network feeding Tanga town also needs to be rationalized and its reliability improved in keeping with the importance of this load center. The geographical lay out of the medium voltage network in Tanga town and its vicinity is shown in Drawing F 2.1 in Annex F.

9.3 The interior areas of the Tanga region are of very low loading density and are supplied by very long subtransmission lines at 33 kV. The network arrangement is shown in Drawing F.2.2 of Annex F. Two 33 kV developments from the switching station at Neusegan, one stretching westward via Korogwe to Toronto and Handeni and the other stretching eastward up to the switching station at Kange (close to Tanga) form the backbone of the supply system. From the Kange switching station two 33 kV feeders supply the northern (Moa) and southern (up to Kigombe and Bushuri) coastal areas. There is also a feeder proceeding south from the Hale 33 kV switching station towards Mgambo. The western feeders towards Toronto and Handeni are both

^{6/} By recommendations discussed in Sections 4 and 5 as well as the New Pangani power station expected in 1995.

approximately 110 km long and exhibit losses of 5 and 4 percent respectively at present loading conditions. The voltage drop at Toronto is of the order of 7.5 percent The loads are however too small and dispersed to justify injection from the transmission system (at 132 kV) or a development at an intermediate voltage of 66 kV. Satisfactory voltage to the consumer can be maintained at present by regulating the 33/11 kV transformer tapchangers. If required a regulating transformer could also be installed mid way along the line at a later date.

9.4 In addition to the long 33 kV lines there are a number of 11 kV lines that are excessively long and exhibit high losses. These include the Mazinde-Lushoto feeder with the longest branch extending up to 50 km, Bushiri II feeder (32 km), Korogwe II feeder (25 km) and the Magunga-Amani feeder (20 km). The rest of the 11 kV feeders have acceptable loss levels and voltage profiles due to their low loading levels.

Network Development proposals

Supply to the Tanga Cement Factory

9.5 This is the largest single load in the region and is presently served by a 11 km 100 mm. sq. double circuit. line from the grid substation at Majani Mapana. Proposals have been formulated to develop this factory and increase its output; but these proposals are hampered by the inadequate and unreliable power supply presently provided. The 132 kV line to Tanga in fact passes very close to the factory but the supply is provided after stepping down at the Majani Mapana grid substation (132/33 kV) and transmission back to the factory over lower voltage (33 kV) lines. A step down facility close to the factory would improve system performance in a number of ways. The primary benefit will be the elimination of the losses in the 33 kV transmission lines and the high security and supply reliability that can be provided to the Cement Factory. In addition the 33 kV lines from Neusagan to Kange could be reconnected to the new grid substation reducing losses and improving the reliability of these lines and relieving further capacity from the Majani Mapana grid substation. This 132/33 kV substation has been recently augmented during the National Rehabilitation Project and the additional capacity which will be made available with the transfer of the Cement Factory load to the new substation is not a necessity immediately. However apart from the load increase expected at the Cement Factory, a number of other loads are expected to go up steeply with the correction of the network voltages and the provision of sufficient capacity at the 33/11 kV substation feeding the Tanga town. Load increases are also expected at the two other major consumers, the Tanzania Fertilizer Corporation and the Steel Rolling Mill. Thus the existing capacity of the Majani Mapana grid substation is expected to be reached by about 1997-98 in the absence of the proposed grid substation. The two grid substations will also act as back up for each other and increase the system reliability for the loads supplied from both. The arrangement will also provide TANESCO with a spare 20 MVA 132/33 kV transformer that could be very useful to cater for any unexpected grid substation transformer failures particularly as sufficient spare transformers are not readily available. The economic analysis for this proposal is provided at Table C 2.1. It is seen that the investment is justifiable by considering only the loss reduction benefits (benefit/cost ratio of 1.7). With the inclusion of reliability benefits at even an outage saving of 1 percent of the energy supplied and a value for saved outages of five times the energy cost the benefit/cost ratio rises to 6. Thus the investment could be considered to be fully justifiable even without considering the additional grid substation capacity provided.

Additional 33/11 kV Substation for Tanga Town

9.6 The geographical layout of the 33 and 11 kV lines in the Tanga town and its vicinities is shown at Drawing F 2.1 of Annex F. The existing 2 x 5 MVA substation adjacent to the grid substation at Majani Mapana situated on the western side of the town presently feeds the entire 11 kV system. This substation is presently incapable of meeting the system peak and 2 to 2.5 MVA of load are already being shed. Thus the load growth in the Tanga town is already constrained. Increase of capacity at the substation will not be sufficient due to two major considerations. Firstly, the 11 kV feeder losses will increase to uneconomical values with the expected load growth. Secondly, the supply reliability to this important town is inadequate as the entire network is fed from a single 33 kV source situated at one extremity. The provision of an additional substation from the eastern side will address both these issues. The new feeders from the substation will approximately halve the length of almost all the existing feeders and will thus considerably reduce the losses on the 11 kV lines. The supply possibilities from either source of supply can be provided to almost 90 percent of the loads and this will increase the reliability of supply considerably. A suitable site has been identified at Sahare for the new substation and the 33 kV line to the Fertilizer Factory could be utilized to provide supply to it. The substation could initially be equipped with a 5 MVA transformer but the layout would provide accommodation for a second 5 MVA transformer (which may be required by about 1999). Three 11 kV feeders extending towards Raskazone, Usagara, and Kwakaheza respectively could be provided immediately from the new substation as shown in Drawing F 2.1. Both the Usagara and Kwakaheza areas are earmarked for high load growth and the sitting of the new substation is optimally placed with respect to this development. A cost ratio of 11.8 is achievable and the benefit analysis is presented at Table E 2.2 of Annex E.

Lushoto town and outlying areas

9.7 The Lushoto town together with a large area extending to the east as far as Herculo and Balangai is supplied by a single circuit 11 kV line from the Mazinde substation. The furthest point in the 11 kV feeder is 50 km along the line route from Mazinde. Due to the low loading densities in the outlying areas the voltage profile and loss levels, though poor, are not as bad as could be expected from such long line lengths. However the Lushoto area is presently experiencing a high load growth and in a few years time it will not be possible to sustain such long line lengths. One solution considered is the establishment of a 33/11 kV substation at Lushoto that will enable the 11 kV lines to be divided to three feeders (Lushoto town area, Soni/Bumbuli and Mkuzi). A 33 kV line of about 10 km will have to be constructed tapping the existing Mazinde line at Kasiga. The 33 kV supply at Lushoto will enable the subsequent extension of the system to areas such as Lukozi and Mlalo , which are potential areas for electrification in the future. The network layout is shown in Drawing F.2.31 of Annex F. The economic analysis shown in Table E.2.31 of Annex E indicates that at the discount rate and load growth considered the proposal is marginally inadmissable (benefit/cost ratio 0.9).

9.8 Another alternative is to convert the eastern part of the 11 kV network to 33 kV and to feed it from a 33 kV line extension from Mlemua. This supply arrangement could be accomplished by the conversion of the existing 11 kV line from Mlemua towards Kulasi and then constructing a 33 kV line up to Bumbuli. The load removed from the 11 kV network will also be removed from the 33 kV line from Magunga to Mazinde, a distance of about 50 km. Due to the reduction of the load along the 33 kV line considerable additional loss reduction benefits are obtained in this alternative. The network layout is shown in Drawing D 2.32. The economic analysis shown in Table E 2.32 of Annex E indicates a benefit/cost ratio of 1.2. Hence this alternative is recommended instead of the installation of a 33/11 kV substation at Lushoto.

Korogwe North feeder

9.9 The northern feeder from Korogwe substation extends 30 km to feed the Kwamndolwa area and a number of tea factories. The peak losses are of the order of 6.5 percent and the line end voltage drops by 8.8 percent. Alternative proposals considered to develop the network consists of:

- (a) installation of a 33/11 kV substation at Kwamndolwa by a 6 km line extension,
- (b) conversion of the existing line to 33 kV, retaining the existing copper 25 mm.sq. conductor.
- (c) conversion of the line to 33 kV together with the replacement of existing conductors with 100 mm. sq. ACSR conductor.

9.10 The network is shown in Drawing F 2.4 of Annex F and the cost/benefit analysis is shown in Tables E 2.41, E 4.42 and E 4.43 respectively of Annex E. Proposals (a) and (c) indicate a higher cost than the present value of benefits. Proposal (b), the conversion of the line with the existing conductors show a benefit/cost ratio of 1.7. This solution is therefore recommended for selection. There are two significant additional benefits in this alternative. Firstly, the copper installed is capable of lasting a considerable period and the replacement of insulators and cross arms can be done with minimum damage to the conductor. It is expected that the uprated and rehabilitated line will last for another 10 to 15 years, which would also be close to the expected technical life of the system configuration. Secondly the voltage conversion will afford an opportunity to change the high loss transformers carrying low loads and optimize transformer losses. There is a good possibility of obtaining significant benefits by the use of low loss single phase transformers. Thus there are a number of additional benefits not quantified in the benefit to cost analysis.

Korogwe West feeder

9.11 The western feeder from Korogwe is 25 km long with peak losses of 8 percent and line end voltage drop of 9.3 percent at present loading conditions. The conversion of this line to 33 kV with the two alternatives of (a) retaining the existing conductor (25 mm.sq. copper) and (b) with a conductor change out to 100 mm.sq. ACSR has been evaluated in Tables E.2.51 and E.2.52. The uprating of the line while retaining the existing conductor is shown to be advantageous with a benefit/cost ratio of 1.5. The change over to 100 mm.sq. conductor while uprating the voltage indicated a higher cost than the present value of loss reduction benefits. The additional advantages of retaining the existing conductor discussed in the para 9.10 (Korogwe North feeder) apply to this case too. Hence the conversion of this feeder to 33 kV while retaining the existing copper conductor is recommended.

Establishing a 33/11 kV substation at Kibaranga

9.12 The southern feeder at 11 kV from Lanzoni substation meets the northern feeder (also at 11 kV) from Muheza substation at Kibaranga. In addition there is a spur line to the west (to Mjesani) from this location. A 33/11 kV substation can conveniently be located at this intersection as the 33kV line to the substation at Lanzoni passes close by. The economic analysis of establishing a substation Kibaranga is presented in Table E 2.6 of Annex E indicates a high benefit/cost ratio of 6.5 and the proposal is recommended for acceptance.

Summary of MV development proposals for Tanga

9.13 The system development proposals recommended at MV for the Tanga region are summarized hereunder. These proposals aim to reduce network losses to economic levels, improve reliability of operation and provide the necessary capacity to meet future load expectations.

Item	Ref. to C/B table	Cost in US\$	B/C ratio
20 MVA grid SS at cement mill	E.2.1	1490	24.0
15 MVA SS at Sahare	E.2.2	533	11.8
Conversion of Lushoto-Bambuli to 33 kV	E.2.3.2	945	1.1
Conversion of Korogwe North to 33 kV	E.2.4.2	563	1.5
Conversion of Korogwe West to 33 kV	E.2.5	408	1.4
5 MVA substation at Kibaranga	E.2.6	195	5.4

10. DEVELOPMENT PROPOSALS FOR THE MOSHI REGION

The Present Distribution System

10.1 Supply to the Moshi town and surrounding rural areas is provided from the 2 x 20 MVA grid substation at Kiyungi. The load at Moshi town is distributed entirely from a 11 kV system, which in turn is supplied by two primary substations at Boma la Mbuzi and Trade School. The rural areas north of the town (Uru, Madukani, Kifumbu, Mkombone etc.) are also supplied by extensions off the 11 kV feeders supplying the town. The connection of the rural load has adversely affected the performance of the feeders supplying the important loads at the town center by increasing the feeder load and adding to the line lengths (thus reducing the feeder reliability). The three main feeders supplying important loads in the town area, M 2 and M 3 feeders from the Trade School substation and the Town feeder from Boma la Mbuzi substation are those mainly affected by the connection of the rural loads. The remaining 11 kV feeders from the two substations show satisfactory performance. The rural area immediately west of the town (Weri Weru) is also supplied by a 11 kV feeder from the Trade School substation but the loss levels are satisfactory due to the low loading density.

10.2 The rural areas in the region other than those mentioned above are supplied from four 33 kV feeders; the TPC feeder supplying the area immediately to the south of the grid substation, Machame and KIA feeders supplying the north eastern rural districts and the Rombo feeder supplying the north western districts. The KIA feeder extends west and connects up the Kikuletwa power station (1.16 MW) before proceeding north up to the 33/11 kV substation at Lawati. The Machame feeder extends from the Trade School substation up to the 33/11 kV substation at Machame. The Rombo feeder extends some 122 km from Boma la Mbuzi to supply the areas west of the Moshi town. Although the feeder is lightly loaded the voltage profile is poor with a voltage drop of 6.4 percent at the line extremity due to the extremely long length. Further loading of this feeder will worsen the situation. The KIA and Machame feeders although excessively long are still acceptable with respect to losses and voltage levels due to the very low loading density of the supply areas.

10.3 The geographical layout of the distribution system is shown in drawings F3.1 and F3.2 at Annex F. The peak losses and voltage conditions for the present network for the loads in 1990 and 1995 are computed in Table A.2.3.

Network Development proposals

33/11 kV substation at Majengo area

The primary distribution capacity of the Moshi town area needs to be increased to 10.4 meet the expected load growth in the next five to eight years. The most economical method of providing the required capacity is to provide an additional 33/11 kV substation at a location capable of reducing the lengths of those feeders that presently operate at poor performance levels. The supply arrangement should also provide increased reliability benefits to the overall supply area. The town is presently fed from the western (Trade School substation) and the southern (Boma la Mbuzi substation) directions. A suitable site for a new substation is available in the north eastern area of the town at Majengo. Four 11 kV feeders could be arranged from the new substation; southward up to the town area at Unga, eastward up to the town center presently fed by the M 3 feeder (with the feeder also taking the KCMC area load), eastward up to Kibororoni and northwards taking over the rural area of Uru (thus separating this load from the others). The proposed feeding arrangements from the new substation are shown in drawing F.3.1 of Annex F and an economic analysis of the proposal is presented in Table E.3.1 of Annex E. The analysis indicates that the proposal can be justified considering only the loss reduction benefits achievable (benefit/cost ratio of 1.1). However, The location of the new substation is such that supply to most of the town load is firmed up. Loads presently fed off the M 3 feeder from Trade School substation and the Town feeder from the Boma la Mbuzi substation will now have supply possibilities from more than one primary source. At an outage saving of only 1 percent of the energy supplied the benefit/cost ratio is 4.0.

Conversion of the rural section of the Makombone feeder (M 2 from Trade School) to 33 kV

10.5 The M 2 feeder from the Trade School substation feeds a high load density area around the western section of the town and then extends about 18 km northwards to feed a very low load density area at Kifumbu, Chome and Makombone. The present power losses of this feeder (12 percent) and the tail end voltage drop (15.7 percent) are far too excessive. By 1995 these values will rise to 14 percent and 18.4 percent respectively if system improvements are not carried out. A further disadvantage is the low reliability caused by the long rural line sections on the important town loads. A conversion of the rural sections of this feeder to 33 kV operation would thus be very advantageous. This can be conveniently accomplished by constructing a short line section from the substation to Sambarai and converting the rest of the line to Makombone to 33 kV. The M 2 feeder would then be restricted to the town area. The proposed feeding arrangements from the new substation are shown in drawing F 3.2 of Annex F and an economic analysis of the proposal is presented in Table E 3.2 of Annex E. The analysis indicates that the proposal can be justified considering only the loss reduction benefits achievable (benefit/cost ratio of 1.3). The improved reliability to section feeding the town area will enhance the benefit/cost ratio substantially; at an outage saving of only 1 percent of the energy supplied the benefit/cost ratio increases to 7.0.

Proposed 66 kV development from Kiyungi to Marangu

The 33 kV feeder Boma la Mbuzi-Himo-Marangu-Rombo extends for 122 km 10.6 resulting in a peak power loss of 8.2 percent and a tail end voltage drop of 17 percent at present loading levels. The area supplied by this feeder is widely dispersed and of a low loading density. The total power to be transmitted is also too low at present to justify an additional grid substation at the standard transmission voltage level of 132 kV. However the 66 kV system between Kiyungi and Njiro is now not operational due to its replacement with a 132 kV system and the existing 66 kV feeder bay as well as the possibility of using some of the line hardware provides an alternative to supply bulk power to Marangu at 66 kV. Further there is also an unused 66/33 kV 10 MVA transformer available at Arusha and this can be utilized for the stepdown station. The optimum location for the substation is at Marangu from which location three feeders can be arranged; the first feeder to supply Holili and the local area of Marangu, the second to feed Rombo and Rongai areas and the third to feed the Himo township and Taveta areas. The introduction of a 132 kV subtransmission to this area is not foreseen for the next 15 to 20 years. Thus it will not be necessary to consider any alternative construction strategies such as the construction to 132 kV standards but with initial operation at 66 kV. The proposed feeding arrangements from the new substation is shown in drawing D 3.3 and an economic analysis of the proposal is presented in Table E 3.3 of Annex E. The cost/benefit ratio considering only the loss reduction benefits is 3.0. With the reliability benefits introduced by the separation of the Rombo feeder from the Boma la Mbuzi load as well as the separation of the Rombo feeder to three sections the benefit/cost ratio will increase to 5.0.

Summary of MV development proposals for Moshi

10.7 The system development proposals for the Moshi region to provide ecomical loss and reliability levels are summarized hereunder together with their benefit to cost ratios.

Item	Ref. to C/B table	Cost in US\$ '000	B/C ratio
5 MVA primary substation at Majengo	E.3.1	745	4.0
Conversion of 11 kV lines at Makombone to 33 kV	E.3.2	361	7.0
Construction of 66 kV line to Marangu	E.3.3	482	5.0

11. DEVELOPMENT PROPOSALS FOR THE ARUSHA REGION

The present distribution system

11.1 At present power supply to Arusha is severely hampered by the low transmission system voltages experienced during both the night and day peaks and daily power cuts are required to maintain system voltages. However measures to resolve this problem both immediately (see Sections 4 and 5) and in the long term (construction of the Singida-Arusha line) have been identified and thus the existing difficulties in the transmission system are expected to be resolved shortly. When this is accomplished the release of suppressed demand will bring an added burden to the distribution system. Thus network planning of the distribution system should anticipate this increase of demand and ensure that the expected load can be met at satisfactory technical and economic performance levels.

The Arusha region is supplied from the 40 MVA 132/33 kV grid substation at 11.2 Kiyungi. Four primary substations of combined capacity of 20 MVA steps down the supply to the 11 kV system that distributes power to the town area. Two of the 11 kV lines however extend well beyond the town limits and supplies rural areas up to Monduli and Ngaramtoni (west of Arusha). These lines have feeder lengths of 46 and 37 km respectively and exhibit high losses and poor voltage profiles. Clearly additional loads cannot be connected to these lines unless substantial system improvement is carried out. In addition to the loads supplied at 11 kV two large industrial consumers in the city, General Tyre factory (capacity 6 MVA) and Sunflag factory (capacity 6 MVA) are supplied directly off the 33 kV network. The rural area east of Arusha is fed by the 33 kV Arusha-Moshi feeder. Due to the low load density of this feeder the network losses and voltage conditions are not of immediate concern and major network development to this section would not be required for at least the next 7 years. The geographical layout of the distribution system is seen in drawings F 4.1 and F 4.2 in Annex F. The network losses and voltage conditions for the present system are computed in Table A 2.4 with the existing loads and the loads expected in 1995 respectively.

11.3 The main issues to be resolved in the distribution system are the shortage of existing primary distribution capacity and the improvement of supply conditions to the areas presently fed by the long 11 kV feeders, Monduli and Ngaramtoni (Feeder No: 2). The solutions need to ensure reduction of the present high network losses to economic levels.

Network Development proposals

Uprating of the Monduli Feeder to 33 kV

11.4 In order to reduce the line losses and to achieve a satisfactory voltage profile on the existing 11 kV feeder to Monduli, it is proposed to convert this feeder to 33 kV operation. Such a conversion has in fact been envisaged during the original line construction and 33 kV insulation has already been provided. Hence the investment required is only in replacing the transformers, isolators and associated fusing equipment etc. connected to the line sections to be uprated. In addition a section of the line (approximately 8 km) that traverses an area subjected to flooding needs to be diverted. The new line could conveniently be routed by the side of a new highway that has been constructed recently. The construction work should also include the replacement of supports that have deteriorated (expected to be about one third of the total). The costs of diversion and rehabilitation need not be taken account of in conducting an economic evaluation as these are necessitated by the normal maintenance requirements of the existing system. However, it is seen that the loss reduction benefits are sufficiently high as to make the proposal very attractive even with the inclusion of such costs.

11.5 The loading profile of the line consists of a high load concentration at the Monduli town and very lightly loaded areas up to and beyond the town limits. Thus if the line conversion is done only up to the Monduli town and a 33/11 kV substation installed at this location the existing 11/LV transformers at the Monduli town and the 11 kV operated lines proceeding north and south can be retained. It is also proposed that the new 33 kV line be fed from a separate feeder direct from the Njiro grid substation instead of the present feeding position (from the Power House substation busbar). This arrangement will reduce the losses on the 33 kV interconnector and also provide better security of supply. The loads close to the town could be maintained on the existing 11 kV line thus separating the town supply from that of the rural areas. The economic analysis of the proposal is given in Table E 4.1 of Annex E and indicates a benefit to cost ratio of 8.1. It is seen that the cost of the additional new line section to connect to the grid substation can be justified by the loss reduction on the interconnector alone. In addition to loss reduction benefits, substantial reliability benefits are also achieved. The important loads close to the town are presently adversely affected by the long rural line and the separation of this section will bring substantial reliability benefits to these consumers.

33/11 kV substation at Magereza

11.6 The other excessively long 11 kV feeder at Arusha is Feeder No. 2, also supplied from the Power House substation. This feeder extends 40.5 km up to and beyond Ngaramtoni. The calculated figures for feeder peak power losses is 17.5 percent, and, for the tail-end, the voltage drop is 28.9 percent; these figures indicate a severely overstressed loading condition. Clearly no new loads should be connected until system improvements are effected. The poor reliability due to the long feeder length also affects the important loads in the Arusha town supplied at the beginning of this feeder. The most suitable development for this feeder is to construct a new 33/11 kV substation at Magereza. The present long line length outside the town area can then be split to two feeders supplied from this substation. The short section within the town limits would continue to be fed from the Power House substation. The new 33/11 kV substation is best fed from the 33 kV operated line proposed for the Monduli feeder. The change of the feeding arrangement on the 33 kV system will also provide loss reduction benefits as the Power House interconnector is more heavily loaded than the Monduli feeder. An economic analysis of the proposal is presented in Table E 4.2 and indicates a benefit to cost ratio of 12.3.

33/11 kV substation at Mt. Meru hotel

11.7 Feeder no. 3 from the Power House substation (feeding the important load complex in the Mt. Meru area) is presently carrying a load of over 200 Amps. The capacity of the Power House substation that feeds the central town area is also fully utilized. Although the proposed conversion of the Monduli and Ngaramtoni feeders will release about 3 MVA of primary capacity the expected future loads in the Arusha town would still need about 1.6 to 2.0 MVA of additional capacity to provide reliable operation conditions up to about 1998. Further the Power House substation is located at the southern periphery of the town and it would be advisable to have a feeding point from the northern side in order to provide alternate feeding possibilities for the 11 kV feeders. An ideal site to meet the above requirements has been identified by TANESCO close to the Mt. Meru Hotel. This new substation will ensure that the central area of the Arusha town is supplied from two 11 kV sources. It will provide substantial loss reduction benefits as well as a high level of reliability for the loads presently supplied by Feeder Nos. 1 (Mt. Meru) and 3 (Ilboru) from the Power House substation. The 11 kV outlets will be arranged by 3 feeders as shown in Drawing F 4.3 of Annex F. Two 33 kV supply sources are proposed for the new substation. The main source proposed consist of the construction of a second circuit from the grid substation at Njiro to the Power House and then extending this circuit along the existing 11 kV line up to the proposed site. An alternative supply source is also recommended from the existing Arusha-Moshi 33 kV feeder. This short connection will not only enhance the reliability of the entire town area but also that of the loads supplied along the Arusha-Moshi feeder. The additional reliability can be achieved by installation of line switches or isolators positioned at suitable locations to enable all network sections to be supplied from either of the two 33 kV feeders. The economic analysis of the proposal is given in Table E 4.3 and indicates a benefit to cost ratio of 7.0.

33/11 kV substation at Usa/Arumeru

11.8 The village of Arumeru has been established as the local government district headquarters for the Usa area situated towards the west of Kilimanjaro. There is a rapid load growth in the area and the existing supply system with long secondaries from a few 33kV/LV transformers is inadequate to meet the expected loading conditions. It is therefore necessary to increase the number of distribution transformers substantially and rationalize the LV networks in order to provide supply at acceptable technical and economic levels. The most suitable method of increasing the distribution transformers in the area is by converting the primary distribution system to 11 kV. Accordingly a 33/11 kV substation of capacity 2.5 MVA is proposed to be established

at Usa. Details of the expected system loads and the appropriate network configuration is being designed by the TANESCO/ESMAP study unit. An economic evaluation will be conducted when the design is completed. The present indications are that a high economic return is to be expected.

33/11 kV substation at Makumira

11.9 The existing 11 kV network at Makumira is supplied by three transformers in series; 33kV/400V, 400V/11kV and an 11kV/400V/11kV earthing transformer. This arrangement has clearly been a result of ad-hoc arrangements made due to funding or equipment limitations. It is necessary to rationalize the arrangement by replacing these three transformers with a single 33/11 kV stepdown transformer. The new transformer will be of 2.5 MVA rating, which will also accommodate the expected future load additions in the area.

Summary of the MV developments for Arusha

11.10 The system development proposals for the Arusha region to provide economical loss and reliability levels are summarized hereunder together with their benefit to cost ratios.

Item	Ref. to C/B table	Cost in US\$	B/C ratio
33 kV line conversion Monduli feeder	E.4.1	471	8.1
5 MVA substation at Magereza	E.4.2	356	12.3
5 MVA substation at Mt. Meru Hotel	E.4.3	771	7.0
2.5 MVA substation at Usa/Arumeru	E.4.4	328	-
2.5 MVA substation at Makumira	E.4.5	330	-

12. REHABILITATION, RATIONALIZATION, AND NETWORK EXPANSION

12.1 Power supply in distribution networks is typically achieved in a number of successive stages. These stages generally consist of (a) the transport of bulk power (say at 33 kV) from the terminal points of the transmission system (grid substations) to distribution substations or switching stations at the same voltage level, (b) voltage transformation to a lower, medium voltage (say 11 kV), (c) medium voltage (MV) feeders and distributors 7/ (d) voltage transformation to low voltage (LV) and (e) low voltage distributors to retail consumers. The larger loads are usually tapped off upstream at various voltage levels of the system. Sometimes some of the intermediate levels are not utilized, for instance when 33 kV distributors are provided direct off grid substations. The power flow structure however always retains its hierarchial nature and deficiencies upstream will affect conditions at the lower levels of the supply system. Sections 8 to 11 dealt with the major improvements to the MV distribution system in the four regions under study. These developments would ensure that the main characteristics of the power system (up to the MV distributors) would be at adequate technical and economic levels to meet the expected developments in the medium term (from 5 to 10 years). In addition to these works a number of other improvements and developments at the lower levels of the network hierarchy as well as rehabilitation aspects of the entire network are required to bring the system to satisfactory operational standards. These additional items consist of:

- (a) rehabilitation of lines (both MV and LV) and substations together with secondary level reinforcements to MV distributors,
- (b) rationalization of the LV systems, and
- (c) expansion of the existing system to cover new areas requiring electrification.

12.2 Items a and b deal with improvements required for the existing systems. Item a covers rehabilitation works (resulting from a number of years of inappropriate maintenance) as well as secondary level reinforcements for the existing system. The latter aspect deals with improvements required to the MV system at network levels lower than the main developments addressed in Sections 8 to 11. The rationalization of the LV networks covered in item b addresses requirements necessary to improve these networks to acceptable condition by loss reduction and reliability improvement measures. Item c addresses system expansion needs to meet the geographical expansion of the supply area.

In general a feeder will transport bulk power without tapping off loads at intermediate points while a distributor will supply a large number of loads along its length. Often the definition is blurred in common usage, particularly as outgoing supply lines off a substation are commonly termed 'feeders' whether they are tapped along the way or not.

- 96 -

Network rehabilitation and reinforcement

12.3 Field inspections carried out during the study in the four regions indicate that the distribution networks are in need of considerable rehabilitation. The extent of work required to bring the networks to a satisfactory condition varies among different locations. The main shortcomings and deficiencies requiring remedial action are as follows:

- (a) conductor connections being made by inappropriate methods resulting in loose connections,
- (b) various temporary and unorthodox methods used for connections from the transformers to the overhead lines. In many locations these connections are made without the necessary protective fuses or switchgear. They are also often extremely shabby and constitute a danger to repair workmen,
- (c) defective equipment on overhead lines and transformer stations such as isolators and circuit breakers,
- (d) defective or malfunctioning equipment and meters in substations,
- (e) poor pole top dressings and decayed or corroded cross arms,
- (f) decayed poles on distribution lines, and
- (g) decayed or partially burnt out service connections.

12.4 The poor condition of the networks has been caused by the shortage of funds to procure necessary material for the required work to be performed in time (particularly as a large number of items are imported), the absence of systematic planning of development works and the lack of suitable maintenance scheduling procedures. The only major network overhauls that were carried out were those organized by foreign funded projects. The JICA funded Dar es Salaam project and the IDA funded National rehabilitation project during the last five years carried out extensive rehabilitation in many sections of the network. However the immediate increase of load in the rehabilitated areas resulted in some of these networks becoming overloaded once again within a short time. This has resulted in burn out of equipment, damage to connectors etc. thus reducing the beneficial effects of the rehabilitation carried out. Hence there still remains a significant extent of work to be done both in areas that have not been rehabilitated in previous projects as well as in some of the areas that were rehabilitated recently.

12.5 As explained in para 12.2 secondary level improvements (not covered in the proposals for the development of the distribution systems in Sections 8 to 11) required to the MV system are also included in this category. These improvements consist mainly of the reconductoring of some line sections presently constructed with conductor gauges too low for the economic dispatch

of the load carried. Most of these lines have been constructed many years ago and the lines almost always require extensive rehabilitation in addition to reconductoring. Hence the cost of reconductoring cannot be conveniently separated from that of rehabilitation and the need to group these two items under the same category. In addition a small number of network improvement works such as short interconnections to rationalize the network arrangements are also included under this item.

12.6 The specific rehabilitation and reinforcement requirements such as the extent of pole changing and reconductoring of lines to be included in the project are being assessed by carrying out field inspections of the networks. These inspections are conducted by regional engineers with the support of the ESMAP unit and lists of the works to be carried out are in preparation. Total requirements for this item have been estimated from the information collected so far and a summary of the work to be performed in each area is provided in Table E5 of Annex E. In addition to specific items of work identified by the inspections, bulk provision is made for the materials required for the rehabilitation of substations, transformer stations, line connectors and service connections as well as the tool and equipment required to undertake the work.

12.7 A comprehensive and systematic procedure needs to be followed in organizing the rehabilitation program. The following are some of the important aspects to be addressed:

- (a) The work should be programmed area by area, covering each in a comprehensive manner. Arrangements should be made to organize systematic maintenance procedures to the rehabilitated areas so that they will continue to be maintained at the required standards. The areas rehabilitated should be indicated in progress maps and the performance adequately supervised.
- (b) The rehabilitation work in the field need to be combined with the training of TANESCO personnel in construction and maintenance methods and procedures.
- (c) Appropriate tools and equipment should be supplied and the maintenance staff trained in the correct use of these items.

12.8 The work involved in rehabilitation of existing networks is in fact delayed maintenance and specific justification may well be considered to be superfluous. If the utility is to continue in the business of providing power supply to its existing consumers (which it is legally obliged to do) it is virtually mandatory to have the existing networks maintained in a state of acceptable operation. Further if major maintenance requirements are postponed the networks deteriorate rapidly resulting in burnouts and damages to healthy components. This results in further increase of costs to bring the networks to the required operating condition. In addition deteriorated networks result in a large loss of power supply due to network outages. Networks in poor operating conditions also result in an increase of standby plant installed by consumers. Thus rehabilitating networks that are in a poor state of maintenance result in the following benefits: saving network components from further damage; increased sales due to the reduction of outages;

higher consumer satisfaction and reduced necessity for consumers to procure stand by plant.

12.9 Preventing the networks from further damage may well bring about the greatest benefits. These benefits, however, cannot be readily quantified. Regarding increased sales, an attempt has been made to assess the resulting savings by estimating the extent of outages that can be saved by bringing the networks to acceptable operating condition. An economic analysis considering the benefits of such outage savings is presented in Tables E 6.1 to E 6.4 of Annex E in respect of the four regions under study. At an outage saving of 1 percent of the units sold and an economic cost of outages at \$1.00/KWh benefit to cost ratios between 7 and 17 are obtained for the four regions. The results are tested by examining the sensitivity to the estimated figures used for the amount of outages saved; the value of such savings and the load growth rate. A summary of the results of the computations is provided in Table 12.1 below. It is seen that even under the most conservative assumptions the rehabilitation work on the existing systems will produce substantial economic benefits. Thus rehabilitation works while being of the highest priority due to operational necessities are also economically justifiable.

Table 12.1. Cost/Benefit ratios obtained for proposed rehabilitation works

	Sensitivity parameters										
Saved outages (as % of units sold)	1.0	0.75	0.50	0.30							
Value of saved outages \$/kWh	1.0	0.75	0.75	0.75							
Load growth rate % (to 1994)	8.0	4.0	4.0	4.0							
Load growth rate % (beyond 1994)	9.0	4.5	4.5	4.5							
	BEN	EFIT/C	OST RA	TIOS:							
Dar es Salaam	17.7	6.0	4.0	2.4							
Tanga	9.5	3.2	2.1	1.3							
Moshi	7.9	2.7	1.8	1.1							
Arusha	7.8	2.6	1.8	1.1							

Rationalization of L.V. Systems

12.10 There are two aspects that need to be addressed in the development of the low voltage system. The first consists of the rationalization of existing network configurations so that the system complies with technical and economic guidelines developed in Section 6. The second component consists of rehabilitation requirements; replacement of defective or damaged hardware and bringing the installation up to acceptable maintenance standards.

12.11 A sample of LV networks were studied in the four cities and the results of the line loss and voltage drop computations are provided in Section 3 and Annex A. As discussed in Section 3, a significant number of networks showed loss levels higher than economically acceptable levels. One of the simplest means of reducing existing losses is to better balance the phase loads. The sample studies have shown that as much as 15 percent of the existing LV network losses can be reduced by correcting the existing imbalance. It is recommended that an immediate program be instituted to undertake a systematic phase balancing exercise commencing with the transformer stations with the longest line lengths. While the service connections are changed from one phase to the other, an effort should also be made to improve the work standards with the use of suitable materials and working tools. A frequently occurring defect is the use of poorly twisted wire bindings for interconnecting conductors. Either parallel grove clamps or compression crimping methods should be employed for this purpose.

12.12 The next major technical improvement that can be effected is the reduction of the long secondary lengths of LV distributors. Reducing the lengths of LV lines by introducing additional transformers (at locations selected to increase the number of possible feeders from each transformer) will have a substantial impact on the reduction of LV losses. TANESCO counterpart staff are already engaged in the task of selecting the appropriate locations and computing the transformer capacities and other associated investment (new feeder connections etc.) required. As discussed in Section 6 the requirements of additional transformers to inject supply to the LV system would have been much higher and the capacities of the transformers considerably lower if the system was being designed afresh. The presence of the existing network with conductors of 100 and 50 mm. sq. gauge is so widespread that it is not economical to introduce different conductor standards for the addition of the new transformers. It is expected that approximately 50 percent of the existing LV network losses can be reduced by the proposed investment. A benefit to cost analysis of the proposal work is given in Table E7 of Annex E.

LV network rehabilitation

12.13 The rehabilitation requirements of LV networks is similar to those stated in paras 12.3 to 12.4 for MV networks. A particular concern is the transformer station and associated LV connections. It estimated that over 75 percent of these stations require considerable rehabilitation inputs (exceeding work that can be considered under normal maintenance). The benefit to cost computation of Tables E 6.1 to 6.4 includes the work to be undertaken both on MV as well as LV networks and a separate analysis is not attempted in view of the difficulty of obtaining accurate estimates of the benefits.

Network Expansion to New Development Areas

12.14 In all four major cities studied there are a number of areas presently outside the supply system in which new housing and community development has been in progress for some time. These areas adjoin the existing infrastructure of roads and power networks. Further, most of the areas presently covered by the existing distribution systems are already developed close to saturation and the possibility of expansion of the cities mainly rests in the peripheral areas. Tanzania operates an urban development planning system in which the land is surveyed and divided into plots marked out for various types of land usage. These plots are then sold or leased to

individuals and corporate bodies. A number of new areas in all four of the cities studied has been subjected to such town planning and survey drawings of the developments envisaged are available. It is reported that in most such areas all the plots demarcated have already been sold. In the areas selected other investment activities have already commenced and are in various stages of development. A number of new buildings as well as many units under construction are observed. It is clear that the lack of infrastructural facilities such as electricity, water and roads is a major constraint to the development of these areas. Once such facilities are introduced there is bound to be a sharp increase of activity and an acceleration of the development process. In particular electricity appears to be the major constraint as water supply can be obtained either by wells in the premises or by community water supply available close by and roads are in any case not well provided even in the areas already developed. Thus in these new developing areas the load growth is expected to be quite high when a reliable power supply is provided.

12.15 Supply to a few of the buildings already constructed in these areas has in fact been already provided. However these connections are being provided in a haphazard manner with long extensions from the peripheries of existing systems and sometimes from the bulk supply transformers available in the area. Such inappropriate construction methods are resorted to mainly because of funding limitations and the desire to limit the cost for each individual customer. This process has resulted in a suboptimal development of the distribution system without giving due consideration to appropriate technical standards. In particular, inappropriate conductor sizes are being used and in many cases it was observed that the lines are being drawn over other plots not yet developed. If such unplanned development is allowed to continue TANESCO will be faced with a number of problems. These include the overloading of existing systems, low voltages at the network peripheries, the inability to supply the increasing load on the extended lines and the excessive costs of repeatedly replacing unplanned construction.

It is therefore very necessary that comprehensive development proposals be prepared 12.16 with respect to each such area of network expansion. Thus the present study has undertaken an investigation of these areas consisting of estimation of the expected long term load and the design of appropriate networks to satisfy the planning guidelines detailed in Section 6. Town planning maps are first collected for such areas and the sites examined to ascertain the present state of development as well as the possible supply configurations. The maximum load to be planned for is computed on the basis of the area covered and the expected loading density after comparing the area concerned with similar locations in the existing network for which the load densities have been determined. The development proposals are prepared so that they could be effected in a number of stages. Such a procedure will enable the expected load increases to be met satisfactorily but without over investment at each stage of development. The initial network will be constructed so that the conductor sizing and line routing is such as to be able to accommodate the expected final load. Subsequent stages of the development will include the increase of the number of transformers as well as the augmentation of transformer capacities, additional MV spur lines and further coverage of the LV network.

12.17 A cost benefit analysis is conducted for each development plan (see sample computations in Table series E 8.1 of Annex E). This is accomplished by computing the benefits at the Average Incremental Cost (AIC) of ultimate supply (taken as \$ 0.10) less the AIC at transmission level (taken as \$ 0.075), thus giving a net benefit of \$ 0.025 per unit of sales. From the computations completed by the ESMAP study unit up to date it is seen that the benefit to cost ratios are high (generally over 3.0). This is due to the fact that these new areas selected for electrification are very close to the existing MV network. In some cases the MV feeders actually pass through the areas but the associated MV distributors and supply transformers have not been provided. In addition the major load growth of the cities is expected to occur in these new areas as there are only limited opportunities for new loads to materialize in the already developed areas of these cities particularly in view of the town planning procedures in existence. The details of the work envisaged over the duration of the proposed project in the four regions and a summary of their costs are provided in Table E 8.2 of Annex E.

ANNEX A

DISTRIBUTION SYSTEM CHARACTERISTICS

٤.

. t

DISTRIBUTION SYSTEM CHARACTERISTICS

Annex A

List of Figures and Tables

Figures

A.1	Typical feeder load	curves obtained from	field measurements
-----	---------------------	----------------------	--------------------

Tables

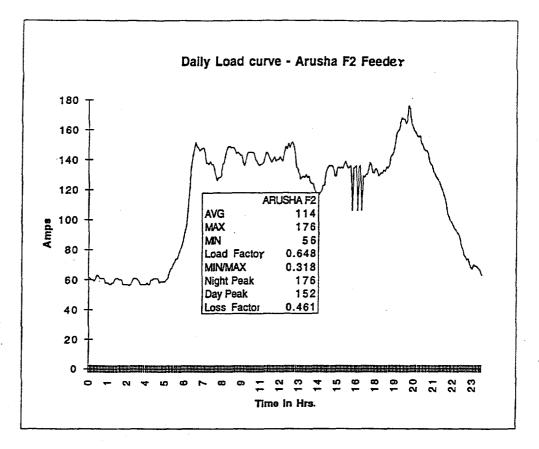
	A.1.	Load factor an	d loss factor	of typical feeders
--	------	----------------	---------------	--------------------

Loss calculations on medium voltage lines

LOSS Calculat	tons on mediani voltage mies
A.2.1	- do - Dar es Salaam
A.2.2	- do - Tanga
A.2.3	- do - Moshi
A.2.4	- do - Arusha
A.3.1 A.3.2	Sample loss calculations on low voltage lines Summary of results of LV loss calculations
A.4	Analysis of sales, losses and power flow by voltage level
A.5	Loading densities of MV feeders
A.6	Particulars of LV Transformer Loading Data
A.7	Historical load growth in the study regions

Annex A

DISTRIBUTION SYSTEM CHARACTERISTICS


This annex provides a sample of the information obtained on network characteristics from the analysis of the field data collected. The program of feeder measurements using electronic logging instruments provided valuable information on the load variation with time of day (see Figure 1A). This data was transferred to spreadsheet formats enabling the load factor and loss factor of each feeder to be computed (see Table A.1). In addition, loading densities provide important information for planning purposes and such data has been computed by combining the feeder loads with the supply area obtained from the digitized maps. A sample of the results is presented at Table A.5 (for MV feeders) and Table A.6 (for LV feeders).

Computations have been performed to obtain the losses and tail end voltage of feeders and distributors using a spreadsheet format based on the methodology developed in Annex D.1. Results of the computation for the 1991 and 1995 peak loading condition at the four regions are presented in Tables A.2.1 to A.2.4. Table A.2.1 for Dar es Salaam contains the full spreadsheet used, while Tables A.2.2 to A.2.3 for the rest of the regions show only summarized information.

The spreadsheet format lends itself well to enable a wide variety of computations to be carried out once the initial data base is established. For example, the mid-load and base load conditions can be simulated by copying out a new set of input current and power factor figures to the relevant columns. The effects of capacitor additions can be modeled by including suitable additional columns to compute the revised input current and power factor. Revised loading data on network rearrangement involving new substations and feeders can be obtained by using ratios for load allocation. By "linking" previously computed data where required, a variety of important information can be obtained. For example, the altered feeders can be combined with those unaffected to provide revised substation loadings; substation loads can be linked to the load on the supply line, etc. These techniques have been used in the computations to produce information on the different load steps (representing peak, mid-load and base load conditions), effects of development proposals and capacitor applications. Due to space limitations, the resulting spreadsheets are not presented.

A simplified computation has been performed for LV feeders and a sample is given in Table A.3.1. In this calculation, the total feeder load is divided into the various sections and spurs of the LV system in proportion to the number of houses in each section. The losses for each section is computed (using the methodology in Annex D.1) and the total losses for the feeder is added up. The computations are made assuming a balanced loading situation (for three phase sections) and the percentage increase for the existing imbalance is also provided. Table A.3.2 summarizes the results of studies obtained from 367 feeders off 105 transformer stations.

The above computations resulted in the determination of the loss levels in the medium voltage (33 and 11 kV) and low voltage (0.4 kV) networks. Studies detailed in Section 4 and Annex B provide the results of the loss levels of the transmission system. The information obtained on the losses at each voltage level has, thereafter, been combined with the respective power and energy sales at the respective voltage levels to build a power and energy flow analysis given in Table A.4. This table provides a breakdown of losses as a percentage of the net power supplied to the system.

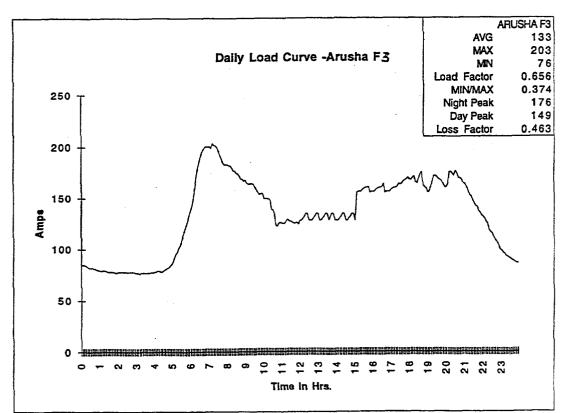


Table A 1

_

Feeder Characteristics Obtained from Load Logger Measurements

	Cu		Night	Day	Load	Loss		
Feed/name	AVG	MAX	MIN	MIN/MAX	Peak	Peak	Factor	Factor
	AR	USHA REGION	I FFFDFR	s				
				•				
NGARENARO	43	68	12	0.176	68	57	0.629	0.423
MONDULI SECTION	27	43	17	0.395	43	27	0.629	0.421
OLURUVANI SPUR	24	30	11	0.367	30	30	0.810	0.678
ARUSHA F1	72	110	41	0.373	110	95	0.656	0.464
ARUSHA F2	114	176	56	0.318	176	152	0.648	0.461
ARUSHA F3	133	203	76	0.374	176	149	0.656	0.463
	мо	SHI TOWN FE	EDERS					
	•	•••		0.000	0.0	4.0		0.000
TOWN-URU SPUR	9	20	4	0.200	20	10	0.449	0.239
	12	23	7	0.304	23	12	0.501	0.278
MACHAME 33KV	11	25	5	0.200	25	12	0.454	0.240
TOWNFEEDER	101	178	60	0.337	178	131	0.565	0.351
MOSHI M3 11KV	99	167	61	0.365	167	124	0.591	0.377
MOSHI M2 11K V	41	74	28	0.378	74	46	0.559	0.335
BOMA MBUZI-RONGAI	18	38	12	0.316	38	17	0.486	0.263
MOSHI BOMA 11KV	23	40	11	0.275	40	28	0.571	0.375
	TAT	NGA REGION	FEEDERS	i				
	MA	ZINDE S/S						
MOMBO-KWALUKONGE	1	5	1	0.200	1	5	0.295	0.125
MAZINDE-LUSHOTO	30	48	18	0.375	48	36	0.625	0.413
MAZINDE-MKUMBARA	7	15	1	0.067	8	15	0.488	0.274
	МА	JANI MAPAN	AITANGA) S/S				
NGUVUMALI	70	104	49	0.471	104	87	0.671	0.471
TANGA1	98	137	67	0.489	131	137	0.718	0.541
TANGA2	87	152	41	0.270	152	102	0.571	0.360
TFC 33KV	14	17	8	0.471	17	16	0.827	0.696
	DA	R ES SALAAN	REGION	FEEDERS				
MK1 feeder	163	219	141	0.644	219	160	0.745	0.566
D9 feeder	221	325	166	0.511	325	236	0.679	0.477
C3 feeder	146	225	95	0.422	120	223	0.649	0.471
D3 feeder	95	152	58	0.382	94	152	0.625	0.432
F2 feeder	118	177	70	0.395	156	176	0.668	0.484
MK3 feeder	184	298	139	0.466	298	215	0.617	0.400
F32 feeder	89	160	40	0.250	83	151	0.558	0.349
I DE TECUET	09	100	40	0.250	00	101	0.000	0.343

Note: The above is a sample of the data obtained off 'Lotus' spreadsheets created using the information downloaded from the electromic data loggers.

MV-DAR-Night			LOADS A			FEEDERS		35 CA	LCOLA	ATION	SON	PRESI	ENI 518	IEM 1	991/19	90 -DA	HES:	SALA	AM		Page 1	of 3
												F	WER AND	LOSS CAL	CULATIC	NS			VOLTAGE	DROP CA	LCULAT	IONS
				1990	1995								1991	1995	1991	1995	1991	1995	1991	1995	1991	1995
REEDER	Growth	Length	Con/d	Max. I	Max, I	Conductor	Dist.	Factor	Resist.	Æ		Induct.	Power	Power	Loss	Loss	Losse	sin%	Voltage	Prop	Voltag	e Drop
NAME	Rare(%)	(km)	(KVA) (Amps)	(Amps)	Type, Size	loss	Volt da	.perkm	Cos ó	Sin ó	per km	(KW)	(KW)	(KW)	(KW)			in (KV)	in (KV)	in (%)	in (%
			UBUNGO	S/S 11 P	(V FEEDE	RS	15	= SS C	apacity (I	MVA)	78	= SS loa	iding in % t	y 1995								
J1, Kisiwani	8	8,98	10640	175	257		0.4	0.56	0.331	0.94	0.34	0.34	3134	4605	109	236	3,49	5.12	0.65	0.96	5.92	8.70
2, Menzese	4	8,36	3810	146	178	ACSR 100	0.4	0.56	0.331	0.90	0.44	0.34	2504	3046	71	105	2.83	3.44	0.53	0.64	4.80	5.84
17, Factory	9	3.91	6345	75	115	ACSR 100	0.4	0.56	0.331	0.93	0.37	0.34	1329	2045	9	21	0.66	1.01	0.12	0.19	1.12	1.72
8, University	4	4.35	5300	40	49	ACSR 100	0.9	0.95	0.331	0.94	0.34	0.34	716	872	6	9	0.87	1.06	0.12	0.15	1.11	1.35
										0.93	0.38		7683	10568	195	370	2.54	3.51				
			KURASINI	S/S 11 K	V FEEDER	S	15	= SS C	apacity (MVA)	86	= SS loa	ding in % b	y 1995								
4, INDUSTRIAL	4	9,52	13245	168	204	ACSR 100	0.8	0.9	0.331	0.91	0.41	0.34	2911	3542	213	316	7.32	8.91	1,10	1.34	10.02	12.19
3, KILWA RD	4	8.50	10605	231	281	ACSR 100	0.4	0.56	0.166	0.91	0.41	0.17	4005	4873	90	133	2.25	2.74	0.42	0.51	3.83	4.66
्रमा	8	4.32	17800	133	195	ACSR 100	0.9	0.95	0.331	0.96	0.28	0.34	2433	3574	68	147	2.81	4.12	0.39	0.57	3.55	5.22
										0.92	0.38		9349	11989	372	596	3.97	4.97				
			ILALA S/S	11 KV FI	EEDERS		45	= SS C	apacity (MVA)	58	= SS loa	iding in % t	y 1995								
0, Brewery	4	0.30	4400	90	109	CU 185	1	1	0,118	0.93	0.37	0.08	1595	1940	1	1	0.05	0.07	0.01	0.01	0.06	0.07
1, Azamia	3	5,45	4720	120	139	ACSR 100	0.4	0.56	0.331	0.93	0.37	0.34	2130	2469	31	42	1.47	1.70	0.28	0.32	2.50	2.90
2, Town 1	5	6.05	6700	110	141	ACSR 100	0.4	0.56	0.331	0.93	0.37	0.34	1955	2495	29	48	1.50	1.91	0.28	0.36	2.55	3.25
3, Kurasini	3	2.82	5130	180	209	ACSR 100	0.4	0.56	0.331	0.91	0.41	0.34	3121	3618	36	49	1.16	1.35	0.22	0.25	1.98	2.29
7,	3	2.95	2045	110	128	ACSFI 100	0.6	0.7	0.331	0.96	0.28	0.34	2012	2332	21	29	1.06	1.23	0.16	0.19	1.48	1.71
8, Industrial	2	1.53	300	10	11	ACSFI 100	0.9	0.95	0.331	0.96	0.28	0.34	183	202	0	0	0.07	0,08	0.01	0.01	0.09	0.10
9, Town 2	6	2.53	5515	300	401	ACSR 100	0.4	0.56	0.331	0.93	0.37	0.34	5316	. 7114	90	162	1.70	2.28	0.32	0.43	2.90	3.88
10, Magomeni	4	6.51	5575	199	242	ACSR 100	Q.4	0.56	0.331	0.93	0.37	0.34	3520	4282	102	151	2.90	3.53	0.54	0.66	4.94	6.00
										0.93	0.37		19831	24453	312	481	1.57	1.97			16	
			CITY CENT	ER S/S 1	11 KV FEE	DERS	30	- SS C	apacity (I	MVA)	71	= SS loa	ding in % b	y 1995								
2, Upanga	4	3.26	6230	80	97	ACSR 100	0.4	0.56	0.331	0.98	0.20	0.34	1494	1817	8	12	0.55	0.67	0,10	0.12	0.90	1.10
3, City Center 1	5	1.20	8715	128	163	ACSR 100	0.4	0.56	0.331	0.93	0.37	0.34	2268	2895	8	13	0.34	0.44	0.06	0.08	0.59	0.75
4, City Center 2	5	2.21	10430	141	180	ACSR 100	0.4	0.56	0.331	0.93	0.37	0,34	2505	3197	18	29	0.70	0.89	0.13	0.17	1.19	1.52
5, Mnazi Mneja 1	5	1.44	5115	195	249	ACSR 100	0.4	0.56	0.331	0.93	0.37	0,34	3455	4410	22	35	0.63	0.80	0.12	0.15	1.07	1.37
6, Mnazi Mneja 2	4	1.76	9605	118	144	ACSR 100	0.4	0.56	0.331	0.96	0.28	0.34	2158	2626	10	14	0.45	0.55	0.08	0.10	0.76	0.92
8, Tanesco	5	1.44	9260	226	288	ACSR 100	0.4	0.56	0.331	0.93 0.94	0.37 0.34	0.34	4005 15885	5111 20056	29 94	48 151	0.73 0.59	0.93 0.75	0.14	0.17	1.24	1.59
	_		MIKOCHEN				15		apacity (I				ding in % t	-								
K1, Msasani K2, Tandala	5	8.20 10.84	6155 11710	155 190	198 279	ACSR 100 ACSR 100	0.4 0.4	0.56 0.56	0.331 0.331	0.93 0.91	0.37	0.34 0.34	2747 3294	3505 4840	78 155	127 336	2.85 4.72	3.64 6.93	0.53 0.88	0.68 1.30	4.85 8.03	6.19
K2, Tandale K3, Lucalo	8	4.80	3950	190	2/9	ACSH 100	0.4	0.56	0.331	0.91	0.41	0.34	1372	4840	155	336	4.72	1.03	0.88	0.19	8.03	11.80
IK3, Lugalo IK4, north east	5	4.80	6955	174	222		0.4	0.56	0.331	0.90	0.44	0.34	3249	4147	54	88	1.67	2.13	0.30	0.19	2.71	3.45
sa, tiotal daat	5	4.00	2000				0.4	0.00	0,001	0.94	0.34	0.04	10662	14083	300	568	2.81	4.03	0.00	0.00		0.40
			OYSTERB	AY S/S 1	1 KV FEED	ERS	15	- SS C	apacity (i	MVA)	129	= SS koa	iding in % t	y 1995								
2, Mwenge	3	4.22	2715	135	157	ACSR 100	0.4	0.56	0.331	0,98	0.20	0.34	2521	2922	31	41	1.21	1.40	0,22	0.25	1.97	2.26
3, Packers	4	9.64	9115	296	360	ACSR 100	0.4	0.56	0.331	0.98	0.20	0.34	5527	6725	336	497	6.07	7.39	1.09	1.32	9.87	
4, Kinondoni	4	2.79	1145	177	216	CU 25	1	0.50	0.741	0.90	0.44	0.383	3040	3699	195	289	6.42	7.81	0.71	0.87	6.50	7.91
.,	4	2.79	3790	123	150	ACSR 50	0.6	0.7	0.7	0.90	0.44	0.385	2109	2566	53	79	2.52	3.06	0.33	0.40	3.01	3.67
4 (TOTAL)	3	5.58	4935	177	206					0.90	0.44		3040	3525	248	367	8,16	10.42	0.00	0.00	0.00	0.00
5, Seaview	2	3,58	3245	115	127	ACSR 100	0.4	0.56	0.331	0.92	0.39	0.34	2016	2226	19	23	0.93	1.03	0.17	0.19	1.59	1.75
6, Oyster bay	3	4.28	4320	120	139	ACSR 100	0.4	0.56	0.331	0.93	0.37	0.34	2126	2465	24	33	1,15	1.33	0.22	0.25	1.96	2.27
										0.93	0.36		15231	18037	658	961	4,32	5.33				

-111-

. i

Table A.2.1

J.

MEDIUM VOLTAGE FEEDERS LOSS CALCULATIONS ON PRESENT SYSTEM 1991/1995 -DAR ES SALAAM (Continu Page 2 of 3) LOADS AT SYSTEM PEAK

			LOADS AT	SYSTE	M PEAK																		
												F	OWERAND						VOLTAGE				
				1990	1995			_	_				1991	1995	1991	1995	1991	1995		1995			
REEDER	Growth	Length		Max. I	Max. I	Conductor			Resist.	OldPF		Induct.	Power	Power	Loss	Loss	Losse	sin %	Voltage	•		e Drop	
NAME	Rare(%)	(km)	(KVA) (/	Amps)	(Amps)	Type, Size	loss	Volt di	r.per km	Cos ó	Sin ó	per km	(KW)	(KW)	(KW)	(KW)			in (KV)	in (KV)	in (%)	in (%)	
			MBEZI S/S	11 KV Ft	EEDEHS		4 6		Capacity (67		ding in % t										
KUNDUCHI	10	13.46	10065	180	290	ACSFI 50	0.4	0.56	0.7			0.385	3189	5137	366	950	11.49	18.50	1.86	3.00	16.93	27 27	
PACKERS	3	3.36	2230	80	290	CU 25	0.4	0.56	0.741	0.93			1063	1232	11	14	1.01	10.30		0.19	1.48	1.71	
LUGALO	2	6.96	3950	150	166		0.4	0.56		0.93	0.39	0.34	2629	2903	62	76	2.37	2.61	0.44	0.19	4.03	4.45	
LOGALO	2	0.90	3820	150	100	A03H 100	0.4	0.50	0.331	0.92	0.39	0.34	6882	9272	439	1040	6.38	11.22		0.49	4,03	4,40	
										0.00	0.00		UUUL	ULIL	400	1040	0.00						
			FACTORY	ZONE 1	S/S 11 KV	FEEDERS	10	= SS (Capacity (MVA)	57	= SS loa	ding in % l	by 1995									
F5. BUGURUNI	3	3.2	15420	70	81	ACSR 100	0.4	0.56	0.331	0.71	0.70	0.34	944	1094	6	8	0.66	0,76	0.10	0.12	0.93	1.08	
F2, RTD	5	2.5	8610	170	217		0.4	0.56			0.70	0.34	2300	2935	29	47	1.25	1.59		0.25	1.78	2.27	
	-									0.71	0.70		3244	4030	35	55	1.08	1.37					
			FACTORY	ZONE	s/s 11 KV	FEEDERS	10	≖ SS (Capacity ((MVA)	23	= SS koa	ding in % I	by 1995									
KILTEX	1	0.5	2000	21		CU195 U/G	1	1	0.228		0.46	0.08	356	374	0	0	0.04	0.04		0.00	0.04	0.04	
KISARAWE	1	17.8	7050	28	29	ACSR 50	0.4	0.56	0.7 0.7		0.46	0.385	475	499	12	13 20	2.47	2.59		0.41 0.27	3.51	3.69	
UKONGA	3	5	2265	60	70	ACSR 50	0.4	0.56	0.7	0.89 0.89	0.46 0.46	0.385	1017 1848	1179 2053	15 27	33	1.49 1.46	1.72 1.63		0.21	2.11	2.45	
			FACTORY	ZONE III	S/S 11 KV	FEEDERS	10	= SS (Capacity	(MVA)	83	≖ SS loa	ding in % l	by 1995									
F31, INDUSTRIAL	4	2.6	16545	187	228	ACSR 100	0.4	0.56	0.331	0.71	0.70	0.34	2532	3081	36	54	1.43	1.74	0.22	0.27	2.04	2.48	
F32, AIRWING	1	3.38	1775	51	54		0.4				0.47	0.34	855	899	3	4	0,41	0.43		0.08		0.72	
F33, AIRWING	1	2.3	3360	68	71	ACSR 100	0.4	0.56	0.331	0.79	0.61	0.34	1016	1068	4	5	0.41	0.43	0.07	0.07	0.64	0.68	
F34, KIWALANI	5	5.8	9245	70	89	ACSR 100	0.4	0.56	0.331	0.91	0.41	0.34	1214	1549	11	18	0.93	1.19	0.17	0.22	1.58	2.02	
TOTAL										0.79	0.61		5617	6597	55	80	0.98	1.22					
			KIGAMBO	VI S/S 11	KV FEED	ERS	5	= SS (Capacity	(MVA)	81	= SS loa	iding in %	by 1995									
													-										
Kigam F1	6	10		75	100	ACSR 50						0.385	1272	1702	47	85	3.72	4.97		0.78		7.07	
Kigam F2	6	6		84	112	ACSR 50	0.4	0.56	0.7			0.385	1424	1906	36	64	2.50	3.34		0.52	3.55	4.75	
										0.89	0.46		2696	3608	83	148	3.07	4.11					
TOTAL FOR ALL 1	1 KV (Witho	ut diversity	1							•			96347	121251	2602	4452	2.70	3.67					
TOTAL FOR ALL 1	1 KV (With o	liversity allo	owed for)			0.98	= D	iversity	Factor				94420	118826	2498	4276	2.65	3.60					

-112-

Ţ

MEDIUM VOLTAGE FEEDERS LOSS CALCULATIONS ON PRESENT SYSTEM 1991/1995 -DAR ES SALAAM (Continupage 3 of 3) LOADS AT SYSTEM PEAK

FEEDER NAME	Growth Rare(%)	Length (km)	Con/d (KVA) (1990 Max. I Amps)	1995 Max. I (Amps)	Conductor Type, Size		Factor Volt dr		OldPF Cosó		Induct. per km	POWER ANI 1991 Power (KW)	D LOSS CAI 1995 Power (KW)	CULATIO 1991 Loss (KW)	DNS 1995 Loss (KW)	1991 . ^{Lossi}	1995 9s in %			1991 Voltag	1995 • Drop
		DAR ES	SALAAM	I3 KV FE	EDERS																	
			ILALA GR	ID SUBS	TATION												•					
ILALA-C.C 1	4.8	2.5	30000	148	187	ACSR 100	1	• 1	0.331	0.94	0.34	0.36	7943	10028	54	86	به 0.68	0.86	0.28	0.35	0.84	1.06
ILALA-C.C 11	4.8	2.5	30000	148	187	ACSR 100	1	1	0.331	0.94	0.34	0.36	7943	10028	54	86	0.68	0.86	0.28	0.35	0.84	1.06
ILALA-KURASINI	5.3	5.9	15000	232	301	ACSR 100	1	1	0.331	0.91	0.42	0.36	12045	15597	316	530	2.63	3.40	1.07	1.39	3.25	4.21
KURASINI-KIGAMBON	6.0	4	5000	53	71	ACSR 100	1	1	0.331	0.89	0.46	0.36	2696	3608	11	20	0.41	0.55	0.17	0.23	0.51	0.68
ILALA-OYSTERBAY	3.4	5.6	15000	285	338	ACSR 100	1	1	0.331	0.93	0,36	0.36	15231	18037	453	635	2.97	3.52		1.43	3.67	4,35
ILALA-FZ I	4.4	4.7	15000	80	99	ACSR 100	1	1	0.331	0.71	0.70	0.36	3244	4030	30	46	0.92	1.14	0.32	0.39	0.96	1.20
ILALA 11 KV	4.3	0	45000	373	460					0.93	0.37		19831	24453	312	481	1.57	1.97				
TOTAL ILALA SS.			110000	946	1259					0.92			66236	82173	1230	1885	1.86	2.29				
TOTAL FOR 33 KV FE	EDERS ONL	Y OFF ILA	LA S/S										46405	57720	918	1404	1.98	2.43				
			UBUNGO	grid sl	IBSTATION	l																
UBUNGO-ALAF	2.0	9.24	45000	93	103	ACSR 100	1	1	0.331	0.89	0.46	0.36	4731	5223	79	97	1.68	1.85	0,68	0.75	2.07	2.28
UBUNGO-WAZO 1	6.1	8.8	20000	130	175	ACSR 100	i	1	0.331	0.93	0.38	0.36	6882	9272	148	268	2.15	2.89	0.88	1.18	2.66	3,58
UBUNGO-WAZO 11*	2.5	18.2	15000	123	139	ACSR 100	1	1	0.331	0.80	0.60	0.36	5626	6365	274	350	4.86	5.50	1.86	2.11	5.65	6.39
UBUNGO-TAZARA*	1.5	7.85	10000	55	59	ACSR 100	1	1	0.331	0.85	0.53	0.36	2650	2855	23	27	0.88	0.94	0.35	0.38	1.06	1.14
UBUNGO-MIKOCHENI		5.15	15000	199	262	ACSH 100	1	, 1	0.331	0.94	0.34	0,36	10662	14083	202	352	1.89	2.50		1.02	2.33	3.08
UBUNGO-F111	3.0	11	15000	155	180	ACSR 100	Ť	1	0.331	0.84	0.54	0.36	7466	8649	263	353	3.52	4.08		1.62	4.24	4.91
F111-F11	2.1	7	5000	36	40	ACSR 100	1	1	0.331	0.89	0.46	0.36	1848	2053	9	11	0.50	0.55	0.20	0.22	0.61	0.68
UBUNGO-F.TX.2 *	2.0	1.75	4706	40	44	ACSR 100	1	1	0.331	0.80	0.60	0.36	1829	2019	3	3	0.15	0.17	0.06	0.06	0.18	0.20
UBUNGO-NORDIC *	5.0	55	8410	64	82	ACSR 100	0.4	0.56	0.331	0.92	0.39	0.36	3366	4295	89	146	2.66	3.39	1.52	1,94	4.61	5,88
UBUNGO 11 KV	6.6	0	30000	145	200					0.93	0.38	0	7683	10568	195	370	2.54	3.51				
TOTAL UBUNGO SS.			168116	1004	998					0.89			50894	63330	1285	1978	2.53	3.12				
TOTAL FOR 33 kV FE	EDERS ONL	y off ubu	NGO S/S										43211	52763	1090	1608	2.52	3.05				
Note: For 33 kV line All other 33 kV								ls														
TOTAL FOR 33 KV F TOTAL FOR 33 KV F								ystem		,			117130 89616	145503 110483	2009 2009	3012 3012	1.71 2.24	2.07 2.73				
TOTAL FOR 33 KV F TOTAL FOR 33 KV F											0.98		114787 87823	142593 108273	1929 1929	2892 2892	1.68 2.20	2.03 2.67				
TOTAL FOR 11 and 3 TOTAL FOR 11 and 3																7463.6 7463.6	3.94 5.14	5.13 6.76				
TOTAL FOR HI and			-	and has	ad an tata	I load ourselie	d 10 01	1 W		divorcia	. allower	Har	114707	140500	4400	7169 4	2 9 6	6.00				
TOTAL FOR 11 and TOTAL FOR 11 and													114787 87823.4			7168.1 7168.1	3.86 5.04	5.03 6.62				

-113-

Table A.2.1 (cont'd)

TABLE A 2.2

-

MEDIUM VOLTAGE SYSTEM LOSS CALCULATIONS 1991/1995 - TANGA REGION.

	Gowth		1001	1005		1005		1005		4005
Feeder	rate	Length	1991 Max.I	1995 Max.I	1991 Power	1995 Power	1991 Loss	1995 Loss	1991 Voltage	1995 e dron
Name	used %	-	(Amps)		(kW)	(kW)	(%)	(%)	(%)	(%)
NOUNDALLES				MAPANA						
NGUVUMALI (i) NGUVUMALI(ii)	4.20 4.20	3.5 3.0	104.0 64.0	122.6 75.4	1684 1036	1986	1.12 0.62	1.32	1.77	2.08
NGUVUMALI TOTAL	4.20	6.50	104.0	122.6	1684	1222 1986	1.50	0.73 1.76	1.04 2.81	1.23 3.32
C.I.C	4.20	3.6	142.2	167.6	2303	2715	3.14	3.70	3.71	4.38
TANGA I TANGA II	4.20 4.20	11.4 2.0	137.0 152.0	161.5 179.2	2219 2462	2616 2902	3.83	4.52	6.34	7.48
SARUJI SPUR (i)	4.20	2.0	32.0	37.7	2462 518	611	0.93 0.22	1.10 0.26	1.48 0.36	1.74 0.43
(ii)	4.20	5.0	12.10	14.3	196	231	0.33	0.39	0.44	0.52
MSAMBWENI SPUR	4.20	0.9	9.60	11.3	155	183	0.03	0.03	0.04	0.05
USAGARA SPUR	4.20	4.0	78.00	92.0	1263	1489	0.96	1.13	1.52	1.79
TANGA II TOTAL	4.20		152	179	4595	5416	0.80	0.95	3.84	4.53
TOTAL(Tanga Town 11kv)					10801	14718	2.0	2.1		
			KOROGV	NECK						
KOROGWEI	4,20	7.0	24.0	28.3	389	458	0.92	1.09	1.23	1.45
KOROGWE I	4.20	24.6	43.0	50.7	696	821	5.81	6.85	7.76	9.15
TOTAL					1085	1279	4.06	4.79		
KWAMGWE	4.20	7.0	KWAMG 11.8	WE 5/5 13.9	191	225	0.68	0.80	0.76	0.89
						220	0.00	0.00	0.70	0.00
			TONGON							
MWAKIDILA	4.20	8.0	28.0	33.0	453	535	0.55	0.65	0.96	1.13
			MAZINDI	E 6/6						
LUSHOTO (i)	4.20	12.5	48.0	56.6	777	916	8.24	9.71	7.86	9.27
LUSHOTO (ii)	4.20	21.5	19.2	22.6	311	367	2.27	2.67	3.03	3.57
LUSHOTO (iii)	4.20	38.5	28.8	34.0	466	550	6.09	7.1B	8.14	9.60
SUB TOTAL MKUMBARA	4.20 4.20	72.5	48.0 15.2	56.6	777	916		15.09	19.0	22.4
MAZINDE	4.20	16.5 5.0	8.0	17.9 9.4	246 130	290 153	3.10 0.55	3.65 0.65	3.12 0.52	3.68 0.62
TOTAL				••••	1153	1359		19.39	0.02	0.02
			_							
Distance '			BUHURI							
BUHUAII	4.20	5.0	10.0	11.8	162	191	0.34	0.40	0.44	0.52
		;	MUHEZA	TOWNS	/S					
TOWNI	4.20	10.0	10.6	12.4	171	202	1.23	1.45	1.26	1.49
MUHEZA II	4.20	5.0	30.7	36.2	497	586	1.26	1.49	1.41	1.66
TOTAL					668	788	1.26	1.48		
		1	MUHEZA	HOSPITA	NL S/S					
MAGILA	4.20	2.0	1.6	1.9	26	31	0.04	0.05	0.04	0.05
GOMBAI	4.20	3.0	GOMBA : 14.2	5/S 16.7	230	271	0.41	0.48	0.45	0.53
GOMBAII	4.20	5.0	6.6	7.8	107	126	0.36	0.43	0.45	0.33
TOTAL					337	397	0.39	0.47		
MOMBO	4.20				193	227	1 73	2.04	1.93	2 27
NONDCO	4.20	17.7	11.9	14.0	193	221	1.73	2.04	1.93	2.21
			ANZON							
LANZONII	4.20			8.3				0.34		
LANZONI II TOTAL	4.20	20.0	69.1	81.5				4.00	5.61	6.62
TOTAL					1232	1453	3.10	3.66		
		I	MOA S/S	3						
MOA	4.20	15.6	9.3	11.0	150	177	1.19	1.41	1.33	1.57
		1	3WEMBV	VERA S/S						
BWEMBWERA	4.20			11.7		189	0.44	0.51	0.47	0.55
NEW SAGEN	4.20			GEN S/S 30.9		500	2 16	2.54	2.88	3.40
					~ • •			L.04	2.00	0.40
-			BUSHIRI							
BUSHIRII	4.20			11.8		191	1	1		1.2
BUSHIRI II TOTAL	4.20	32.2	30.0	35.4	486 648	573 764	5 4	6 5	7.1	
					040	104	4	э	8.1	9.6

Feeder	Gowth rate Length	1991 1995 Maxi Maxi	1991 Power	1995 Power	1991 Loss	1995 Loss	1991 1 Voltage o	
Name	used % (km) (Amps) (Amps)	(kW)	(kW)	(%)	(%)	(%)	(%)
		MAGUNGA S/S						
MAGUNGA	4.20 20.0	63.0 74.3	1020	1203	6.92	8.16	9.24	10.9
		PONGWE S/S						
PONGWE	4.20 4.0		89	105	0.27	0.32	0.27	0.32
							0127	
		MARAMBA S/S						
MARAMBA	4,20 7.0	55.2 65.1	894	1054	2.12	2.50	2.83	3.34
		MNYUZI S/S						
MNYLZ	4.20 12.0	5.0 5.9	81	95	0.33	0.39	0.44 (0.52
MLEMUA	4.20 8.0	MLEMUA S/S 32.0 37.7	518	611	1.41	1.66	1.88 2	2.21
MLENOA	4.20 0.0	32.0 31.1	516	110	1.4)	1.00	1.88	2.21
		HALE S/S						
HALE	4.20 5.0	40.0 47.2	648	764	1.10	1.30	1.47	1.73
		TORONTO S/S						
TORONTO	4.20 1.5		178	210	0.11	0.13	0.14).17
		KILULU S/S						
KILULU	4.20 7.0	5.0 5.9	81	95	0.24	0.28	0.31 0).36
		AMBONI S/S						
AMBONI	4.20 1.5		25	30	0.02	0.02	0.02	0.02

33 KV LINES

FROM HALE/PANGANI POWER STATIONS VIA SONGA SWITCHING STATION.

KOROGWE I	4.20	33								
sections										
SONGA-KOROGWE	4.20	33	45.0	53.0	2186	2577	2.64	3.11	3.45	4.07
HANDENISPUR	4.20	80	11.0	13.0	534	630	0.72	0.85	1.22	1.44
MAZINDE SPUR(with sec		00	11.0	10.0	004	030	V.12	0.05	1.22	1.44
KOROGWE-MAZINDE	4.20	56	34.0	40.1	1652	1947	1.35	1,59	2.48	2.92
MAZINDE-TORONTO	4.20	23	7.0	8.3	340		0.19	0.22	2.40	0.35
TOTAL-KOROGWEI		23				401		4.6	0.29	0.35
TOTAL-ROHOGWET	4.20		45.00	53.0	2186	2577	3.9	4.5		
KOROGWE	4.20	33								
sections										
SONGA-MAGUNGA	4.20	23	33.0	38.9	1603	1890	0.67	0.79	1.18	1.39
MLEMUA SPUR	4.20	20	10.0	11.B	486	573	0.42	0.50	0.53	0.62
MAGUNGA-KOROGWE	4.20	10	21.20	25.0	1030	1214	0.38	0.44	0.49	0.58
TOTAL-KOROGWE II	4.20		33.0	38,9	1603	1890	1.04	1.23		
KANGE I	4.20	67								
sections			•							
SONGA-MUHEZA	4.20	10	41.2	48.6	2002	2360	0.66	0.78	0.91	1.07
BUSHIRISPUR	4.20	70	22.00	25.9	1069	1260	1.09	1.29	2.00	2.36
MUHEZA-CHOTE	4.20	22	19.20	22.6	933	1100	0.75	0.88	0.98	1.16
MOA SPUR [with section	ns]									
CHOTE-PANDE	4.20	10	15.00	17.7	729	859	0.28	0.33	0.35	0.42
PANDE-MOA	4.20	38	8.10	9.5	394	464	0.22	0.26	0.40	0.47
TOTAL	4.20		41.2	48.6	2002	2360	1.73	2.05		
KANGE II		67								
	4.20	67								
sections										
SONGA-MLINGANO	4.20	14	41.2	48.6	2002	2360	1.06	1.25	1.36	1.60
LANZONI SPUR	4.20	16	16.60	19.6	807	951	0.49	0.58	0.63	0.74
NGOMENISPUR	4.20	15	15.40	18.2	748	882	0.47	0.56	0.57	0.67
MLINGANO-CHOTE	4.20	18	9.20	10.8	447	527	0.30	0.36	0.39	0.46
TOTAL	4.20		41.2	48.6	2002	2360	1.50	1.77		
	FROM MAJAN	NI MAF	ANA S/S	6						
T.F.C	4.20	5	20.6	24.3	1001	1180	0.47	0.56	0.47	0.55
S.R.M	4.20	2	24.7	29.1	1200	1415	0.21	0.25	0.21	0.24
CEMENT HI	2.00	11	309.0	334.5	15013	16250	3.54	3.83	4.29	4.64
TOTAL		••	300.0		17214	18845	3.13	3.35		
							00			
PANGANI QUARRY	4.20	4	8.4	9.9	408	481	0.14	0.16	0.13	0.16
KWARANGURU	4.20	1	17.6	20.7	855	1008	0.09	0.11	0.10	0.12
TOTAL					1263	1489	0.11	0.12		

.

_

TABLE A 2.2 Cont.

-116-

TABLE A 2.3

_

MEDIUM VOLTAGE SYSTEM LOSS CALCULATIONS 1991/1995 - MOSHI REGION.

			1991	1995	1991	1995	1991	1995	1991	1995
Feeder		Length	Max.	Max.i	Power	Power	Loss	Loss	Volt	age Drop
Name	Rate(%)	(Km)	(Amps)	(Amps)	(Kw)	(Kw)	(%)	(%)	(%)	(%)
11 KV FEEDERS										
			LAW	ATI S/S						
SANYA JUU	4.0	8.3	10.0	11.7	162	189	0.20	0.24	0.34	0.39
MASAMA	4.0	23	25.0	29.2	405	474	1.41	1.65	2.33	2.73
TOTAL			35.0		567	663	1.07	1.25		
			MACHAN	AE S/S						
HOSPITAL	4.0	11	46.0	53.8	745	872	1.24	1.45	2.05	2.40
KIBO 11	4.0	6	14.0	16.4	227	265	0.21	0.24	0.34	0.40
TOTAL			60.0		972	1137	1.00	1.17		
KIBO	4.0	5	30.2	BUZI S/S 35.3	480	570	0.00	0.06		1 10
BOMA	4.0 4.0	5 14	10.7	35.3 12.5	489 173	572 203	0.82 0.54	0.96	1.02	1.19
TOWN FEEDER	4.0	4	219.0	256.2	3547	4149	2.15	0.63 2.51	0.74 3.56	0.87 4.16
URU SECTION		-	2,0.0	200.2	0047	4140	2	2.01	0.00	4.10
URU (i)	4.0	4.7	20.0	23.4	324	379	0.75	0.88	0.94	1.09
URU (ii)	4.0	6.8	7.6	8.9	123	144	0.27	0.31	0.37	0.43
KIBOROLONISPUR	4.0	2.8	74.0	86.6	1198	1402	0.51	0.59	0.84	0.98
UNGA SPUR	4.0	2.2	29.0	33.9	470	549	0.16	0.18	0.26	0.30
TOWN FDR TOTAL			219.0	256.2	3547	4149	2.42	2.83		
TOTAL			259.9		4209	4924	2.16	2.52		
					_					
				CHOOL SA						
M1	4.0	15.5	23.0	26.9	372	436	1.96	2.29	2.62	3.06
M2	4.0	29	74.0	86.6	1198	1402	11.79	13.79	15.74	18.42
M3(i)S/S-CCM M3 (ii)CCM-KCMC	4.0 4.0	4.4 6.9	168.0 67.0	196.5 78.4	2721 1085	3183 1269	1.85 2.54	2.16 2.97	3.13 3.39	3.66 3.97
SUB TOTAL (M3)	4.0		168.0	168.0	2721	3183	2.84	3.34	6.52	7.63
TOTAL		11.5	265.0	310.0	4292	5021	5.27	6.17	0.52	7.00
			200.0	0.0.0	4202		0.27	0.17		
		1	MWANG.	A S/S						
TOWN FEEDER	4.0	26	23.0	26.9	372	436	1.47	1.72	2.43	2.84
			SAME S/			_				
BOMA FEEDER	4.0	12.24	21.9	25.6	354	415	1.74	2.03	2.25	2.64
•				~~~						
NDUNGU	4.0	12.5	GONJA 8 14.0	16.4	227	265	0.54	0.63	0.85	1.00
NEO160	4.0	12.5	14.0	10.4	221	205	0.54	0.03	0.65	1.00
33 KV FEEDERS										
		I	KIYUNGI	s/s						
TPC	1.0	17	72.0	74.9	3498	3640	1.00	1.04	1.69	1.76
KIA	4.0	47.3	27.0	31.6	1312	1535	1.58	1.85	2.36	2.77
KIYUNG-B'MBUZI	4.0	7	150.0	175.5	7288	8526	2.15	2.51	2.60	3.04
BMBUZI-RONGAI	4.0	121.5	58.6	68.6	2847	3331	5.82	6.81	9.86	11.53
KIYUNGI-T/SCH	4.0	13	131.0	153.3	6365	7446	3.48	4.07	4.21	4.93
T/SCH-MACHAME	4.0	22.2	25.0	29.2	1215	1421	0.45	0.53	0.77	0.90
IOTAL					18462	21146	3.28	3.87		
		,	NYUMBA	YA MUNGI	POWER	STATION				
MWANGA	4.0							0.60	0.73	0.85
		:	SAME S/	s						
GONJA	4.0	53	5.8	6.8	282	330	0.31	0.37	0.51	0.60
SAME TOWN	4.0	0.01	7.3	8.5	355	415	0.0001	0.0002	0.51 0.0002	0.0002
TOTAL POWER AND	COME DI C				10800	00715	4.78	6.05		
I UTAL FOWER AND I	Unento	000			19803	22/15	4.78	5.65		

TABLE A 2.4

	Growth		1991		1991	1995		1995	1991		
Feeder		Length		Max.I	Power	Power	Loss		Voltage	•	
Name	used %	(km)	(Amps)	(Amps)	(Kw)	(Kw)	(%)	(%)	(%)	(%)	
	11KV FEEDE	ERS									
			THEMI S	'S							
THEM	4.00	3.4	100	117	1620	1895	0.82	0.96	1.36	1.59	
KILTEX S/S											
KILTEX	4.00	2.1	35		571	668	0.27	0.31	0.37	0.43	
KILTEX FACT.	4.00	0.1	12	14	194	227	0.01	0.01	0.004	0.01	
TOTAL					765	895	0.20	0.23			
POWER HOUSE S/S											
MONDULI(i)	4.00	2.0	156	182	2526	2956	1.91	2.24	2.26	2.65	
MONDULI(ii)	4.00	29.0	43	50	696	815	7.65	8.94	9.04	10.6	
MONDULI(iii)	4.00	14.0	38	44	615	720		3.23	3.74	4.38	
MONDULI TOTAL	4.00	45.0	156	182	2526	2956	4.69	5.49			
FEEDER 1	4.00	3.6	110	129	1781	2084	1.21	1.42	1.92	2.25	
FEEDER 2 Town	4.00	2.2	176	206	2850	3334	2.14	2.5	2.67	3.1	
FEEDER 2 Rural	4.00	30.0	28	33	455	532	3.62	4.2	4.89	5.7	
FEEDER 2 Total					2850	3334	2.71	3.2			
FEEDER 3	4.00	7.2	203	237	3288	3846	3.58	4.19	5.93	6.94	
TOTAL					7919	9265	2.74	3.20			
			TENGEF	RU S/S							
TENGERU	4.00	6.0	34	40	548	641	1.32	1.54	1.71	2.00	
			MAKUM	IRA S/S							
MAKUMIRA	4.00	7.9	16	18	255	298	1.37	1.60	1.47	1.72	
	33 KV FEED	ERS									
			NJIRO GF	RID S/S							
INTER-CONNECTOR	4.00	7.0	280	328	13604	15915	4.01	4.69	4.85	5.67	
INDUSTRIAL	4.00	9.4	170	199	8260	9662	2.78	3.25	3.75	4.39	
FROM POWER HOUSE S/S											
MOSHI/ARUSHA	4.00	48.6	65		3158	3694	2.58	3.02	4.37	5.12	
	DECION				01000	05577	F 00	• 5 00			
TOTAL FOR ARUSHA	REGIUN				21863	25577	5.02	5.88			

MEDIUM VOLTAGE SYSTEM LOSS CALCULATIONS 1991/1995 - ARUSHA REGION

SAMPLE OF LV LINE LOSS CALCULATIONS

DAR ES SALAAM REGION. 1991 LOADS

TABLE A3

LOAD MAIN PHS DIST. NO. RES. NO. DISTR. LOAD POWER LOSS %LOSS LOADING OF INDIVIDUAL PHASES IN AMPS AVG % inc. DENSITY H/SES OH/KM SECT. FACTOR AMP. UNE (KM) KVA ĸw RPH Y PH 8 PH NPH LOAD for Amp pe unbalance house MBURAHATI NHC 200KVA MAIN F2 0.74 213 0.70 3 0.52 137 15.09 180.0 130.0 100.0 55.0 136.7 11.2 15.2 1.9 з 94.3 S 1 S 2 16 39 0.32 31 75 7.1 0.11 0.41 5 0.44 1.5 0.40 0.44 8 3.5 S 3 0.36 35 0.70 8 0.40 67 15.5 0.92 5.6 Total for spurs houses in sours 90 39.8 1 66 4 0 houses in main line Total for feeder 16.75 123 94.3 16.9 MAIN F1 3 0.62 317 0.32 5 0.44 130 89.7 4.43 4.7 200.0 120.0 70.0 60.0 130.0 24.1 1.2 S1 0.38 36 29 0.70 8 0.40 44 10.2 0.41 3.8 1 0.40 0.70 36 0.29 8 0.40 S2 8.2 3.3 **S**3 0.30 32 0.70 7 0.41 39 9.1 0.27 2.8 **S4** 0.25 22 0.70 6 0.42 27 6.2 0.11 1.6 Total for spurs 33.7 1.07 houses in spurs 119 3.0 houses in main line 198 Total for feeder 89.7 5.50 5.8 Total for the Transformer 530 0 184 22.25 11.5 MWENGE BUS STOP S/S 315 KVA MAIN F1 з 0.54 136 0.32 5 0.44 112 77.1 2.84 3.5 125.0 100.0 110.0 18.0 111.7 1.7 2.5 **S1** 3 0.14 10 18 0.70 0.70 4 0.47 8 5.7 0.01 02 0.13 4 0.47 15 10.2 0.03 **S**2 0.3 з S3 з 0.11 10 0.70 4 0.47 8 5.7 0.01 0.1 7 45 4 6 4.0 0.00 S4 з 0.14 0.70 0.47 0.1 Total for spurs houses in spurs 25.5 0.05 0.2 houses in main line 91 Total for feeder 77.1 2.89 3.6 MAIN F2 3 з 0.23 41 0.32 0.52 33 23.0 0 13 0.5 40.0 40.0 20.0 20.0 33.3 20 D 24 0.70 0.01 S1 э 0.09 13 2 0.63 7.3 0.2 11 S2 3 0.08 6 0.70 2 0.63 5 3.4 0.00 0.1 Total for spurs houses in spurs 19 0.02 10.7 0.1 houses in main line 22 Total for feeder 23.0 0.14 0.6 MAIN F3 3 19.1 0.115 0.57 30.0 27.7 65.9 з 0.30 31 0.32 0.52 28 45.0 28.0 10.0 2.7 1.8 4.9 S1 3 0.12 3 8 0.70 3 2 0.52 3 7 0.001 0.05 S2 0.002 0.05 0.32 0.63 з 0.08 houses in sours 11 Total for spur 6.8 0.003 0.05 houses in main line 20 Total for feeder 19.1 0.118 0.59 Total for the Transformer 208 0 119 3,155 2.52 ILALA ARUSHA STREET S/S 315KVA MAIN F1 0.42 163 112.7 200.0 80.0 163.3 з 0.45 117 0.23 6 3.48 2,93 150.0 140.0 10.6 4.2 15 13 3 0.07 11 0.70 1.00 10.6 0.03 0.31 **S1** S2 з 0.11 9 0.70 3 0.52 8.7 0.02 0.21 **S**3 з 0.15 14 3 20 0.02 0.14 0.23 0.52 13.5 13 7 8.7 4.8 **S4** з 0.12 9 5 0.23 з 0.52 0.01 0.07 **S**5 2 0.01 0.14 0.11 0.70 0.63 з houses in spurs 48 Total for spur 46.2 0.1 0.18 3.57 houses in main line 69 Total for feeder 112.7 3.01 MAIN F2 9.96 3 0.57 223 0.32 8 0.40 213 147.2 6,43 160.0 260.0 220.0 20.0 213.3 4.0 2.9 **S1** з 0.09 6 0.70 3 0.52 6 4.0 0.00 0.08 11 **S**2 з 0.15 0.70 6 0.42 11 7.3 0.01 0.19 53 54 55 11 17 7.3 0.21 0.70 6 0.42 0.02 0.27 з 0.70 3 0.15 18 5 0.44 11.9 0.04 0.33 0.00 2 0.63 6 4.0 0.05 з 0.05 6 \$6 \$7 0.44 33 0.70 10 0.39 95 21.8 2.13 9.28 з 0.05 5 0.70 2 0.63 5 3.3 0.00 0.04 Total for spur houses in spurs 90 59.4 2.2 3.53 houses in main line 133 Total for feeder 147 2 12.17 7 86 MAIN F3 з 0.24 35 0.23 2 0.63 45 31.1 0.21 0.65 30.0 50.0 55.0 20.0 45.0 12.3 3.9 5 81 0.23 0.44 0.20 1.02 S1 1 0.15 21 18.6 houses in sours 21 Total for spur 18.6 0.2 1.02 0.41

31.1

٥ 404 1.26

3 80

16

Total for the Transformer

houses in main line

NOTE:

The computations for line losses are made using balanced load conditions

Total for feeder

The increase of losses due to existing unbalance is presented separately The average load in Amps per house is also presented for each feeder

14

375

-118-

ANALYSIS OF SYSTEM LOSSES AND SALES BY VOLTAGE LEVEL Table A 4

_

	/0.0/Via	10.00	OTOTEM	2000		ID OALLO	01.10		ha hata V taha			
		D	ar es Salaam			Tanga			Arusha			Moshi
		_				. ungu			1100114			
TARIFF	Energy	sales Ki	Vh/month									
												
Residential			18,498,636			1,953,995			2,821,276			2,051,777
Light Commercial			4,848,489			879,279			820,261			772,778
Light Industrial			1,433,871			567,801			400,680			431,933
Gen Purpose LV, with	h KVA cha	rge	7,051,182			537,082			818,093			562,809
High Voltage Supply			6,424,823			1,186,309			2,268,517			1,128,851
Public lighting			226,412			48,592			75,739			75,585
TANESCO staff			094,322			41,988			13,610			27,408
NUWA (Water supply	n		3,532,613			271,280						
Agriculture			152,744			1,574,275			49,895			1,385,144
High Voltage Supply	-energy ir	Itensive	7,904,800			2,662,885			0			0
Zanzibar			5,702,050			0,000			0			0
TOTAL UNITS			55,869,942			9,723,486			7,268,071			6,436,286
	Demand	in KVA										
Gen Purpose LV, witi	h KVA cha	rge	36,124			2,194			3,635			5,048
High Voltage Supply		•	27,127			5,155			7,625			3,037
Zanzibar KVA			9,045						•			
Agriculture			755			6,946			0,363			4,110
High Voltage Supply	-enerav in	tensive	18,802			10,748			0			0
NUWA (Water supply			4,555			589			0			0
TOTAL KVA			87,363			25,633			11,623			12,195
			.,			20,000						,
BREAKDOWN OF CO	NSUMPTI			L								
				-								
Energy supply:												
chorgy supply.	in KWh i	per month										
132 kV supplies	ni Keen j		5,702,050									
33 kV supplies			8,336,800			2,662,885			0			0
												-
11 kV supplies			5,992,823			1,457,590			2,268,517			1,128,851
Supplies at Substatio	ns		7,203,926			2,111,357			867,988			1,947,953
LV supplies		2	5,101,730			3,491,654			4,131,566			3,359,482
Supply from M'dizi			3,532,613						7 000 07.			
TOTAL UNITS		:	5,869,942			9,723,486			7,268,071			6,436,286
	-											
132 kV supplies	in per ur	ш	0.11									
33 kV supplies			0.16			0.27			0.00			0.00
									0.00			
11 kV supplies			0.11			0.15			0.31			0.18
Supplies at Substatio	ns		0.14			0.22			0.12			0.30
LV supplies			0.48			0.36			0.57			0.52
.												
Power demand	-											
	KVA De	mand (noi	n-coincident)									
100 134												
132 kV supplies			9,045									
33 kV supplies			19,802			10748.333			0.000			0.000
11 kV supplies			26,127			5211.333			7625.333			3037.182
Supplies at Substatio	ns		36,879			9140.583			3998.083			9157.909
LV supplies												
	0	A										
	Computa	mon of co	incident peak	demand	1							
	<u>с-</u> г	15		0.5			0. F			0.5	. –	
100 101	Co.F	LF		Co.F	LF		Co.F	LF		Co.F	LF	
132 kV supplies	1.0		9,045									
33 kV supplies	.500		9,901	.500		5,374	.000		0	.000		0
11 kV supplies	.200		5,225	.300		1,563	.250		1,906	.250		0,759
At Substations	.200		7,376	.200		1,828	.200		0,800	.200		1,832
LV supplies		.550	63,388		.500	9,699		.500	11,477		.500	9,332
Total system peak			94,935			18,465			14,183			11,923
	P.U brea	k down of	coincident pe	ak dema	nd							
132 kV supplies			0.10									
33 kV supplies			0.10			0.29			0.00			0.00
11 kV supplies			0.06			0.08			0.13			0.06
At Substations			0.08			0.10			0.06			0.15
LV supplies			0.67			0.53			0.81			0.78
Note												
		Coinciden										
	LF - 1	Load facto	ər								_	
										(Cont. pag	je 2

ANALYSIS OF SYSTEM LOSSES AND SALES BY VOLTAGE LEVEL Table A 4 Cont.

-

. .

ANALYSIS OF PEAK POWER (kVA) FLOW:											
	loss %	09 707	loss %	18 440	loss %	16 756	loss %	14 001			
33 kV input		98,707	010	18,440	007	16,756	0.2.0	14,231			
33 kV line loss	.020	1,973	.012	221	.037	619	.038	540			
33 kV Supplies		9,901		5,374		0		0			
Power to SS		82,929	045	12,537		13,483	015	11,204			
SS t/f loss	.015	1,244	.015	188	.015	202	.015	168			
11 kV loss	.028	2,285	.020	247	.057	759	.030	331			
11 kV Supplies		5,225		1,563		1,906		759			
To LV from 33 kV		3,904		3,254		2,654		2,487			
To LV from 11 kV		74,175		7,593		10,616		9,946			
Power to LV 1/f		78,079		10,847		13,270		12,433			
LV t/f loss	.015	1,171	.015	163	.015	199	.015	186			
Supplies at SS		7,376		170		800		1,832			
LV line loss	.089	6,144	.078	816	.065	794	.105	1,083			
LV Supplies		63,388		9,699		11,477		9,332			
Analysis	s of peak o	contribution in p.	<u>.u.</u>								
33 kV input		1.000		1.000		1.000		1.000			
33 kV line loss		0.020		0.012		0.037		0.038			
33 kV Supplies		0.100		0.291		0.000		0.000			
Power to SS		0.840		0.680		0.805		0.787			
SS t/f loss		0.013		0.010		0.012		0.012			
11 kV line loss		0.023		0.013		0.045		0.023			
11 kV Supplies		0.053		0.085		0.114		0.053			
Power to LV t/l		0.791		0.588		0.792		0.874			
LV t/f loss		0.012		0.009		0.012		0.013			
LV line loss		0.062		0.044		0.047		0.076			
LV Supplies		0.717		0.535		0.733		0.784			
				0.089		0.154		0.162			
Sum of losses		0.130		0.089		0.154		0.162			
ANALYSIS OF ENERGY (KWh) FLOW:										
	losses pu.		losses pu		losses pu		losses pu				
33 kV input	4	\$6,374,783		10,258,421		8,147,685		7,232,146			
33 kV line loss	.015	695,468	.009	92,318	.028	225,929	.029	205,954			
33 kV Supplies		7,578,909		2,662,885		0,000		0			
Power to SS	3	36,532,948		5,146,245		6,602,955		6,460,458			
SS t/f loss	.015	547,873	.015	77,177	.015	99,022	.015	96,885			
11 kV loss	.021	755,360	.015	76,019	.043	279,012	.023	143,110			
11 kV Supplies		5,448,020		1,457,590		2,268,517		1,128,851			
To LV from 33 kV		1,567,458		2,356,973		1,318,801		565,735			
To LV from 11 kV	2	9,781,695		3,535,459		3,956,403		5,091,613			
Power to LV t/f		31,349,152		5,892,432		5,275,204		5,657,347			
LV t/f loss	.015	470,133	.015	88,367	.015	79,111	.015	84,841			
Supplies at SS		6,549,024		2,111,357		867,988		1,947,953			
LV line loss	.062	1,510,241	.055	201,054	.046	196,540	.074	265,071			
LV Supplies	2	2,819,755		3,491,654		4,131,566		3,359,482			
Energy	flow (consi	umption and los	ses) in p.u.								
33 kV input		1.000		1.000		1.000		1.000			
33 kV line loss		0.015		0.009		0.028		0.028			
33 kV Supplies		0.163		0.260		0.000		0.000			
Power to SS		0.788		0.502		0.810		0.893			
SS t/f loss		0.012		0.008		0.012		0.013			
11 kV line loss		0.016		0.007		0.034		0.020			
11 kV Supplies		0.117		0.142		0.278		0.156			
Power to LV t/f		0.676		0.574		0.647		0.782			
LV 1/f loss		0.010		0.009		0.010		0.012			
LV line loss		0.033		0.020		0.024		0.037			
LV Supplies		0.633		0.546		0.614		0.734			
Sum of losses in pu.		0.086		0.052		0.108		0.110			
System Load Factor in pu.				76.2		66.6		0.890			
Notes to computations:											
Allocation of LV supplies (pu)	by capacit	iy:									
	33 kV	11 kV	33 kV	11 kV	33 kV	11 kV	33 kV	11 kV			
At Substations	.05	.95	.30	.70	.20	.80	.20	.80			
Fed from LV lines	.05	.95	.40	.60	.25	.75	.10	.90			
Allocation of LV supplies (pu)											
	33 kV	11 kV	33 kV	11 kV	33 kV	11 kV	33 kV	11 kV			
At Substations	.05	.95	.30	.70	.20	.80	.20	.80			
Fed from LV lines	.05	.95	.40	.60	.25	.75	.10	.90			
LLF/LF for MV		0.75		0.75		0.75		0.75			
LLF/LF for LV		0.70		0.70		0.70		0.70			

LOADING DENCITIES OF MV FEEDERS

TABLE A 5

reeder. Name	SUPPLIED AREA(SQ.KM) MBEZIS/S	Perimeter Km	PEAK CURPENT AMP.	PEAK VOLTAGE KV.		ERDENSTY KVA/SQ.KM
	MBEZI S/S					
LUGALO	9.30	8.40	180.00	10.50	3274	352
PACKERS	6.00	10.70	60.00	10.80	1122	187
KUNDUCHI	18.20	20.30	180.00	10.00	3118	171
	MIKOCHENI	S/S				
MK1	3.50	17.50	155.00	10,50	2819	805
MK2	9.40	15.30	285.00	10.00	4936	525
МКЗ	3.10	8.20	40.00	10.90	755	244
MK4	2.50	10.60	174.00	10.70	3225	1290
	OYSTERBAY	S/S				
02	2.20	6.70	135.00	10.70	2502	1137
03	3.90	15.00	296.00	10.00	5127	1315
04	4.30	10.00	177.30	10.50	3225	750
O5	1.90	7.30	115.00	10.50	2092	1101
O6	3.10	10.70	120.00	10.50	2182	704
	UBUNGO S/S					
Ut	13.00	17.40	175.00	10.50	3183	245
U2	5.10	11.50	140.00	10.50	2546	499
U7	3.60	4.50	40.00	10.90	755	210
U8	4.70	9.70	70.00	10.90	1322	281
	FACTORYZO	NE IS/S				
F2	2.00	5.60	170.00	10.80	3180	1590
F5	2.20	7.30	110.00	10.80	2058	935
	ILALA S/S					
D1	2.30	8.70	250.00	10.50	4547	1977
D2	0.80	6.00	190.00	10.50	3456	4319
D3	1.10	5.40	175.00	10.50	3183	2893
D7	2.70	7.20	110.00	10.70	2039	. 755
D8	3.00	3.00	10.00	10.90	189	63
D9	0.90	5.00	145.00	10.80	2712	3014
D10	5.20	9.90	240.00	10.30	4282	823
	CITYCENTER	s/s				
C2	1.40	7.30	75.00	10.90	1416	1011
C3	2.60	3.00	240.00	10.90	4531	1743
C4	0.50	3.20	270.00	10.80	5051	10102
C5	0.40	3.80	195.00	10.90	3682	9204
C6	1.90	7.30	118.00	11.00	2248	1183
C8	1.30	1.40	180.00	10.90	3398	2614
	KURASINI S/S	5				
PORT	2.60	8.60	156.30	10 50	00/0	1000
INDUSTRIAL	4.90	10.50	156.30	10.50 10.50	2843 3365	1093 687
KILWA/ROAD	22.00	27.50	98.00	10.30	1833	83
33 KV FE	EDERS TANG	A REIGION				
MAZINDE	29.019		34.00	33.00	1943	0.07
TORONTO	12.982		11.20	33.00	640	0.07
HANDENI	22.516		7.00	33.00	400	0.02
MAGUNGA	6.539		21.00	33.00	1200	0.18
11 KV FE	EDERS TANG	REIGION				
LUSHOTO	42.326		34.80	11.00	663	0.02
MUHEZAII	7.844		30.70	11.00	585	0.02
LANZONI II	6.577		69.10	11.00	1317	0.20
MARAMBA	12.230		55.20	11.00	1052	0.09
TANGA TOWN	17.40	36.70	520.00	11.00	9908	569

-122-

PARTICULARS OF L.V TRANSFORMER LOADING DATA

TABLE A 6

-

SAMPLE DATA FROM DAR ES SALAAM

TRANSFORMER	TRANSFORMER		RATED	TRANSFOR	RMER LO	DS (AMPS)		TOTAL	AVERAGE	% LOADING	POWER	AREA	LOAD
LOCATION IDENTITY	NAME	CAPACITY KVA	CURR [AMPS]	RPH	YPH	BPH	N	LOAD	LOAD	OF TRANSF.	KW p.f=0.9	KM2	DENSITY [W/Msq.]
			[0]										[**/mad.]
				OYSTER	BAY -	MSASA	NIPE	ENINSU	LAR				
11 KV FEEDER: 06													
O6.25	TAZAMA FLATS	200	288	77	125	130	51	332	111	38.4	69	0.129	
O6.30E2		315	455	380	420	199	162	999	333	73.2	208	0.084	
O6.30E8		315	455	406	405	410	79	1221	407	B9.5	254	0.105	
O6.34	KIMARIO	315	455	330	400	380	46	1110	370	81.3	231	0.113	2.0
Q6.34W4	MAHENGE	200	288	260	350	210	58	820	273	94.9	170		
O6.39E4		315	455	280	300	304	125	884	295	64.8	184	0.208	
O6.39E8	OYSTERBAY HOTEL	300	433	310	315	303	42	928	309	71.4	193	0.119	1.6
O6.43W2		200	288	140	130	70	80	340	113	39.4	71		
O6.51		500	722	420	360	300	182	1080	360	49.9	224	0.209	1.1
O6.56E3		200	288	285	275	204	147	764	255	88.4	159	0.119	1.3
11 KV FEEDER: 03													
O3.6E1 3N1		500	722	. 75	98	64	59	237	79	10.9	49	0.029	1.7
O3.245E14		300	433	243	143	156	74	542	181	41.7	113	0.067	1.7
O3.61W4		500	722	231	196	290	106	717	239	33.1	149		
03.59	DERUA	500	722	320	360	200	120	880	293	40.6	183	0.123	1.5
O3.63E4	ITALIAN VILLAGE	315	455	300	340	290	115	930	310	68.1	193	0.108	
O3.64	EUROPA S/MARKET	315	455	208	272	302	113	782	261	57.3	163	0.078	
O3.65E3	ECHOPASIMARKET	300	433	200	180	220	103	630	210	48.5	131	0.075	
O3.68W4	RUSSIAN VILLAGE	315	433	300	400	400	112	1100	367	40.5 80.6	229	0.192	
O3.70E4	DARTADINE	500	722	410	410	380	116	1200	400	55.4	249	0.149	
		500			290	170	26	770	257	35.4	249	0.149	
03.75	CANADIAN VILLAGE		722	310									
O3.75W4	BAOBAB VILLAGE	300	433	388	412	600	247	1400	467	107.8	291	0.063	
O3.78E4	FINNIDA VILLAGE	315	455	420	180	380	220	980	327	71.8	204	0.067	
O3.81	SALIM A. SALIM	315	455	340	280	400	94	1020	340	74.7	212	0.065	
O3.3N2		300	433	210	192	180	34	582	194	44.8	121	0.087	
O3.4A	DRIVE IN TANESCO	315	455	222	236	236	118	694	231	50.8	144	0.086	1.7
11 KV FEEDER: MK	(1												
					• • •								
MK1-03.20E45E1A		315	455	320	340	340	62	1000	333	73.3	208	0.062	
MK1-03.20E45E4A		500	722	474	418	430	121	1322	441	61.0	275	0.141	1.9
MK1-O3.20E45E9	NIC FLATS	500	722	202	164	202	118	568	189	26.2	118	0.061	1.9
MK1-O3.20E45E45S3		500	722	318	424	340	140	1082	361	50.0	225	0.097	2.3
OVERALL AVERAGE FOR TRA	INSFORMER STATIONS (FEEDERS OF	6, 03, & M K	(1)							4937	2.771	1.8
				MWENG	E ARE.	A :							
11 KV FEEDER: MK	< 2												
	MWENGE P/SCH	200	288	170	180	170	158	520	173	60.2	108	0.134	0.8
	MWENGE B/STOP	315	455	210	168	140	68	518	173	37.9	108	0.164	
OVERALL AVERAGE FOR TRANSFORMER STATIONS FEEDER MK2 216 0.298 1.5													

NOTE: The high value of neutral current is observable in almost all transformers The load density (Watts/meter sq.) provides important data for planning purposes

-

HISTORICAL LOAD DEVELOPMENT IN DAR ES SALAAM ARUSHA, MOSHI AND TANGA

٠

	ANNUA	AL LOADS IN	GWH		
	Arusha	Moshi	Tanga	Dar es S.	Total/4R
1979	48.8	23.4	68.5	370.7	511.4
1980	49.6	22.4	76.2	379.8	528.0
1981	50.8	23.0	76.7	385.4	535.9
1982	53.4	21.7	74.7	389.7	539.5
1983	57.4	33.6	68.0	361.1	520.1
1984	57.9	36.4	63.2	368.2	525.7
1985	56.1	39.4	74.4	392.4	562.3
1986	64.0	43.8	85.9	415.1	608.8
1987	66.9	49.5	73.9	453.6	643.9
1988	70.4	65.3	95.3	491.9	722.9

% annual load increase

	Arusha	Moshi	Tanga	Dar es S.	Total/4R
1979 - 1980	1.6	-4.3	11.2	2.5	3.2
1980 - 1981	2.4	2.7	0.7	1.5	1.5
1981 - 1982	5.1	-5.7	-2.6	1.1	0.7
1982 - 1983	7.5	54.8	-9.0	-7.3	-3.6
1982 - 1984	0.9	8.3	-7.1	2.0	1.1
1984 - 1985	-3.1	8.2	17.7	6.6	7.0
1985 - 1986	14.1	11.2	15.5	5.8	8.3
1986 - 1987	4.5	13.0	-14.0	9.3	5.8
1987 - 1988	5.2	31.9	29.0	8.4	12.3
	% annual in	crease within	selected per	riods	
1979 - 1982	3.0	-2.5	2.9	1.7	1.8
1979 - 1983	4.1	14.5	-3.7	-1.7	-0.5
1979 - 1984	3.5	16.5	-6.2	-1.5	-0.6
1982 - 1987	3.8	14.7	-0.2	2.6	3.0
1983 - 1987	3.1	8.1	1.7	4.7	4.4
1984 - 1987	3.7	8.0	4.0	5.4	5.2
1985 - 1987	6.0	7.9	-0.2	4.9	4.6
1982 - 1988	4.7	20.2	4.1	4.0	5.0
1983 - 1988	4.2	14.2	7.0	6.4	6.8
1984 - 1988	5.0	15.7	10.8	7.5	8.3
1985 - 1988	7.9	18.3	. 8.6	7.8	8.7
1979 - 1988	4.2	12.1	3.7	3.2	3.9

ANNEX B

TRANSMISSION SYSTEM - LOAD FLOW STUDIES

.

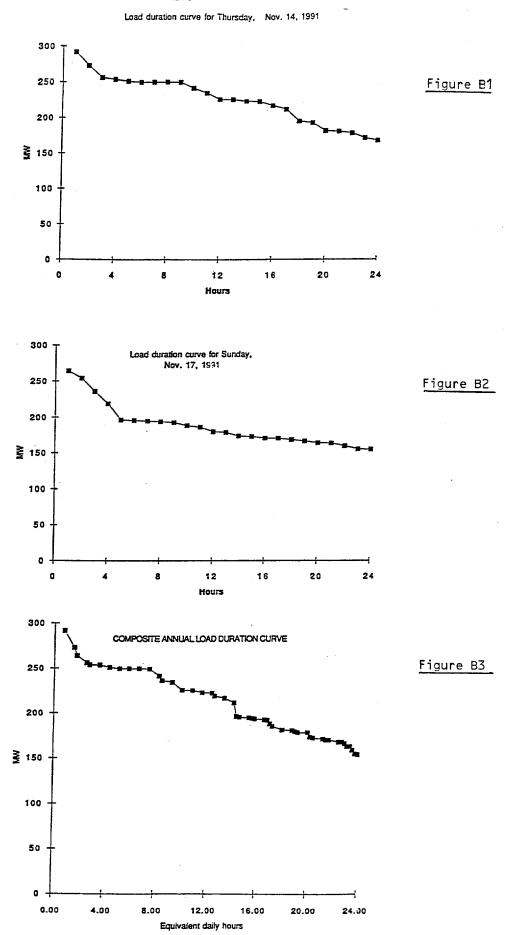
Annex B

TRANSMISSION SYSTEM - LOAD FLOW STUDIES

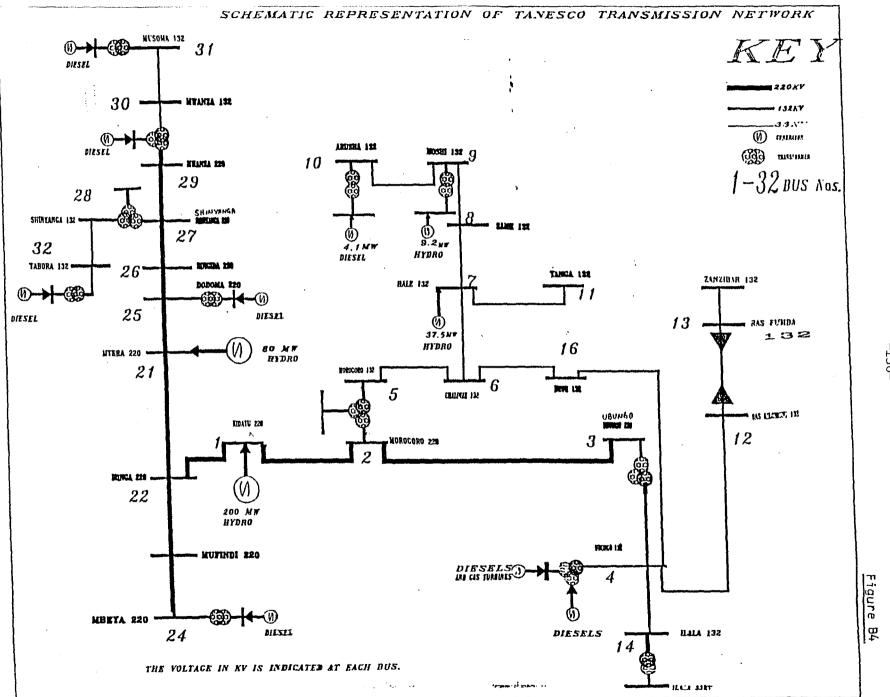
List of Figures and Tables

Figures

- B.1 Daily load profile for a typical weekday
- B.2 Daily load profile for a typical weekend
- B.3 Consolidated yearly load duration curve
- B.4 Single line diagram of the Transmission system


Tables

- B.1 Forecast yearly system loads and power balance
- B.2 Transmission line data used for load flow studies
- B.3 Effects of Capacitor applications at Dar es Salaam
- B.4 Effects of capacitor applications at Arusha


Key results of load flow studies

The key results of load flow studies undertaken are provided in a number of tables in this Annex. Among the data presented are total system losses (including the contribution from the various sections of the network), bus voltages, the generation particulars at the power stations, reactive compensation applied (both inductive and capacitive), tap positions of voltage transformation buses and the power flows along key transmission lines.

ŧ

-129-

-130-

FORECAST YEARLY SYSTEM LOADS AND POWER BALANCE

٠

MAXIMUM EXPECTED NIGHT PEAK LOADS FOR YEAR (BY GRID BUBSTATION)

									- COILDING			Territor C											
	Bus number	1991 MW	1991 MVAR	1992 NW	1892 MVAR	1993 MW	1683 MVAR	1884 MW	1994 MVAR	1995 MW	1995 MVAR	1998 MW	1996 MVAR	1997 MW	1897 MVAR	1998 MW	1998 MVAR	1958 MW	1989 MVAR	2000 MN	2000 MVAR	2001 MW	2001 MVAR
INDATU	1	8.6	2.8	7	3	7.5	3.6	7.0	5.6	8.5	4.1	9.0	4.4	8.8	4.8	10.2	4.9	10.9	3.0	11.8	4.2	12.3	4.8
MOROGORD HV	ż	0.0	0.0	ó	ő	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0
UBUNOO HN	3	0.0	0.0	ō	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UBUNGO -LV	i i	60.3	30.2	53.6	\$2.2	57.4	27.7	61.4	29.7	\$5.7	31.8	70.3	34.0	75.2	36.4	80.4	38.0	88.1	31.2	92.1	33.4	98.5	38.9
MOROGORO LV	i	15.7	7.9	18.7	8.4	17.6	8.6	18.9	9.2	20.2	8.8	21.5	10.4	22.0	11.1	24.4	11.8	28.0	9.4	27.6	10.0	29.4	11.6
CHALINZE	i i	2.3	1.1	2.4	1.2	2.8	1.2	2.7	1.3	2.9	1.4	3.1	1.5	3.3	1.8	3.5	1.7	3.7	1.4	4,0	1.4	4.2	1.7
HALE	7	3.4	1.7	3.6	1.8	3.8	1.9	4.1	2.0	4.3	2.1	4.6	2.2	4.9	2.4	6.3	2.5	5.6	2.0	8,D	2.2	6.3	2.5
SAME		2.3	1,1	2.4	1.2	2.4	1.2	2.7	1.3	2.9	1.4	3.1	1.5	3.3	1.6	3.5	1.7	3.7	1.4	4.0	1.4	4.2	-1.7
MOSH	•	17.8	10.8	19.1	11.5	20.3	9.8	21.7	10.5	23.1	11.2	24.8	11.9	26.2	12.7	27.0	13.5	20.7	10.8	31.6	11.5	33.7	13.3
ARUSHA	10	20.1	12.0	21.4	12.8	22.8	11.0	24.3	11.7	25.9	12.5	27.5	13.3	29.3	14.2	31.2	15.1	33.3	12.1	35.4	12.9	37.7	14.9
TANGA	11	22.3	13.4	23.0	14.3	25.3	12.3	27.0	13.1	20.7	13.9	30.6	14.8	32.6	15.8	34.7	18.8	37.0	13.4	39,4	14.3	41.9	16.6
Pasiaro	12	0.0	0.0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZANZIBAR	13	12.3	7.4	13.1	7.8	\$4.0	0.7	14.9	7.2	15.8	7.7	16.9	8.2	17.9	8.7	19.1	9.2	20.4	7.4	21.7	7.0	23.1	8.1
ILALA	14	56.0	33.6	59.6	35.8 3,6	63.6 6.4	30.6 3.1	68.2 6.8	33.0 3.3	73.0 7.2	35.3 3.6	78.1 7.7	37.8 3.7	83.6 8.2	40.4 4.0	80.4 8.8	43.3 4.2	95.7 9.3	34.7 3.4	102,4 8,8	37.2 3.6	109,6 10,6	43.3 4.2
FLMU MTERA	16 21	5.6 0.0	3.4 0.0		3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PINA PINA	22	5.1	2.5	8.4	8.7	8.8	2.8	0.0	3.0	6.5	3.2	8.9	3.4	7.4	3.6	7.0	3.8	8.4	3.0	6.0	3.2	9.5	3.8
MAND	23	20.1	12.1	21.4	12.0	22.3	10.6	23.1	11.2	24.1	11.8	25.0	12.1	28.0	12.6	27.1	13.1	28.2	10.2	29,3	10.6	30.5	12.0
MBEYA	24	14.4	1.7	15.5	8.3	18.5	8.0	17.6	8.5	18.7	4.1	19.8	9.6	21.2	10.3	22.8	10.9	24.1	8.7	25.7	8.3	27.3	10.8
DODOMA	25	6.2	3.1	6.6	3.3	7.0	3.4	7.5	3.6	8.0	3.9	8.5	4.1	0.0	4.4	9.6	4.7	10.3	3.7	10.9	4.0	11.6	4.8
ADDA	28	1.7	0.8	1.4	0.0	: I.Ø	0.#	2.0	1.0	2.2	1.1	2.3	1.1	2.5	1.2	2.6	1.3	2.8	- 1.0	3.0	1.1	3.2	1.3
SHIMYAN HV	27	0.0	0.0	٥	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0,0	0.0
BH#NYAN -LV	28	0.4	5.6	10		10.7	5.2	11.3	6.6	12.1	5.6	12.9	6.2	13.7	8.0	14.8	7.1	15.5	5.6	18.5	. 6.0	17.6	7.0
MWANZA .HV	20	0.0	0.0		_0	0.0	0.0 6.3	0.0 14.1	0.0 6.8	0.0 15.4	0.0 7.5	0.0 16.8	0.0 8.1	0.0 18.3	0.0 8.9	0.0 20.0	0.0 9.7	0.0 21.8	0.0 7.∎	0.0 23.7	0.0 8.6	0.0 25.8	0.0 19.2
MWANZA -LV	30	11.2	8.8	11,9 5,9	7.2	13.0 8.3	3.0	. 0.7	3.2	7.1	. 3.4	7.6	3.7	8.1	3.0	8.6	4.2	9.2	3.3	9,8	3.5	10.4	4.1
MUSOMA TABORA	31 32	5.6 3.4	8.6 1.7	3.8	1.4	3.0	1.0	4.1	2.0	4.3	2.1	4.5	2.2	4.9	2.4	5.3	2.5	5.6	2.0	8,0	2.2	8,3	2.5
TOTAL LOAD at grid (201.0	180.8	\$10.8	180.8	331.3	160.3	353.2	170.0	376.4	182.2	401.8	194.2	428.2	207.1	458.7	220.B	487.0	176.8	518,4	188.5	\$54.0	218.8
LOAD COMPOSITION B	Y REGION IN M	W, MVAR																					
											42.5	93.5	45.2	89.8	48.2	108.1	51.3	113.0	41.0	120.3	43.7	128.1	50.6
North-East Load		40.3	40.2	72.7	42.8 87.9	77.4	37.5 77.0	82.5 170.2	39.0 42.3	87.8 181.0	88.0	93.5	45.x 94.0	207.8	100.5	222.1	107.4	237.4	44.2	253,7	92.1	271.2	107.1
East Load North West Load		139.8 37.4	\$2.5 20.8	149.0 39.8	22.2	150.3 42.7	20.4	45.8	22.1	49.1	23.8	52.7	25.8	58.5	27.3	60.7	29.3	65.1	23.6	69,9	25.4	75.0	29.6
South West Load		46.3	20.2	49.3	27.0	\$2.0	25.1	54.8	28.5	67.4	27.9	60.8	29.6	64.3	31.1	67.8	32.8	71.5	28.0	75,5	27.4	79.6	31.5
Total Load (without Id		291.8	169.8	310.8	180.8	331.3	180.3	353.2	170.0	376.6	182.2	401.6	194.2	428.2	207.1	456.7	220.0	487.0	176.8	518.4	188.5	554.0	218.8
System peak losses in		0.070		0.080		0.058		0.070		0.050		0.042		0.043		0.048		0.050		0.050		0.050	
Total load plus losses		312,3		336.7		353.8		378.0		395.8		418.4	•	446.6		478.6		511.4		645,4		581.7	
HYDRO GENERATION I	RY RECION IN M	w																		· .			
	Existing plant				- je	•		1				N									ι	•	
Hydro Generation	••				<u>.</u>			•		1. • J						, ,				-		•	
North East MM	2 * 4					•						- S										21	
Hole	2 x 10.5	21		81				21		21	2	21		21 60		21		21 80		21 60		60	
Pangant		13		13	· •	13		13								89		40		·		19	
Total North West Miers	£ x 40	42		42	,	42				: 40		*0 *0		40		80		50		80		30	
flouts West Kideku	4 x 50	200		200		200		200		200	;	200		200		200		200		200		200 153	
L. Kihane U. Kihane		200		200	- L 		:		:	200		200	•	200		153 363		363		353		47	
Total Tatal Hydra capability	¥	322		322		322	•	: 322		369		389	•	369		522		622		522		569	
HYDRO EXPORT (*) (Hydro avaitable in r			(N MW)					`		•				:			•						
		1991	1	1995	er ja	1993		1994		1995		1995	•••	1997		1998		1999		2000		2001	
North-East		-26		-11		-35		-40		1		-5		-11		17		-24		-31		-30	
East		-140		-14		-150		-170		-142		-184		-208		-222		-237		-254		-271	
North West		43		40		4. 37		- 34		31		27		23 136		281		15 281		271		320	
South West		184	1	151		e 140		: 145)	142		139		170							-		
Total excess hydro c	apability in M	w 9,3	,	-13.1		₹ • •31.6	P	-58.0)	-26.6	i	-49.4	·	•77.8		: 43.4	1. 1	10.6		-23.4	ı	-12.1	
in system inclusive	~		•																				•

-131-

.

Table B1

TRANSMISSION LINE DATA

(used for load flow studies)

..

(Used for load flow studie	S)			
	.		•	Thermal
LINE (with bus numbers)	Hesistance	Inductance	Capacitance	rating
1 KIDATU 2 MOROGORO-HV	0.007	0.055	34.94	832
1 KIDATU 22 IRINGA	0.025	0.136	20.83	252
2 MOROGORO-HV 1 KIDATU	0.007	0.055	34.94	832
2 MOROGORO-HV 3 UBUNGO-HV	0.018	0.149	23.48	416
4 UBUNGO-LV 16 RUVU	0.049	0.112	2.31	92
4 UBUNGO-LV 12 RAS-KIRO	0.043	0.098	2.02	92
4 UBUNGO-LV 14 ILALA	0.012	0.026	0.50	92
5 MOROGORO-LV 6 CHALINZE	0.086	0.196	4.03	92
6 CHALINZE 16 RUVU	0.053	0.119	2.46	92
6 CHALINZE 7 HALE	0.184	0.418	8.60	92
7 HALE 8 SAME	0.210	0.478	9.83	92
7 HALE 11 TANGA	0.063	0.143	2.95	92
8 SAME 7 HALE	0.210	0.478	9.83	92
8 SAME 9 MOSHI	0.053	0.119	2.46	92
9 MOSHI 10 ARUSHA	0.079	0.177	3.70	92
12 RAS-KIRO 13 ZANZIBAR	0.052	0.030	36.35	92
21 MTERA 22 IRINGA	0.016	0.089	13.67	252
21 MTERA 25 DODOMA	0.022	0.118	17.97	252
22 IRINGA 23 MUFINDI	0.020	0.111	16.93	252
23 MUFINDI 24 MBEYA	0.034	0.187	28.64	252
25 DODOMA 26 SINGIDA	0.033	0.180	27.47	252
26 SINGIDA 27 SHINYAN-HV	0.034	0.187	28.64	252
27 SHINYAN-HV 29 MWANZA-HV	0.022	0.118	18.10	252
28 SHINYAN-LV 32 TABORA	0.213	0.485	9.97	92
29 MWANZA-HV 27 SHINYAN-HV	0.022	0.118	18.10	252
30 MWANZA-LV 31 MUSOMA	0.263	0.597	12.28	92
32 TABORA 28 SHINYAN-LV	0.213	0.485	9.97	92

-132-

Note: Resistances and reactances are on a 100 MVA base Capacitances are in MVAr The thermal rating is in Amps. **-**

Table B.1

٠.

.

rear end			ongo			Hale		M	oshi	Arusha	Morogoro	System	Loss
Load Step	Gener MV	Ation MVAr	Capac. MVAr	. H.T <u>Vltge</u>	MU	HVAr	Vitge	MU	HVAr	MVAr	LV Volt.	Losses MW	Reductn. MW
<u>ith Dou</u>	ble cir	<u>cuit l</u>	ines fr	om Kidatu t	o Morogoi	20							
93 Max	30	20	-	.924	34	18.0	1.014	8	9	22.2	1.042	20.43	-
	30 30	20 20	30 45	.980 1.012	34 34	17.3 15.8	1.040 1.040	8 8	9 9	18.3 18.3	1.045	18.53 18.31	1.90
			42		_			_					
93 API	5	3	-	.886	34	20.0	1.025	8	9	17.0	1.037	20.60	
	55	33	30	.951	34	16.6	1.040	8	9	14.8 14.8	1.041	18.01	2.59
	2	3	45	.983	34	15.6	1.040	8	y	14.0	1.041	17.56	3.04
93 AP2	0	0	0	.901	34	18.8	1.040	8	9	11.7	1.036	17.55	•
	0	Ö	30	.960	34	12.6	1.040	8	9	11.7	1.036	15.45	2.10
	0	0	45	.989	34	10.1	1.040	8	9	11.7	1.038	14.99	0.46
94 Max	51	30	0	.970	34	20.0	.991	8	9	24.95	1.041	22.24	-
	51	30	30	1.029	34	20.0	1.004	8	9	22.50	1.036	21.35	0.89
With Dou	<u>ible cir</u>	<u>cuit l</u>	ines fr	om Kidatu-N	orogoro-l	Ubungo							
95 Max	25	15	0	.973	80	-1.8	1.040	8	9	21.1	1.039	15.79	-
	25	15	30	1.013	80	-4.7	1.040	8	9	21.1	1.041	15.38	.41
	25	15	45	1.040	80	-4.2	1.040	8	9	21.1	1.035	15.40	-
95 AP1	10	5	0	.981	80	12.2	1.040	0	5	26.4	1.042	17.79	-
	10	5	30	1.021	80	9.3	1.040	0	5	26.4	1.044	17.37	0.42
	0	0 0	_0	.968	80	7.8	1.04	8	9	17.2	1.034	15.00	
	0	0	30 45	1.009	80 80	4.7 3.45	1.04	8 8	9	17.2 17.2	1.036	14.46 14.39	0.54 0.07
	0	U	43	1.029	οv	5.45	1.04	a	¥	11.2	1.031	14.37	0.01
95 AP2	0	0	0	.956	80	-1.4	1.04	8	9	18.3	1.037	13.18	
	0	0	30	.999	80	-4.7	1.04	8	9	18.3	1.035	12.44	0.74
	0	0	0	.957	57	9.23	1.04	8	9	18.3	1.038	14.93	0.00
	0	0	30	1.000	57	5.7	1.04	8	9	18.3	1.041	14.03	0.90
95 AM1	0	0	0	.964	80	-7.2	1.062	8	9	15.9	1.034	11.13	
	Ö	Ö	30	1.005	80	-10.4	1.04	8	9	14.9	1.037	10.72	0.41
	5 5	0	0	.963	34	20	1.009	8	9	8.55	1.042	16.36	
	5	0	30	1.005	34	20	1.018	8	9	8.22	1.039	15.72	0.64

Table B.3 Effects of Capacitor Applications at Dar es Salaam

Table 33

`

T.

												در بار بر بار س	
EFFECTS		DENEN	TAL 184	COEAC						TADUC	J A		
EFFECIS				UNERO		AFAGIN		FLICA		M Anosi		مونی، و د در د	
				AGES								ەرىغى ھېسىي بېغە ھېيىن	
				errs indic							•	•	••
Run#		KIDATU	MOROG	HALE	MOSHI	ARUSA			ARUSH/		JSHA		
	losses		-	-	•		MW	MWAR	MWAR		VOLTAGE		÷ -
	in MW	1	5	7	9	10				CHANGE	CHANGE	ំ ខេត្តភ្លេង ក្រុមភេទទំនំ ខេត្តទំនំ	
											in pu		-
LOAD COND	ITIONS C	ORRES		G TO: 19	92 MAX.	1993AP1	AND 19	94AP2					-
		MW, 12			•								-
92-5L6	22.39	1.030	1.028	0.960	0.931	0.950	15	7	31.8				,
92-5L5		1.030					15			0.4	0.020	35°°°	~
92-5L4						0.990	15	7		0.5	0.020		
92-5L3	21.71	1.030	1.041	1.029	1.038	1.062	15	7	35.0	2.4	0.072		
LOAD COND	TIONS C	ORRES	PONDING	G TO: 19	95 MAX.	1996AP1/	AND 19	97AP2				1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	
					-	04 PU Vo			1W, 5MV	Ar			
B:95MAX-A1	20.62	1.020	1.043	1.040	0.846	0.838	35	17	20.0			्रम् २२ व सन्दर्भ स	
B:95MAX-A2							35	17		5.0			
B:95MAX-A3								17		5.0			
B:95MAX-3								17			0.009		
B:95MAX-A4	19.94	1.020	1.043	1.040	0.962	0.983	35	17	35.0	4.0	0.033	ार (************************************	
	Hale 80	MW, var	iable MV	/Ar to ma	aintain1.	04 PU Vo	Itage N	Aoshi 4N	W. 7MV	Ar 🕤		5.55 A 95 5.5 2 - 5 - 5 - 5 - 5 - 5 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	Υ.
95M-B1	17.51	1.020	1.043	1.040	0.900	0.893	35	17	20.0		1	5-2	
B:95MAX-B2							35	• •	25.0	5.0	0.048		: :
B:95MAX-B5							35		27.5	2.5	0.022		
B:95MAX-88							35		28.0	0.5	0.004	• - • •	۱
B:95MAX-B9	17.4	1.020	1.043	1.040	0.966	0.976	35	17	29.0	1.0	0.009		· · .
	Haie 80	MW, vari	iable MV	'Ar to ma	uintain1.0	42PU Vo	Itage I	V oshi 8N	1W, 9MV	'Ar		1.20.45	
	15.57						35		15.0			.	
B:95MAX-C3	15.34	1.020	1.042	1.040	0.945	0.939	35	17	20.0	5.0	0.050		· ·
B:95MAX-C4							35	17	-	5.0	0.043		_
B:95MAX-C5	15.73	1.020	1.042	1.040	1.009	1.021	35	17	30.0	5.0	0.039	· من ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	٦. N

-134-

.

-

.

-135-

-

91Max.

POWER FLOW RESULTS - 1991 MAXIMUM AND 1992 MAXIMUM BUS LOADS

System I	Details:	Single	cct.	Kidatu-Morogoro-Ubungo
0,0101111	polutio.	en gio		radata moregore epange

			1991 MA	XIMUM BUS	LOADS		1992 M/	XIMUM BUS	S LOADS		
Load Flow Ru	n No:		1B1	184 E	8:91MAX-1 E	8:91MAX-3	B:92MAX-5 E	3:92MAX-6 E	3:92MAX-7 E	3:92MAX-8 E	3:92MAX-9
TOTAL POWE	RINPUT		311.5	313.3	308.7	310.2	337.5	335.2	330.5	331.1	333.1
TOTAL LOAD			292.0	292.0	292.0	292.0	310.8	310.8	310.8	310.8	310.8
TOTAL LINE C			312.9	321.0	330.8	324.3	312.5	319.7	317.9	312.7	305.3
TOTAL LOSS			20.68	21.99	17.61	19.01	26.21	23.94	19.49	20.51	22.56
Bus Voltage	s:	Bus no.									
KIDATU		1	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030
MOROGORO		2	0.974	0.998	0.992	0.971	0.978	0.998	0.991	0.975	0.953
UBUNGO - HV		3	0.927	0.938	0.960	0.918	0.944	0.9981	0.960	0.930	0.888
UBUNGO -LV		4	0.927	1.029	1.006	0.959	0.989	1.032	1.007	0.930	0.888
MOROGORO -	i M	7 5					1.026				
	LV		1.025	1.054	1.046	1.022		1.052	1.045	1.026	0.998
CHALINZE		6	1.003	1.037	1.029	1.000	0.994	1.029	1.027	1.003	0.966
HALE		7	1.030	1.038	1.040	1.037	0.971	1.005	1.040	1.028	0.997
SAME		8	0.969	0.972	0.978	0.976	0.937	0.953	0.977	0.971	0.957
MOSHI		9	0.955	0.957	0.962	0.961	0.934	0.944	0.962	0.958	0.950
ARUSHA		10	0,950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950
TANGA		11	1.014	1.022	1.024	1.020	0.949	0.985	1.022	1.008	0.976
RAS-KIRO		12	0.973	1.034	1.011	0.961	0.992	1.036	1.010	0.974	0.924
ZANZIBAR		13	0.969	1.031	1.008	0.958	0.988	1.033	1.007	0.970	0.920
ILALA		14	0.953	1.014	0.991	0.942	0.972	1.016	0.990	0.955	0.906
RUMU		16	0.983	1.031	1.015	0.976	0.989	1.028	1.014	0.985	0.941
MTERA		21	1.036	1.036	1.036	1.036	1.036	1.036	1.036	1.036	1.036
IRINGA		22	1.029	1.029	1.029	1.029	1.034	1.034	1.034	1.034	1.034
MUFINDI		23	1.017	1.017	1.017	1.017	1.032	1.032	1.032	1.032	1.032
MBEYA		24	1.004	1.004	1.004	1.004	1.038	1.038	1.038	1.038	1.038
DODOMA		25	1.016	1.016	1.033	1.033	1.012	1.012	1.012	1.012	1.012
SINGIDA		26	1.009	1.009	1.053	1.053	1.001	1.0012	1.001	1.012	1.001
		20									
SHINYAN -HV			1.012	1.012	1.082	1.082	0.998	0.998	0.998	0.998	0.998
SHINYAN -LV		28	1.013	1.013	1.085	1.085	0.999	0.999	0.999	0.999	0.999
MWANZA -HV		29	1.010	1.010	1.096	1.096	0.995	0.995	0.995	0.995	0.995
MWANZA -LV		30	1.006	1.006	1.098	1.098	0.990	0.990	0.990	0.990	0.990
MUSOMA		31	1.011	1.011	1.110	1.110	0.992	0.992	0.992	0.992	0.992
TABORA		32	1.022	1.022	1.097	1.097	1.007	1.007	1.007	1.007	1.007
Power Gene	ration and v	ariable var	inputs:								
KIDATU	MW		193.488	201.335	186.698	188,151	202.48	200.201	196.519	197.093	199.129
	MWAR		30.93	9.735	13.809	32.819	23.195	4.159	11.047	25.313	46.302
			00.00	0.700	10.000	02.0.0	20.100	4.100	11.047	20.070	40.002
UBUNGO	MW		0	4	0	0	27	27	12	12	12
000,100	MWAR		35	55	45	30	50	60	50	40	30
			35	55	45	30	50	00	50	40	30
HALE	MW		34	24	34		24			~ •	
HALE				24		34		24	34	34	34
	MWAR		17	17	10.154	17	14	14	14.667	17	17
1000									-	-	-
MOSHI	MW		4	4	8	8	4	4	8	8	8
	MWAR		7	7	7	7	7	7	9	9	9
ARUSHA	MW		0	0	0	0	0	0	0	0	0
ANOONA	MWAR		16.647	15.9	13.216	13.742	29.874	24.458	14.89	16.704	21.409
			10.047	10.9	10.210	13.742	23.674	24.430	14.03	10.704	21.403
MTERA	MW		80	80	80	80	80	80	80	80	80
	MWAR		-4.177	-4.178	-18.952	-18.953	-6.431	-6.43	-6.43	-6.43	-6.43
			~	•	~	<u>^</u>		-	-	-	
IRANGA	MW		0	0	0	0	0	0	0	0	0
	MWAR		0	0	0	0	0	0	0	0	0
e				-	_	_		_		_	-
Diesels in	MW		0	0	0	0	0	0	0	0	0
East	MWAR		0	0	0	0	0	0	0	0	0

POWER FLOW RESULTS - 1991 MAXIMUM AND 1992 MAXIMUM BUS LOADS Cont. Page 2

System Details: Single cct. Kidatu-Morogoro-Ubungo 1991 MAXIMUM BUS LOADS 1992 MAXIMUM BUS LOADS Load Flow Run No: B:T91-1B1 B:T91-1B4 B:91MAX-1 B:91MAX-3 B:92MAX-5 B:92MAX-6 B:92MAX-7 B:92MAX-8 B:92MAX-9 Section Power flows: NORTH-EAST 112.274 106.58 111.45 113.30 109.46 107.45 115.37 116.54 118.37 EAST 109.055 116.376 107.26 106.54 131.90 131.92 119.50 118.79 118.58 KID-MORO LINE 187.918 195.765 180.92 182.38 191.43 189.15 185.47 186.05 188.08 EAST & N/EAST TOTAL 225.918 227.765 224.38 246.43 222.92 244.15 239.47 240.05 242.08 WEST 78.97 78.97 79.18 84.05 84.05 84.05 79.18 84.05 84.05 SYSTEM TOTAL 311.488 313.335 308.70 310.15 337.48 335.20 330.52 331.09 333.13 Section Power Losses in percent: NORTH-EAST 0.094 0.112 8.085 8.913 16.140 14.339 9.761 10.415 11.667 FAST 0.032 0.028 3.176 3,478 3.145 2.955 3.212 3.405 3.793 KID-MORO LINE 0.026 0.026 4.377 4.642 4.987 4.707 4.579 4.751 5.155 EAST & N/EAST TOTAL 0.084 0.089 15.638 17.033 24.272 22.001 17.552 18,571 20.615 WEST 0.022 0.022 1.974 1.973 1.945 1.945 1.945 1.945 1.945 SYSTEM TOTAL 0.066 0.070 17.613 19.007 26.217 23.946 19.497 20.515 22.559 Power flows in main lines: Kidatu to Moro. MAV 187.918 195.765 180.922 182.376 191,433 189.154 185.471 186.046 188.081 MVAR 37.964 16.769 20.885 39.894 34.638 15.602 22.49 36.756 57.745 LOSS (MW) 4.744 4.848 5.037 4.376 4.641 4.981 4.7 4.572 5.148 Moro, to Ubungo w 109.055 112.376 107.257 106.542 104.898 104.915 107.499 106.788 106.581 MVAR 15.247 6.869 -4.765 4.488 14.379 27.109 -2.8175.165 19.23 LOSS (MW) 2.428 2.336 2.192 2.379 2.168 2.029 2.203 2.32 2.577 Moro. to Chalinze MW 58.313 62.655 53.685 55.598 64.623 62.626 56.568 57.736 59.562 MVAR -11.786 -12.168 -16.318 -13.599 -11.184 -9.262 -13.496 -14.246 -7.709 LOSS (MW) 2.868 2.371 2.614 3.458 3.153 2.64 2.803 3.094 3.195 Chalinze to Hale MW 34.635 46.317 29,197 29.572 54.795 53.336 35.238 35.567 36.438 MVAR -22.519 -19.697-17.717 -23.296 -15.213 -15,199 -19.76-22.051 -22.813 LOSS (MW) 2.798 4.054 1.781 2.274 5.811 5.135 2.567 2.886 3.315 Transformer Tap Possitions: Morogoro 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 Ubungo 0.95 0.95 0.95 0.95 0,95 0.95 0.95 Mwanza 1 1 1 1 1 1 1 1 1 Fixed Capacitors / Reactors used: bus no: Ubungo 0 0 a 0 0 0 0 0 0 4 Moshi 9 ٥ 0 0 0 0 0 0 0 0 Arusha 10 ٥ 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 Tanga 11 10 RasKiroman 12 -20 -20 -20 -20 -20 -20 -20 -20 -20 Iringa 22 -20 -20 -20 -20 -20 -20 -20 -20 -20 Mutindi 23 -10 -10 -10 -10 -10 -10 -10 -10 -10 Mbeya -10 24 -10 -10 -10 0 0 0 0 0 Dodoma 25 -30 -30 -30 -30 -30 -30 -30 -30 -30 Singida 26 -30 -30 -30 -30 -30 -30 -30 -30 -30 Shinyanga 27 -20 -20 -20 -20 -20 -20 -20 -20 -20 Shiny/LV 28 0 Ó 0 0 0 0 0 0 0 Mwanza 29 -10 -10 0 0 0 0 0 0 Q

Cont. pg.2

Yr93 POWER FLOW RESULTS YEAR 1993

System Details: With Kidatu - Morogoro second circuit

			1993 N	AXIMUM E	BUS LOAD	s	199	93 LOAD S	TEP 1	1993 LO	AD STEP 1
Load Flow	w Run No:		1R5	B1R6	m-4	m-6	92-R1	92-R2	92-R3	91-1A2	91-1A5
TOTAL PO	WER INPUT		351.0	348.9	351.4	349.7	332.4	328.9	329.8	311.7	310.5
TOTAL LO			331.2	331.2	331.2	331.2	310.8	310.8	310.8	292.0	292.0
TOTAL LIN	E CHARGING	1	331.4	331.4	324.5	331.6	332.6	329.2	335.1	331.4	335.8
TOTAL LO			22.19	20.00	20.43	18.8	21.62	18.14	18.74	19.48	17.64
Bus Volta	•	us no.									
KIDATU		1	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030
MOROGOF	NH-OF	2	1.004	1.004	0.998	1.014	1.004	0.998	1.000	0.994	1.008
UBUNGO -		3	0.942	0.942	0.924	0.966	0.965	0. 9 25	0.932	0.908	0.952
UBUNGO -		4	0.980	0.980	0.959	1.008	0.997	0.960	0.970	0.940	0.993
MOROGOF		5	1.052	1.052	1.042	1.046	1.049	1.043	1.047	1.039	1.058
CHALINZE		6	1.017	1.019	1.001	1.026	1.012	1.004	1.010	0.999	1.028
HALE		7	1.040	1.040	1.014	1.036	0.985	1.015	1.020	1.040	1.040
SAME		8	0.978	0.979	0.961	0.971	0.950	0.969	0.972	0.973	0.973
MOSH		9	0.967	0.966	0.951	0.957	0.946	0.960	0.961	0.958	0.958
ARUSHA		10	0.970	0.960	0.950	0.950	0.960	0.960	0.960	0.950	0.950
TANGA		11	1.027	1.025	0.992	1.015	0.964	0.995	1.000	1.027	1.024
RAS-KIRO		12	0.992	0.992	0.960	1.011	1.000	0.962	0.972	0.942	0.997
ZANZIBAR		13	0.987	0.987	0.955	1.007	0.997	0.958	0.968	0.938	0.993
		14	0.962	0.962	0.941	0.991	0.980	0.943	0.953	0.923	0.977
RUVU		16	0.995	0.996 1.036	0.977	1.015	1.002 1.036	0.979	0.987	0.967	1.008
MTERA IRINGA		21 22	1.036 1.032	1.038	1.030 1.028	1.030 1.028	1.035	1.036 1.035	1.036 1.035	1.036 1.035	1.036 1.029
MUFINDI		23	1.032	1.028	1.028	1.026	1.035	1.035	1.035	1.035	1.029
MBEYA		24	1.028	1.032	1.024	1.024	1.045	1.045	1.045	1.043	1.004
DODOMA		25	1.008	1.002	1.001	1.001	1.017	1.017	1.043	1.016	1.016
SINGIDA		26	0.990	0.990	0.983	0.983	1.013	1.013	1.013	1.009	1.009
SHINYAN -	HV	27	0.983	0.983	0.974	0.974	1.016	1.016	1.016	1.012	1.012
SHINYAN		28	0.983	0.983	0.975	0.975	1.017	1.017	1.017	1.013	1.013
MWANZA		29	0.977	0.977	0.968	0.968	1.015	1.015	1.015	1.010	1.010
MWANZA		30	0.972	0.972	0.963	0.963	1.010	1.010	1.010	1.006	1.006
MUSOMA		31	0.970	0.970	0.960	0.960	1.013	1.013	1.013	1.011	1.011
TABORA		32	0.990	0.990	0.980	0.980	1.026	1.026	1.026	1.022	1.022
Power Ger	neration and	variat	le var input	s:							
KIDATU	NW			204.856					192.759	193.671	
	MWAR		3.567	3.738	17.556	-11.528	5.2	16.246	12.958	22.176	0.76
UBUNGO	MW		30	22	30	30	10	10	0	0	0
	MWAR		15.901	18.279	20	40	5	18.995	26.997	3.87	25
									~ ~ ~		
HALE	MW		34	34	34	34	24	34	34	34	34
	MWAR		17.994	15.119	18	18	12	12	12	19.187	13.681
MOSHI	MW		4	8	8	8	4	8	8	4	4
	MWAR		7	9	9	9	7	7	7	4	7
	NIN NAUT		'	3	3	9	'	1	,	'	,
ARUSHA	MW		0	0	0	0	0	0	0	0	0
100170	MWAR		24.543				28.933				
									20.00		
MTERA	MW		80	80	80	80	80	80	80	80	80
	MWAR		-1.01	-1.008	-2.908	-2.908	-12.384	-12.384	-12.384	-11.259	-4.179
IRANGA	MW		0	0	0	0	0	0	0	0	0
	MWAR		0	0	0	0	0	0	0	0	0
Diesels in	MW		0	0	• 0	0	8	8	8	0	0
East	MWAR		0	0	0	0	0	0	0	0	0
Cont. pg.2	2										

-138-

-

,

POWER FLOW RESULTS YEAR 1993 CONT. PAGE 2

System Details: With Kidatu - Morogoro second circuit

		1993 N	IAXIMUM E	BUS LOAD	S	199	3 LOAD S	TEP 1	1993 LO	AD STEP 1
Load Flow Run No) :	1R5	B1R6	m-4	m-6	92-R1	92-R2	92-R3	91-1 A 2	91-1A5
Section Power flo NORTH-EAST EAST KID-MORO LINE EAST & IV/EAST TO WEST			121.158 128.502 187.67 251.67 89.686	120.69 131.20 182.16 254.16 89.72	116.65 133.67 180.44 252.44 89.72	204.085	118.77 117.411 186.611 238.611 83.554	121.118 115.414 197.204 239.204 83.554	107.997 188.09	113.108 109.346 186.899 224.899 78.969
SYSTEM TOTAL		350.997		351.37	349.66		329.165			310.468
Section Power Lo	sses in p	percent:								
NORTH-EAST EAST KD-MORO LINE EAST & N/EAST TO WEST SYSTEM TOTAL	DTAL	0.120 0.026 0.013 0.079 0.024 0.063	0.098 0.028 0.013 0.071 0.024 0.057	0.103 0.027 0.013 0.072 0.025 0.058	0.097 0.023 0.012 0.066 0.025 0.054	0.145 0.020 0.014 0.083 0.017 0.065	0.089 0.031 0.013 0.070 0.017 0.055	0.088 0.034 0.014 0.072 0.017 0.057	0.098 0.036 0.013 0.078 0.023 0.063	0.090 0.031 0.012 0.071 0.022 0.057
Power flows in ma	ain lines:									
!	MW MVAR LOSS	185.811 14.769 2.317	187.67 14.94 2.363	182.156 25.906 2.286	180.443 -3.178 2.133	204.085 14.655 2.781	186.611 25.701 2.392	197.204 22.414 2.638	188.09 33.861 2.479	186.899 7.794 2.317
. 1	MW MVAR LOSS	102.906 25.297 2.171	106.502 25.555 2.311	101.199 32.851 2.245	103.67 15.728 2.049	129.002 19.019 1.703	107.411 32.957 2.484	115.414 29.475 2.748	107.997 41.012 2.673	109.346 21.305 2.352
I	MW MVAR LOSS	63.075 -7.364 3.117	61.324 -7.69 2.949	60.788 -3.643 2.931	56.764 -13.221 2.632	55.461 -3.477 2.407	59.953 -4.051 2.846	62.297 -6.046 3.062	61.757 -4.44 3.044	59.276 -8.556 2.732
,	MW MVAR LOSS	46.662 -24.419 4.578	40.595 -22.736 3.508	41.913 -20.821 3.719	41.167 -20.354 3.394	54.36 -14.563 5.494	35.77 -19.066 2.729	35.625 -18.922 2.669	35.806 -25.613 3.195	35.346 -19.553 2.564
Transformer Tap	Possitior	18:								
Morogoro Ubungo Mwanza		0.95 0.95 1	0.95 0.95 1	0.95 0.95 1	0.97 0.95 1	0.95 0.95 1	0.95 0.95 1	0.95 0.95 1	0.95 0.95 1	0.95 0.95 1
Fixed Capacitors /	/ Reactor bus no:	s used:								
Ubungo Moshi Arusha Tanga RasKirom Iringa Mufindi Mbeya Dodoma Singida Shinyang. Shiny/LV Mwanza	4 9 10 11 12 22 23 24 25 26 27 28 29	0 0 14 -10 -20 -10 0 -30 -30 -20 0 0	0 0 14 -10 -20 -10 0 -30 -30 -20 0 0	0 0 -20 -20 -10 0 -30 -30 -20 0 0	0 0 -20 -10 -30 -30 -20 0 0	0 0 -20 -20 -10 0 -30 -30 -20 0 0	0 0 -20 -20 -10 0 -30 -30 -20 0 0	0 0 -20 -20 -10 0 -30 -30 -20 0 0	0 0 12 -20 -10 0 -30 -30 -20 0 0	0 0 -20 -10 -10 -30 -30 -20 0 0

Yr93

POWER FLOW RESULTS - YEAR 1995 & 1998 MAXIMUM BUS LOADS WITH NEW PANGANI AVAILABLE BUT WITHOUT SINGIDA-ARUSHA LINE

Yr95/98T

System Details: Double cct. lines Kidatu - Morogoro - Ubungo

					1995 ye	ar Maxir	num k	ads	1008	Max loads
Load Flow	Run No:		M-C2	M-C5	M-B1	M-B4	M-A1	M-A4	98-D5	98-D9
TOTAL PC	WER INP	UT	392.5	392.7	394.5	393.8	396.9	396.9	499.7	497.0
TOTAL LC	DAD		376.6	376.6	376.6	376.6	376.6	376.6	456.7	456.7
TOTAL LIN		aing	353.2	355.2	353.1	367.8	352.2	354.3	348.4	360.4
TOTAL LC	SS		15.57	15.73	17.51	16.9	20.62	19.94	42.83	40.02
Bus Volta	ges:	Bus no.								
KIDATU		1	1.020	1.020	1.020	1.020	1.020	1.020	1.030	1.030
MOROGO	NH-OF	2	1.005	1.005	1.005	1.018	1.005	1.005	0.973	1.010
UBUNGO	HV	3	0.971	0.971	0.971	0.993	0.971	0.971	0.911	0.985
UBUNGO-	-LV	4	1.004	1.004	1.004	1.032	1.004	1.004	0.957	1.020
MOROGO	ao -lv	5	1.042	1.042	1.043	1.067	1.043	1.043	1.038	1.033
CHALINZE		6	1.029	1.029	1.030	1.075	1.029	1.029	1.001	1.024
HALE		7	1.040	1.040	1.040	1.164	1.040	1.040	1.040	1.040
SAME		8	0.928	1.011	0.922	1.160	0.876	0.969	0.949	0.949
MOSHI		9	0.906	1.009	0.900	1.162	0,846	0.962	0.947	0.947
ARUSHA		10	0.889	1.021	0.893	1.181	0.838	0.983	0.949	0.949
TANGA		11	1.019	1.019	1.019	1.149	1.019	1.019	1.010	1.010
RAS-KIRO		12	1.006	1.006	1.007	1.035	1.007	1.007	0.955	1.020
ZANZIBAR		13	1.001	1.001	1.002	1.030	1.002	1.002	0.947	1.013
ILALA		14	0.986	0.986	0.986	1.014	0.986	0.986	0.934	0.998
RUVU		16	1.014	1.014	1.014	1.051	1.014	1.014	0.975	1.019
MTERA		21	1.020	1.020	1.020	1.020	1,020	1.020	1.030	1.030
RINGA		22	1.021	1.021	1.021	1.021	1.021	1.021	1.037	1.037
MURNDI		23	1.013	1.013	1.013	1.013	1.013	1.013	1.030	1.030
MBEYA		24	1.017	1.017		1.017	1.017	1.017	1.029	1.029
DODOMA		25	0.988	0.988	0.988	0.988	0.988	0.988	1.006	1.006
SINGIDA		26	0.985	0.985	0.985	0.985	0.985	0.985	1.003	1.003
SHINYAN		27	0.995	0.995	0.995	0.995	0.995	0.995	0.998	0.998
SHINYAN		28	0.996	0.996	0.996	0.996	0.996	0.996	0.998	0.998
MWANZA		29	1.002	1.002	1.002	1.002	1.002	1.002	0.999	0.999
MWANZA	-LV	30	1.002	1.002	1.002	1.002	1.002	1.002	0.997	0.997
MUSOMA		31	0.998	0.998	0.998	0.998	0.998	0.998	0.983	0.983
TABORA		32	1.001	1.001	1.001	1.001	1.001	1.001	0.998	0.998
Power Ger		and variab	le var inpi	uts:						
KIDATU	MW		189.52	189.72	195.47	194.79	201.86	201.89	199.73	197.02
	MWAR		-15.07	-15.07	-15.21	-39.79	-15.01	-15.01	84.861	16.152
UBUNGO	MW		35	35	35	35	35	35	0	0
	MWAR		17	17	17	17	17	17	20	70
HALE	1.8.1/				~ ~ ~		~~			
HALE	MW		80	80	80	80	80	80	80	80
	MWAR		6.003	-10.63	9.063	0	20.591	1.878	30.953	24.812
MOSHI	MW		8	8	4		0			•
NUCSTI	MWAR		9	9	7	4	5	0 5	0	0
			9	9	,	'	5	5	25	25
ARUSHA	MW		0	0	0	0	٥	0	^	0
11100110	MWAR		15	30	20	35		0 35	0 30	0 30
	1414 42-11 1		15	50	20	35	20	35	30	30
MTERA	MW		80	80	80	80	80	80	80	80
	MWAR			-3.382			-3.382		-16.63	-16.63
			2.002	0.002	0.002	0.002	0.002	0.000	-10.03	10.00
IRANGA	MW		0	0	0	0	0	0	140	140
	MWAR		õ	ō	ő	õ	ŏ	ŏ	-20	-20
			2		2	5	•	-	20	LV
Diesels in	MW		0	0	0	0	0	0	0	0
East	MWAR		0	0	0	ō	ō	0	0	õ
										-

Cont. pg.2

_

POWER FLOW RESULTS - YEAR 1995 & 1998 MAXIMUM BUS LOADS WITH NEW PANGANI AVAILABLE BUT WITHOUT SINGIDA-ARUSHA LINE

Yr95/98T System Details: Double cct. lines Kidatu - Morogoro - Ubungo

Load Flow Run No	c	M-C2	M-C5	1995 yea M-B1	ar Maxin M-B4	nunn lo M-A1	ads M-A4	1998 N 98-D5	lax loads 98-D9
Section Power flo	ws:						-		
NORTH-EAST		134.63	134.73	133.88	133.95	133.53	133.42	170.89	163.36
EAST		146.3	146.38	148.86	148.17	151.56	151.62	188.43	193.84
KID-MORO LINE		159.68	159.88	165.63	164.95	172.02	172.05	285.17	
EAST & N/EAST T	OTAL	282.68			283.95	287.02		365.17	
WEST SYSTEM TOTAL		101.34 392.52	101.34 392.72	101.34 394.47	101.34 393.79	101.34 396.86	101.34 396.89	124.36 499.73	124.36 497.02
OTOTEL		532.52	552.72	554.47	555.75	550.80	030.03	433.10	437.02
Section Power Los	ses in MW:				,				
NORTH-EAST in M	w	8.308	8.469	10.085	9.604	13.000	12.326	24.63	23.29
EAST		2.616	2.617	2.650	2.549	2.700	2.701	6.31	5.45
KID-MORO LINE		1.820	1.824	1.948	1.926	2.091	2.091	8.06	7.46
EAST & N/EAST T	OTAL	12.744		14.683	14.079	17.791	17.118	39.00	36.20
WEST		2.882	2.882	2.882	2.882	2.882	2.881	4.94	4.95
SYSTEM TOTAL		15.625	15.792	17.565	16.961	20.673	19.999	43.94	41.14
Section Power Los	sses in perc	cent:							
NORTH-EAST		0.062	0.063	0.075	0.072	0.097	0.092	0.144	0.143
EAST		0.018	0.018	0.018	0.017	0.018	0.018	0.033	0.028
KID-MORO LINE		0.011	0.011	0.012	0.012	0.012	0.012	0.028	0.026
EAST & N/EAST T	OTAL	0.045	0.046	0.052	0.050	0.062	0.060	0.107	0.100
WEST		0.028	0.028	0.028	0.028	0.028	0.028	0.040	0.040
SYSTEM TOTAL		0.040	0.040	0.045	0.043	0.052	0.050	0.088	0.083
Power flows in ma	in lines:								
Kidatu to Moro.	MW	159.68	159.88	165.63	164.95	172.02	172.05	285.17	282.46
	MVAR	-3.643	-3.647	-3.782	-28.37	-3.578	-3.579	72.546	3.837
	LOSS (M	1.705	1.709	1.833	1.811	1.976	1.977	5.828	5.221
Moro. to Ubungo	MW	111 9	111.38	113.86	113.17	116.56	116.62	188.43	193.84
word, to obdrigo	MVAR	13.164	13.15	12.699	0.159	12.376	12.361	49.376	-0.741
	LOSS (MI	1.266	1.268	1.316	1.202	1.372	1.373	3.99	3.472
Moro. to Chalinze		26.374	26.482		29.697	33.287	33.155	66.327	58.82
	MVAR	-6.364	-6.398	-7.339	-18.77	-8.313	-8.285	-7.652	-19
	LOSS (MI	0.566	0.57	0.716	0.872	0.906	0.9	3.543	3.02
Chalinze to Hale	MW	4.568	4.755	10.227	9.49	16.677	16.348	43.325	42.804
	MVAR	-9.095	-9.169	-11.29	-31.16	-13.7	-13.58	-26.89	-22.25
	LOSS (MI	0.072	0.076	0.26	1.233	0.628	0.605	4.376	3.766
Transformer Tap I	Possitions:								
14	~	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00
Morogor Ubungo	U	0.96	0.96	0.96 0.95	0.96 0.95	0.96 0.95	0.96	0.93	0.98
Mwanza		0.95	0.95 1	0.95	0.93	0.95	0.95	0.93	0.96 1
14144 (A 16C			•	•		•	•	•	·
Fixed Capacitors /		ised:							
-	bus no:								
Tanga	11	10	10	10	10	10	10	10	10
RasKiror Iringa	m 12 22	-20 -10	-20 -10	-20 -10	-20 -10	-20 -10	-20 -10	-20 0	-20 0
nnga Mufindi	22	-10	-10	-10	-10	-10	-15	-10	-10
Dodoma		-40	-40	-40	-40	-40	-40	-30	-30
Singida	26	-30	-30	-30	-30	-30	-30	-20	-20
Shinyan		-20	-20	-20	-20	-20	-20	-20	-20

_

POWER FLOW RESULTS - YEAR 1995, 1998 and 2001 MAXIMUM BUS LOADS

WITH SINGIDA-ARUSHA LINE YrS95-03M

System Details: Double cct. lines Kidatu - Morogoro - Ubungo and 220 kV Singida - Arusha connection

		1995		1998 ma	x Loads		2001	Max Loa	ads	
Load Flow Run No:		5-C1Q	98-2D3	98-2D4	98-251	98-2\$2	1-A2	1-A3	1 -A 4	
TOTAL POWER INPUT		388.4	481.4	480.2	481.9	482.6	579.7	579.6	578.8	
TOTAL LOAD		376.6	456.7	456.7	456.7	456.7	553.7	553.7	553.7	
TOTAL LINE CHARGING		400.5	391.9	398.8	371.3	365.8	396.4	396.3	405.0	
TOTAL LOSS		11.9	24.36	23.15	28.09	29.19	26.18	26.15	25.21	
Bus Voitages:										
	s no.	+ 000	1 0 2 0	1 000	1 000	1 000	1 000	1 000		
KIDATU	1	1.020	1.030	1.030	1.020	1.020	1.030	1.030	1.030	
MOROGORO HV	2	1.016	0.981	0.996	0.989	0.978	0.994	0.992	1.015	
UBUNGO-HV	3 4	0.993	0.917	0.948	0.934	0.900	0.940	0.941	0.987	
UBUNGO -LV		1.022	0.940	0.980	0.980	0.940	0.979	0.980	1.033	
MOROGORO-LV	5	1.042	0.997	1.015	1.011	0.997	1.042	1.040	1.036	
CHALINZE	6	1.036	0.982	1.006	1.001	0.978	1.018	1.017	1.035	
HALE	7	1.040	1.033	1.040	1.040	1.034	1.040	1.040	1.040	
SAME	8	0.994	1.003	1.006	1.006	1.004	1.025	1.025	1.024	
MOSHI	9	0.982	0.993	0.994	0.995	0.993	1.021	1.021	1.020	
ARUSHA	10	0.984	1.010	1.010	1.010	1.010	1.002	1.002	1.001	
TANGA	11	1.019	0.988	0.995	0.995	0.988	0.990	0.990	0.990	
RAS-KIRO	12	1.025	0.937	0.978	0.978	0.937	0.975	0.977	1.032	
ZANZIBAR	13	1.020	0.928	0.970	0.970	0.928	0.965	0.967	1.023	
ILALA	14	1.004	0.928	0.969	0.969	0.928	0.966	0.968	1.021	
RUVU	16	1.026	0.956	0.989	0.985	0.953	0.993	0.994	1.030	
MTERA	21	1.020	1.030	1.030	1.020	1.020	1.020	1.020	1.020	
RINGA	22	1.021	1.040	1.040	1.030	1.030	1.034	1.034	1.034	
MUFINDI	23	1.013	1.033	1.033	1.022	1.022	1.025	1.025	1.025	
MBEYA	24	1.017	1.033	1.033	1.021	1.021	1.022	1.022	1.022	
DODOMA	25	0.994	1.003	1.004	0.994	0.994	0.994	0.994	0.994	
SINGIDA	26	1.005	1.019	1.020	1.012	1.011	1.014	1.014	1.014	
SHINYAN -HV	27	1.018	1.016	1.017	1.009	1.008	1.022	1.022	1.021	
SHINYAN -LV	28	1.019	1.016	1.017	1.009	1.009	1.022	1.022	1.021	
MWANZA -HV	29	1.025	1.017	1.018	1.010	1.010	1.021	1.020	1.020	
MWANZA -LV	30	1.026	1.016	1.017	1.009	1.009	1.019	1.019	1.018	
MUSOMA	31	1.025	1.004	1.005	0.996	0.996	1.002	1.002	1.001	
TABORA	32	1.025	1.017	1.018	1.010	1.009	1.021	1.021	1.020	
ARUSHA-HV		0.974	1.015	1.015	1.014	1.013	1.009	1.009	1.008	
Power Generation and v	ariable	e var inputs:								
KIDATU MW		190.4	201 20	200.18	201.88	202.56	204.65	204.63	203.83	
MWAR										
MYYAR		-36.21	54.934	27.959	22.287	42.108	34.136	39.014	-3.655	
UBUNGO MW		30	0	0	0	0	47	47	47	
MWAR			17.947		88.305			47	. 47	
WINAU		30	17.947	37.140	88.305	72.715	20	25	60	
HALE MW		80	50	50	50	50		80		
MWAR				50		50	80	80	80	
MAAYU		-12.79	25	21.552	22.152	25	7.405	7.509	3.269	
MOSHI MW		8	0	~	•	•		•		
		8 4	5	0	0	0	8	8	8	
MWAR		4	5	5	5	5	30	30	30	
ARUSHA MW		~	. 0	~	•	•	•	•	•	
MWAR		0		0	0	0	0	0	0	
IVIVAR		0	1.002	6.436	8.448	9.444	-10	-10	-10	
MTERA MW			0.0							
•		80	80	80	80	80	80	80	80	
MWAR		-7.26	-12.01	-12.67	-11.64	-11.21	-14.79	-14.77	-14.76	
		•								
IRANGA MW		0	150	150	150	150	160	160	160	
MWAR		0	-20	-20	-20	-20	-20	-20	-20	
Diesels in MW		^	~	~	~	^	~	~	~	
		0	0	0	0	0	0	0	0	
East MWAR		0	0	0	0	0	0	0	0	

_

POWER FLOW RESULTS - YEAR 1995, 1998 and 2001 MAXIMUM BUS LOADS WITH SINGIDA-ARUSHA LINE

YrS95-03M

,

.

System Details: Double cct. lines Kidatu - Morogoro - Ubungo and 220 kV Singida - Arusha connection

		1005		1000					
Load Flow Run No	.	1995 5-C1Q	98-203	1998 ma 98-2D4		08-252	200 1-A2	1 Max Lo 1-A3	ads 1-A4
Louis 1 low 1 lon 1 lo		5-0102	30-2.03	30-204	30-231	30-232	1-82	1-43	I-A4
Section Power flo	ws:								
NORTH-EAST		123.01	116.53	115.45	133,18	134.23	156.30	156.05	151.54
EAST		137.70	175.38	176.47	159.13	157.95	215.30	215.46	219.82
KID-MORO LINE		144.09	246.23	246.03	246.31	246.29	240.51	240.45	240.09
EAST & N/EAST	TOTAL	262.09	296.23	296.03	296.31	296.29	375.51	375.45	375.09
WEST		117.81	174.95	173.95	175.37	176.07	191.85	191.88	191.44
SYSTEM TOTAL		388.40	481.38	480.18	481.88	482.56	579.65	579.63	578.83
Section Power Los	sses in MW	<i>l</i> :							
NORTH-EAST in M	w	3.87	4.56	4.21	6.38	6.77	5.71	5.69	5.44
EAST		2.50	5.26	4.76	7.03	7.49	4.89	4.85	4.42
KID-MORO LINE		1.73	5.03	4.83	4.86	4.98	4.49	4.52	4.33
EAST & N/EAST 1	TOTAL	8.10	14.85	13.81	18.27	19.24	15.10	15.06	14.19
WEST		3.98	9.87	9.72	10.18	10.30	11.37	11.37	11.30
SYSTEM TOTAL		12.07	24.72	23.53	28.45	29.54	26.47	26.44	25.49
Section Power Lo	sses in pei	rcent:							
NORTH-EAST		0.031	0.039	0.036	0.048	0.050	0.037	0.036	0.036
EAST		0.018	0.030	0.027	0.044	0.047	0.023	0.022	0.020
KID-MORO LINE		0.012	0.020	0.020	0.020	0.020	0.019	0.019	0.018
EAST & N/EAST 1	IOTAL	0.031	0.050	0.047	0.062	0.065	0.040	0.040	0.038
WEST		0.034	0.056	0.056	0.058	0.058	0.059	0.059	0.059
SYSTEM TOTAL		0.031	0.051	0.049	0.059	0.061	0.046	0.046	0.044
Power flows in ma	un lines:								
Kidatu to Moro.	MW	144.09	246.23	246.03	246.31	246.29	240.51	240.45	240.09
	MVAR	-22.59	56.753	29.501	23.432	43.446	32.764	37.651	-5.134
	LOSS	1.378	4.312	4.087	4.139	4.275	3.933	3.965	3.761
Moro, to Ubungo	MW	107.7	175.38	176.47	159.13	157.95	168.3	168.46	172.82
	MVAR	-3.196	52.061	30.257		40.752	37.971	33.433	3.038
	LOSS	1.085	3.509	3.188	4.991	5.285	3.017	2.986	2.764
Moro. to Chalinze	MW	14.786	42.035	40.968	58.682	59.794	38.859	38.606	34.103
	MVAR	-5.147	-10.58	•13.44	-18.38	-14.66	-4.615	-5.531	-15.21
	LOSS	0.181	1.595	1.511	3.124	3.237	1.201	1.195	1.07
Chalinze to Hale	MW	-15.14	8.83	9.533	6.4	5.578	1.657	1.625	2.193
	MVAR	1.555	-19.59	-16.32	-16.21	-19.16	-10.61	-10.7	-6.733
	LOSS	0.459	0.604	0.425	0.336	0.494	0.072	0.074	0.016
Singida to Arusha		67.645	115.76	114.74	116.36	117.06	122.79	122.83	122.37
	MVAR	3.499	-0.014	-0.486	-0.63	-0.332	-0.489	-0.474	-0.391
	LOSS	0.984	2.747	2.698	2.827	2.862	3.147	3,149	3.125
Transformer Tap F	ossitions:								
Morogor		0.97	0.98	0.98	0.98	0.98	0.95	0.95	0.98
Ubungo		0.96	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Mwanza		1	1	1	1	1	1	1	1
Arusha		0.98	1	1	1	1	0	0	0
Fixed Capacitors /							- -		
RasKiron		-20	-20	-20	-20	-20	-20	-20	-20
Iringa Mutindi	22	-10	0	0	0	0	0	0	0
Mufindi	23	-15	-10	-10	-10	-10	-10	-10	-10
Mbeya	24	0	0	0	0	0	0	0	0
Dodoma Singida		-40	-30	-30	-30	-30	-30	-30	-30
Singida Shinyang	26 27	-30	-20	-20	-20	-20	-20	-20	-20
оннуапе	* 21	-20	-20	-20	-20	-20	-10	-10	-10

-

ANNEX C

ECONOMIC EVALUATION OF REACTIVE COMPENSATION REQUIREMENTS FOR THE TRANSMISSION AND DISTRIBUTION SYSTEMS

I

Annex C

ECONOMIC EVALUATION OF REACTIVE COMPENSATION REQUIREMENTS FOR THE TRANSMISSION AND DISTRIBUTION SYSTEMS

List of Tables

- C.1.1 Cost of power supply using small diesel generators
- C.1.2 Average incremental cost by voltage level
- C.2 Loss reduction and benefit to cost ratio by installation of a reactor at Ras Kiromany
- C.3 Loss reduction and benefit to cost ratio by installation of a capacitor at Tanga cement factory
- C.4 Costs of variable static var compensating systems (SVS)
- C.5.1 Loss reduction by use of capacitors at Dar es Salaam
- C.5.2 Benefit to cost analysis of switched capacitor banks at Dar es Salaam
- C.6 Benefit to cost analysis of installing a SVS system at Arusha
- C.7.1 Unit cost of medium voltage capacitors and associated equipment
- C.7.2 Costs of unswitched capacitor banks on overhead lines
- C.7.3 Costs of switched capacitor banks on overhead lines
- C.8.A Capacitor applications: loss reduction benefits on existing 11 kV systems
- C.8.B Capacitor applications: loss reduction benefits on 11 kV lines after network rearrangement
- C.9 Capacitor applications: loss reduction benefits on 33 kV lines
- C.10 Loss reduction on Ubungu-Ilala 132 kV line and total system by down stream capacitor applications
- C.11 Economic analysis of selected capacitor applications on 11 kV lines
- C.12 Economic analysis of capacitor applications at 33/11 kV substations and consumer installations.

,

Printed 02/28/92

...

COST OF POWER SUPPLY FROM SMALL DIESEL PLANTS

	Discount Rate 12%			Discount Rate 10%			
	Piant factor 25%	Plant factor 12 %	Plant factor 6 %	Plant factor 25%	Plant factor 12 %	Plant factor 5 %	
	20%	12 78		4J/8			
Investment Cost US\$ Million	1.6	1.6	1.6	1.6	1.6	1.6	
Capacity MW	2	2	2	2	2	2	
Energy MWh/year	4380	2102	1051	4380	2102	1051	
Plant Factor	0.25	0.12	0.06	0.25	0.12	0.05	
Plant Capacity Cost US \$ /kW	800	800	800	800	800	800	
PW of Annuity Factor 10 years	5.65	5.65	5.65	6.14	6.14	6.14	
Discount Rate	12%	12%	12%	10%	10%	10%	
Fuel Cost (diesel oil) US\$/kWh	0.05	0.05	0.05	0.05	0.05	0.05	
O&M Cost of Dieselplant US\$/kWh	0.007	0.007	0.007	0.007	0.007	0.007	
Fixed Maintenance Cost US \$ /kW/year	7.1	7.1	7.1	7.1	7.1	7.1	
PW of Energy Benefits MWh	24748	11879	5940	26913	12918	6459	
PW Fuel Cost US\$ Million	1.24	0.59	0.30	1.35	0.65	0.32	
PW O&M Cost US\$ Million	0.17	0.08	0.04	0.18	0.09	0.04	
PW Fixed Maintenance Cost US\$ Million	0.08	0.08	0.08	0.09	0.09	0.09	
PW Total Cost US\$ Million	3.09	2.35	2.02	3.22	2.42	2.05	
Total Cost US\$/kWh	0.12	0.20	0.34	0.12	0.19	0.32	
Total Cost Adjusted for 4 % station use US\$/kWh	0.13	0.21	0.35	0.12	0.20	0.33	

		Discount	Rate
		12%	10%
PV Generation investment	US\$ Million	453	535
₽V Hydro generation O&M	"	8	11
V Diesel operating+fuel+fixed maintenance	"	13	14
V Energy benefits without genr losses	GWh	8249	10714
AIC AT GENERATION LEVEL US\$/kWh		0.057	0.052
V Transmission investment + 2 % 0&M	US\$ Million	112	131
/ Energy benefits without genr and trans losses	GWh	7849	10192
AIC AT TRANSMISSION LEVEL US\$/kWh		0.072	0.065
Distribution investment + 1,5 % 0&M	US\$ Million	171	193
Energy benefits without total losses	GWh	7420	9643
AIC AT DISTRIBUTION LEVEL in 1989 US\$/kWh		0.095	0.085
IC converted to 1991 US\$/kWh			
AIC at Generation Level		0.063	0.058
AIC at Transmission Level		0.079	0.072
AIC at Distribution Level		0.104	0.094

Note: Calculations are based on "Investment Program", TANESCO, March 1990 and the Least Cost Hydroelectric Development Plan prepared by Acres International Ltd. for TANESCO in July 1989 "Review of Power Sector Development Program". Details of the investment portfolio are presented in Annex II.

TANESCO'S INVESTMENT PROGRAM

by year of commissioning of investment

Year	Generation	Transmission	Distribution
1990	Diesel Rehabilitation		
1991			Mbeya/Mufindi
1992	New Diesel	Transmission Rehab.	···
1993	Ubungo Gas Turb. Rehabilitation	Reactive Compensation Kidatu/Morogoro II cct	Rural Electrific.
1994		Morogoro/Dar es Salaam II cct.	
1995	Panganî Redevel.	Pangani	
1996	-	Singida/Arusha	Major Distr. I
1997	Kihansi I	Kihansi	•
1998			
1999	Kihansi II/Retire Diesel		
2000	,		Future Distribution
2001			
2002	Masigira	Masigira	
2003	-	-	
2004			
2005	Rumakali/Retire Diesel	Rumakali	
2006			Future Distribution
2007	Retire Diesel	Future Transmission	
2008			
2009	Ruhudj	Ruhudj	
2010			
2011			Future Distribution
2012	Mpanga	Mpanga	
2013			
2014			
2015	•		

Investments outside the interconnected grid not included

Source: "Investment Program" Tanesco March 1990 and

"Review of 1985 Power Sector Development Plan" Tanesco and Acres International Ltd. July 1989 The need for investments for "Future Transmission" and "Future Distribution" estimated by ESMAP.

TABLE C.2

Reactor used at Ras Kiromany No React. 10 MVAr 20 MVAr Peak Line Losses in MW Ubungo to Ras Kiromani 0.47 0.23 0.08 Loss Savings MW 0.24 0.39 Loss load factor of savings 1 1 Annual savings GWH 2.102 3.416 Value of savings /yr. \$ 000's 210 342 Present worth of loss savings in \$ 000's 1598 2596 Cost of reactor installation \$ 000's 5 5 Reactor transport and labour 2 Isolator, struct. etc. 5 Additional cost for equivalent capacitor \$000's 60 120 Total cost \$ 000's 70 127 BENEFIT/COST ratio 23 20 Pay back period in months 4.0 4.5

LOSS SAVINGS BY INSTALLING A REACTOR AT RASKIROMANY

Note:

0.1 = energy costs in S/ kWh

7.6 = Present worth factor (calculated at 10% interest and for 15 years of benefits)

6 = cost in S/kVAr for equivalent capacitor

-151-

LOSS SAVINGS BY CAPACITOR INSTALLATION AT TANGA CEMENT FACTORY

٠

¥

	1990 - 1992	1993 onwards
PEAK LOSS SAVINGS (KW)		
132 kV Hale Tanga line	58	100
33 kV line at Tanga	75	120
Total peak loss Savings kW	133	220
Loss Reduction Load Factor	0.7	0.7
Annual loss savings kWH	81 <u>5</u> 556	1349,040
Value of savings /yr. \$ 000's	81.556	134.904
Present worth of loss savings \$ 000's from 1992		750
COST OF CAPACITOR INSTALLATION (2 X 4 MVAR)		
Capacitor banks in \$ 000s		28
Switchgear cost in \$ 000s		8
Total cost in \$ 000s		36
BENEFIT/COST ratio	_	21
PAY BACK PERIOD	-	5.3 Months
Note:		
3.5 = Capacitor cost used in /kVAR		

The loading in 1993 is expected to increase due to the removal of the existing constraints.

The present worth of loss reduction has been worked out with one year (1992) at the existing load and thereafter at the new expected load.

The present worth factor used for the streem of losses after 1993 is 6.

TABLE C 4

COSTS OF VARIABLE STATIC VAR COMPENSATING SYSTEMS AT GRID SUBSTATIONS

._ ._ ..

Rating of Installation		MVAR 20	MVAR 30	MVAR 55
ESTIMATED PRICES OF COMPONENTS			COST IN US	\$ 000s
Thyristor controlled reactor with control and protection systems	-	1900	2350	3475
Capacitor banks, at 5 \$ per KVAR		100	150	275
Step down transformer		350	350	550
Civil works and miscellaneous costs		150	175	200
Switchgear Cost in US \$ 000s				
132 kV breaker and associated equipment 11 kV breaker and associated equipment	300 75			
Additional cost for insurance, freight and installat as % of base costs	25 %			·

COST OF COMBINED UNIT WITH STEP DOWN TRANSFORMER

No. of switched capacitor banks (no. of circuit breakers)	TOTAL COST (OF SVS UNIT	' IN US \$ 000s
ο	3594	4250	6094
2	3781	4438	6281
3	3875	4531	6375
4	3969	4625	6469
5	4063	4719	6563

COST OF COMBINED UNIT WITHOUT STEP DOWN TRANSFORMER

.

No. of switched capacitor banks (no. of circuit breakers)	TOTAL COST C	OF SVS UNIT	IN US \$ 000s
0	2781	3438	5031
2	2969	3625	5219
3	3063	3719	5313
4	3156	3813	5406
. 5	3250	3906	5500

-

-153-

LOSS SAVINGS BY USE OF CAPACITORS AT UBUNGO / LALA

Los	s savings by	30 MVAr 🕫	mpensition		Loss savings	by add/l. 15	MVAr comp	ensation
	MW	KWH	PV	PV	MAY	KWH	PV	PV
			MWH	\$ 000			MMH	\$ 000
1993MAX	1.90	333			0.22	39		
** 1993AP1	2.25	2562			0.45	512		
** 1993AP2	2.06	3609			D.50	876		
1993AM1	0	o			٩	0 0		
1993AM2	0	0			0	U		
TOTAL 1993		6504	5375	538		1427	1179	118
Tot. without **		2895	2393	239		551	455	46
	0.89	156			0	0		
1994MAX	1.90	2164			0.22	251		
1994AP1	2.25	3942			0.45	788		
** 1994AP2	2.06	1805			0.45	394		
** 1994AM1	2.06	1805			Ð	0		
1994AM2	v	•						108
TOTAL 1994		8066	6060	606		1433	1077	
Tot. without **		2320	1743	174		251	188	19
1995MAX	0.41	72			C	0		
1995AP1	0.54	615			0.07	80		
1995AP2	0.82	1437			0	0		
1995AM1	0.41	359			0	0		
1995AM2	0.32	561			0	0		
TOTAL 1995		3043	2079	208	、 、	80	54	5
					0	٥		
1996MAX	o	0			Ď	ō		
1996AP1	0.41	467			0.07	123		
1996AP2	0.54	946			0.07	0		
1996AM1	0.82	718 718			õ	ŏ		
1996AM2	0.41	/ 10						· _
TOTAL 1995		2850	1769	177		123	76	8
1997MAX	0	0			0	0		
1997AP1	0	. 0			0	0		
1997AP2	0.41	718			0	0		
1997AM1	0.54	473			0.07	61		
1997AM2	0.82	1437			0	0		
TOTAL 1997		2628	1483	148		61	35	3
TOTALLOSSE	EDUCTION B	ENEFITS						242
1993 TO END				1677				2.5
BENEFIT / CO Overall benefi	IST RATIO (it/cost ratio 1	loss reductio for 45 MVAr	n only)	8.6		6.7		2.5
Loss reduction 1993 AP1&2	n benefits ex and 1994 Al	cluding peri P1&AM1 (se	odis ve note 5)	947				81
				5.0				0.9
Benefit / Cost Overall benef	t ratio (addi it/cost ratio	tor 45 MVA	aon) r=			3.6		
Notes to com	putations:							
(1) Details o		ion curve: period			(2) Interest	nate in %	10.0	
P	0.02	MAX			(3) Energy (costs:	0,1	
	0.13	AP1				\$ / kWH	Q.1	
	0.2	AP2					in stallation	
	0.1	AM1			(4) Net PV	or capacitor	1000's	
		AM2				30 KVA	190.0	
		BASE			-	30 KVA ddi15 KVA	190,0	
	0.05	us			*	odi 15 KVA (see Tabi		
						(345 .40	- 57	

(5) In the periods 1993 AP1 and AP2 and 1994 AP2 and AM1 the system voltages are too low to be supported without caspacitors. The equivalent generation required at Ubungo is 10 and 5 MW respectively. If the benefits of avoiding this generation is counted (Table 55) the benefits of loss reduction for these periods must not be counted again.

-154-

BENEFIT / COST ANALYSIS OF SWITCHED CAPACITORS AT UBUNGO

Value of generation saved at Ubungo by using 30 MVAr of capacitors						Value of saving of outages by using 30 MVAr of capacitors					
Year	MW	Time	MWh	Value	PV	MW	MWh	Value	PV		
av	oided	p.u.	saved	in\$000	\$000	saved	saved	\$000	\$000		
1993	10	0.33	28908	2891	2389	30	360	360	298		
1994	10	0.30	26280	2628	1974	30	360	360	270		
1995						30	360	360	246		
1996						35	420	420	261		
1997						40	480	480	271		
	То	tal NPV o	f savings \$	000's	4364				1346		
For 30 MVAr	NF	V of bene	afits: saved	generation	and avoide	d outages	(in \$000):		5709		
Installation				saved gener		-	• •		30.1		
	Ad	ditional be	metits from	loss reduc	tion benefit	s (see Tab	leC5-1) in \$	000's	1677		
				meration, av		•	• •		7386		
	Be	nefit / cos	st ratio cou	nting all rel	ated benef	its			39.0		
For additional	Ec	timated by	motion of a	aved genera	tion and a	unidad outr	and in \$ 0	10'c			
15 MVAr installe				t 10% of sa				ýu s	571		
	Be	nefit / cos		saved gener	-				6.0		
	Ad	ditional be	mefits from	loss reduct	tion benefit:	s (see Tabi	eČ5-1) in \$	000's	242		
	Be	nefit / cos	it ratio cou	nting all reli	ated benefi	its	-		8.6		
For total installa	tion										
of 45 MVAr		nefit / cos	t ratio for a	saved gener	ation and a	avioded out	ages		22.1		
	Be	nefit / cos	st ratio cou	nting all rela	ated benefi	ts	-		28.8		

Computation of Pay back period:

Benefits of year 1993 (considering only a 30 MVAr application)	3251
Cost of total installation (45 MVAr) at 1991 prices	825
Pay back period (months)	3.0

COST OF CAPACITOR INSTALLATION

	Unit	Rate \$000	Qty.	Cost \$000	Addi Qty	Addi cost \$000
Cost of capacitors	MVAr	5	30	150	15	75
Circuit breakers	Nos.	150	2	300	1	150
Misc. works	ltem			25		25
Contingencies				75		25
Total Cost				550		275
PV of cost (incured in		500		250		
PV for installation in 1998 (cost in 1987)				310		155
PV of net cost of prop	osal			190		95

Notes:

10 = Interest rate in %
0.1 = Value of generation saved in \$/kW
1 = Value of saved outages in \$/kW
3 = Hrs. per outage
4 = No. of outages per year

BENEFIT / COST ANALYSIS OF INSTALLING REACTIVE COMPENSATION AT ARUSHA

TABLE C 6

Year	1992	1993	1994	1995	1996	1997	1998
Expected load at Moshi MW	19.1	20.3	21.7	23.1	24.6	26.2	27.9
Expected load at Arusha MW	21.4	22.8	24.3	25.9	27.5	29.3	31.2
Total load in MW	40.5	43.1	45.9	48.9	52.1	55.5	59.1
Expected energy sales							
in GWh (av. LF of 0.65)	230.6	245.6	261.6	278.6	296.7	316.0	336.5
Sales possible with no							
additional compensation, GWh	159.4	159.4	159.4	182.2	182.2	182.2	182.2
Additional sales in GWh	71.2	86.2	102.1	96.4	114.5	133.7	154.3
Value of addi. sales, M\$	7.1	8.6	10.2	9.6	11.4	13.4	15.4
PV of addl. sales, M\$		7.1	7.7	6.6	7.1	7.5	7.9

	svs install	ATION		SWITCHED CA	PACITORS					
	NPV of	B/C	B/C	NPV of	B/C	Singida - Arusha				
	Benefits:	ratio 1	ratio 2	Benefits:	ratio	line commissioning in				
		S	ee Note 3							
With commissioning of p	roposal in 199	3 (begining)	:							
NPV 1993 - 1994 in M\$	14.8	3.3	5.5	7.4	6.6	1994 end				
NPV 1993 - 1995 in M\$	21.4	4.7	7.5	10.7	9.6	1995 end				
NPV 1993 - 1996 in MS	28.5	6.3	9.5	14.2	12.8	1996 end				
NPV 1993 - 1997 in M\$	36.0	7.9	11.5	18,0	16.2	1997 end				
Pay back in months	8.4			1.9						
With commissioning of pr	roposal in 199	4 (begining)	:							
NPV 1994 - 1994 in M\$	7.7	1.7	2.9	3.8	3.4	1994 end				
NPV 1994 - 1995 in M\$	14.3	3.1	5.0	7.1	6.4	1995 end				
NPV 1994 - 1996 in M\$	21.4	4.7	7.1	10.7	9.6	1996 end				
NPV 1994 - 1997 in M\$	NPV 1994 - 1997 in M\$ 28.9		9.2	14.5	13.0	1997 end				
Pay back in months	7.8			1.7						

٠

Notes:

- Load supported with existing capacitors at Moshi & Arusha with Hale voltage at max. and firm generation at Moshi is 28 MW with present generation, and 32 MW with New Pangani (1995)
- 2. Value of addl. sales for fully acceptable technical solution, ie. SVS \$/kWi
 0.1

 for switched cap.
 \$/kWh
 0.05
- B/C calculation 1 is made without any rebate for the value of the SVS unit at the commissioning of the Singida - Arusha line B/C calculation 2 is made with a rebate of half the value of the SVS at the time of construction of the new line.
- 4. Interest rate in % 10

5. COST OF SVS 0 TO 30 MVAR (see Table C5): Cost of SVS unit (1992) M\$ 5.0 Cost discounted to 1991 4.5

5. COST OF 6 X 5 MVA SWITCHED CAPACITOR BANKS:

	Unit	Rate	Qty.	Cost
		\$000		\$000
Cost of capacitors	MVAr	5	30	150
Circuit breakers	Nos.	150	6	900
Control cct. & misc.	Item			100
Contingencies				75
Total Cost				1225
PV of cost (incured in 19	192)			1114

TABLE C.7.1

UNIT COST OF MEDIUM VOLTAGE CAPACITORS AND ASSOCIATED EQUIPMENT TO BE INSTALLED ON DISTRIBUTORS

		COST F.O.B ir 11kV	n \$ 000 ′s 33kV	Capacitor cost in \$ per KVAR
CAPACITOR BAN	IK		UURV	
THREE-PH.	50 kVAR	1.20	1.20	24.0
THREE-PH	100 kvar	1.20	1.20	12.0
THREE-PH	150 kVAR	1.20	1.20	8.0
THREE-PH	200 kvar	1.35	1.35	6.8
THREE-PH	250 kvar	. 1.40	1.40	5.6
THREE-PH	300 kVAR	1.43	1.43	4.8
THREE-PH	400 kvar	1.55	1.55	3.9
THREE-PH	500 kvar	1.70	1.70	3.4
THREE-PH	600 kVAR	1.90	1.90	3.2
FUSED CUTOUT		0.20	0.50	
MV OIL SWITCH		1.35	4.85	•
SURGE ARRESTER	S	0.16	0.68	
POWER TF./COM	NT. UNIT	0.80	1.25	
Local Transport &	Installation			
Unswitched banks		0.50	0.50	
Switched banks		0.60	0.60	

Note:

٠

.

The above unit costs have been used for the computation of the cost of capacitor banks to be used on 11 and 33 kV networks. (See Tables C 72 and C.73)

-157-

COST OF UNSWITCHED CAPACITOR BANKS AT 11kV, POLE MOUNTED

TABLE C 7.2

RATING 3 PHASE in KVAR	50	100	150	200	250	300	400	500	600
			In	stalled Cost ir	5 000's				
CAPACITOR FUSED CUTOUT SURGE ARRESTORS TOTAL FOB FREIGHT & INS. (at 15% FOB) L. TRANS. & INSTALATION TOTAL COST	1.2 0.2 0.16 1.56 0.23 0.50 2.29	1.2 0.2 0.16 1.56 0.23 0.50 2.29	1.2 0.2 0.16 1.56 0.23 0.50 2.29	1.35 0.2 0.16 1.71 0.26 0.50 2.47	1.4 0.2 0.16 1.76 0.26 0.50 2.52	1.43 0.2 0.16 1.79 0.27 0.50 2.56	1.55 0.2 0.16 1.91 0.29 0.50 2.70	1.7 0.2 0.16 2.06 0.31 0.50 2.87	1.9 0.2 0.16 2.26 0.34 0.50 3.10
			C	ost per KVAR	in S per KVAR				
FOB Installed	31.20 45.88	15.60 22.94	10.40 15.29	8.55 12.33	7.04 10.10	5.97 8.53	4.78 6.74	4.12 5.74	3.77 5.17

COST OF UNSWITCHED CAPACITOR BANKS AT 33kV, POLE MOUNTED.

RATING 3 PHASE in KVAR	50	100	150	200	250	300	400	500	600
			Ins	stalled Cost in	\$ 000's				
CAPACITOR FUSED CUTOUT SURGE ARRESTORS TOTAL FOB FREIGHT & INS. (at 15% FOB) L. TRANS. & INSTALATION TOTAL COST	1.20 0.50 0.68 2.38 0.36 0.50 3.24	1.20 0.50 0.68 2.38 0.36 0.50 3.24	1.20 0.50 0.68 2.38 0.36 0.50 3.24	1.35 0.50 0.68 2.53 0.38 0.50 3.41	1.40 0.50 ** 0.68 2.58 0.39 0.50 3.47	1.43 0.50 0.68 2.61 0.39 0.50 3.50	1.55 0.50 0.68 2.73 0.41 0.50 3.64	1.70 0.50 0.68 2.88 0.43 0.50 3.81	1.90 0.50 0.68 3.08 0.46 0.50 4.04
			C	st per KVAR	in S per KVAR	!			
FOB Installed	47.60 64.74	23.80 32.37	15.87 21.58	12.65 17.05	10.32 13.87	8.70 11.67	6.83 9.10	5.76 7.62	5.13 6.74

-158-

COST OF SWITCHED CAPACITOR BANKS AT 11kV, POLE MOUNTED

RATING 3 PHASE in KVAR	50	100	150	200	250	300	400	500	600
			in	stalled Cost in	\$ 000's				
CAPACITOR OIL SWITCH SURGE ARRESTORS TOTAL FOB FREIGHT & INS. (ar 1.5% FOB) L. TRANS. & INSTALATION TOTAL COST	1.20 1.35 0.16 2.71 0.41 0.50 3.62	1.20 1.35 0.16 2.71 0.41 0.50 3.62	1.20 1.35 0.16 2.71 0.41 0.50 3.62	1.35 1.35 0.16 2.86 0.43 0.50 3.79	1.40 1.35 0.16 2.91 0.44 0.50 3.85	1.43 1.35 0.16 2.94 0.44 0.50 3.88	1.55 1.35 0.16 3.06 0.46 0.50 4.02	1.70 1.35 0.16 3.21 0.48 0.50 4.19	1.90 1.35 0.16 3.41 0.51 0.50 4.42
			C	ost per KVAR	in S per KVA	R			
FOB Installed	54.20 72.33	27.10 36.17	18.07 24.11	14.30 18.95	11.64 15.39	9.80 12.94	7.65 10.05	6.42 8.38	5.68 7.37

COST OF SWITCHED CAPACITOR BANKS AT 33kV, POLE MOUNTED.

RATING 3 PHASE in KVAR	50	100	150	200	250	300	400	500	600
		-	in	stalled Cost in	\$ 000's				
CAPACITOR OIL SWITCH SURGE ARRESTERS TOTAL FOB FREIGHT & INS. (at 1.5% FOB) L. TRANS. & INSTALATION TOTAL COST	1.2 4.85 0.68 6.73 1.01 0.60 8.34	1.2 4.85 0.68 6.73 1.01 0.60 8.34	1.2 4.85 0.68 6.73 1.01 0.60 8.34	1.35 4.85 0.68 6.88 1.03 0.60 8.51	1.4 4.85 0.68 6.93 1.04 0.60 8.57	1.43 4.85 0.68 6.96 1.04 0.60 8.60	1.55 4.85 0.68 7.08 1.06 0.60 8.74	1.7 4.85 0.68 7.23 1.08 0.60 8.91	1.9 4.85 0.68 7.43 1.11 0.60 9.14
			Ca	ost per KVAR	in S per KVAI	2			
FOB Installed	134.60 166.79	67.30 83.40	44.87 55.60	34.40 42.56	27.72 34.28	23.20 28.68	17.70 21.86	14.46 17.83	12.38 15.24

TABLE C7.3

CAPACITOR APPLICATIONS LOSS REDUCTION BENEFITS ON EXISTING 11 KV SYSTEMS

feeder Name	Length (km)	Feeder Peak Amps	OldPF Cosó Peak	OldPF Cosó Day	OldPF Cos ó Base	Peak NewPF Cos ó	Day NewPF Cos ó	Base NewPF Cos ó	Capacit applied (kVA)	1991 night	LOS 1995 nlght	<u>S SAVING</u> 1991 day	IS IN MW 1995 day	1991 base	1995 base	'91 Units Saved MWh	'91 Units Saved MWh	Annual % inc. savings		LRLF 1995
											(* *									
U1, Kisiwani	9.0								600	9.9	16.2 12.9	10.0 7.1	16.3 9.4	3.2 3.4	6.3 4.8		-	•		
U2, Menzese	8.4 3.9								600 600	10.0	2,6	1.4	9.4	-0.2	4.6		5 1		3 0.57 2 0.48	
U7, Factory K4, INDUSTRIAL	9.5								600	1.2 25.7	32.9	41.7	2.9 52.3	-0.2	12.7				7 0.88	
K3, KILWA RD	9.5								600	25.7	10.7	6.3	52.3 8.0	9.1 3.4	4.5				0.80	
PORT	4.3		• • • •						600	5.2	9.5	15.7	24.8	0.7	2.8					
D1, Azamia	4.3 5.5		-							3.9	4,8	7.4	24.0	0.9	1.3		-			1 0.92
D2. Town 1	6.1		-						600	3.8	5,5	13.7	18.1	0.7	1.5		-) 1.47	
D3, Kurasini	2.8		-						600	4.2	5,0	3.3	4.0	1.5	1.9					
D9, Town 2	2.5		• • • • •							6.0	8.4	2.9	4.2	2.5	3.7					
D10, Magomeni	6.5									9.3	11.9	7.9	10.2		4.7			•	7 0.6	
C3, City Center 1	1.2											1.5	2.1	0.2	0.4		7 1			
C4, City Center 2	2.2									,2.0		3.3	4.5		1.0				9 0.8	
C5, Mnazi Mneja 1	1.4								600	•		1.0	1.4	0.7	1.1		9 1	3 9	9 0.5	
C6, Mnazi Mneja 2	1.8					3 1.0			600		1.1	0,5	0.8	0.0	0.2		3	5 1	4 0.4	3 0.51
C8, Tanesco	1.4	4 22	6 0.93	0.96	6 0.9	3 0.9	7 0.9	9 1.00	600	2.4	3.3	1.5	2.1	0.9	1.3	3 1:	21	7	9 0.5	6 0.58
MK1, Msasani	8.2	2 15	5 0.93	0.90	0.9	3 0.9	8 0.9	8 0.98	600	8.5	11.7	7.2	10.0	-0.1	0.6	3 3	35	0 1	1 0.4	5 0.49
MK2, Tandale	10.8	3 19	0 0.91	I 0.83	9 0.9	1 0.9	6 0.9	2 1.00	600	17.1	27.2	20.0	31.5	6.4	11.4	4 11:	2 18	2 1	3 0.7	4 0.76
MK3, Lugalo	4.8	3 8	0 0.90	0.87	0.90	0 1.0	0 0.9	8 0.93	600	2.3	3.0	1.0	1.4		0.5	5 3	71	1 1	1 0.3	5 0.42
MK4, north east	4.5			3 0.90	0.90	B 1.0	0 0.9	8 0.99	600		3.2	4.6	6.4	0.2	0.7	7 1			1 0.9	3 0.94
O2, Mwenge	4.2	2 13	5 0.98	3 0.90	0.9			0.96	600	1.2	1,6	2.2	2.9				71	1 1	0 0.7	0 0.74
O3, Packers	9.6		•										22.2					-	7 0.8	9 0.89
O4, Kinondoni	2.8											24,3	30.9		12.2				7 0.6	
O5, Seaview	3.6												2.3		0.1			-	5 0.5	
O6, Oyster bay	4.3					-							3.1		1.1			•	7 0.5	
KUNDUCHI	13.5												78.4				-	•	7 0.7	
LUGALO	7.0							-					6.0		2.9		-	-		5 0.57
F5, BUGURUNI	3.1												4.1						6 0.7	
F2, RTD	2.												3.3					-	8 0.5	
UKONGA	5.0							-		- · ·			1.9			-			3 0.1	
F31, INDUSTRIAL	2.0							_		-			7.1				_	-	6 0.6	
F33, AIRWING	2.:												1.9				-		2 0.6	
F34, KIWALANI	5.1											5.4	7.5					•	2 1.0	
FEEDER 1 FEEDER 2	10.0								-				5.6					-	4 0.2	
FEEDEN 2	6.0	0 8	4 0.8	9 0.90	J U.8	9 1.0	0 0.9	8 0.95	600	1.2	: 11.3	2,0	4.3	1.1	3.	, 2	1 4	32	0 0.3	3 0.43

.

Table C&.A

				CAPA	CHO	K APP					JCTIO ARRAI			ON 11	KVL	INES	:	•				
			New	Old					- 11 0-1					SAVINGS	S INT NOAT			'91	'95	Growth		
	New	Old		Feeder	N	IGHT	I	DAY	BA	SE	Capacit	1991	1995	1991	1995	1991	1995	1	Units	rate of	1991	1995
FEEDER	Length	Lengt	h Peak	Peak	OldPF	NewPF		NewPF		NewPF	applied	Night	Night	Day	Day	Base	Base		Saved	loss red/i	LRLF	lalf
NAME	(km)	(km)	Amps	Amps	Cos ó	Cos ó	Cosó	Cos ó	Cosó	Cos ó	(kVA)							MWh	MWh	р.а.		
												. <u> </u>		,				1				
U1, Kisiwani	8,98	8.9	8 16	7 175	5 0.94	0.99	0.82	2 0.95	0.94	1.00	600	9,9	16.2	10.0	16.3	3.2	6.3	57	' 99	14.6	0.66	0.70
U2, Menzese	3.30	8.3	6 7	5 146	6 0.90	1.00	0.87	1.00	0.9	0.94	600	1.7	2.3	1.0	1.5	0.2	0.5	6	10	12.6	0.43	0.50
U7, Factory	3.91	3.9	1 7	0 75	5 0.93	1.00	0.90	1.00	0.93	0.89	600	1,2	2,6	1.4	2.9	-0.2	0.5	5			0.48	0.64
K4, INDUSTRIAL	4.20	9.5	2 5			0.99	0.83	1.00	0.91	0.62		1.7	2.7	4.1	5.7	-1.6	-1.2				0.51	0.64
K3, KILWA RD	5.70											2.2	3,0	1.5	2.1	0.6	0.9	10			0.52	0,56
PORT	2.20										600	2.2	4.2	7.1	11.3	0.1	1.1	25			1.25	1.20
D0, Brewery	0.30											0,1	0.2	0.0	0.1	0.0	0.0	C			0.32	0.42
D1, Azamia	1.70											1.1	1.3	2.1	2.5	0.2	0.3	8			0.91	0,92
D2, Town 1	2.90											5.0	6.7	9.3	12.1	1.9	2.8	43			0,98	0,98
D3, Kurasini	1.80											1.9	2.3	1.5	1.8	0.6	0.8	10			0.58	0,60
D9, Town 2	2.00											1.8	2.7	0.6	1.1	0.5	0.9	7			0.43	0.48
D10, Magomeni	3,20											1.7	2.3	1.3	1.9	0.2	0.5	-			0.49	0.55
C2, Upanga	3.30											-0.1	0.1	0.2	0.5	-0.6	-0.5	-2			3.17	-0.39
C3, City Center 1	1.10											ρ.1	0.2	0.3	0.5	-0.2	-0.1	C) 1 0	52.4	0.34	0.69
C4, City Center 2	0.90												0.1	0.2	0,3	-0.2	-0.1				11.53	0.53
C5, Mnazi Mneja 1	1.40											2.9 0.6	4.1	, 1.0	1.4	0.7 0.0	1.1				0.40 0.53	0.41 0.65
C6, Mnazi Mneja 2	1.80												0.8	0.6	8.0	-0.1						
C8, Tanesco	1.30											0.3	0.5	0.0	0.2		0.0				0.04	0.30
MK1, Msasani	4.50											2.1 2.0	3.1	2.9 2.5	4.2 4.5	-0.8 0.1	-0.5 1.0				0.45 0.60	0.54 0.67
MK2, Tandale	4.50											2.0 2.3	3.9 3.0	2.5	4.5	0.1	0.5				0.80	0.87
MK3, Lugaio MK4, north east	4.80 4.50		-									2.1	3.0	4.6	6.4	0.2	0.0				0.93	0.94
O2, Mwenge	4.20											1.3	1.8	2.2	2.8	-0.2	0.1	7			0.64	0.68
O3, Packers	3.20											0.8	1.3	1.6	2.2	-0.3	-0.1	4			0.63	0.69
O4, Kinondoni	2.80											7.9		6.4	9.1	0.8	2.4	34	-		0.49	0.55
O5, Seaview	3.60		• ·	• • • •								2.5		1.9	2.3	0.6	0.8				0.54	0.57
O6, Oyster bay	2.80			-								0.6		1.2	1.5	-0.2					0.63	0.71
KUNDUCHI	4.20					3 0.8						-0.6		2.3	5.8	-2.0	-1.1	-:			0.62	1.27
PACKERS	3.40			7 6	0 0.9	3 0.9	9 0.8	5 1.00	0.93	3 0.81	600	1.1	1.7	3.6	4.6	-0.9	-0.6	8	3 14	13.7	0.86	0.91
LUGALO	7.00			1 15	0 0.9	2 0.9						7.2		8.9	10.2	2.4	2.9				0.75	0,76
F5, BUGURUNI	1.30	3.8	20 3	7 11	0 0.7	1 0.9	9 0.8	5 0.93	7 0.7	1 0.81	600	0.7	0.9	0.2	0.3	0.1	0.2	: 1	2 3	11.0	0.34	0.40
F2, RTD	2.50	0 2.9	50 15	0 17	0 0.7	1 0.8	1 0.8	5 0.9	7 0.7	1 0.91	600	6,5	8.6	2.4	3.3	2.8	3.8	2	3 3 3	8.0	0.50	0.52
KISARAWE	17.8	0 17.	BO 3	1 2	8 0.8	9 0.8	e,0 0	0 0.7	9 0,81	9 0.44	600	-2.8	-2.2	-3,3	-2.7	-8.8	-8.5	-5:	2 -48	3 -1.9	2.13	2.53
UKONGA	5.00	0 5.0	0 5	4 6	0 0.8	9 1.0	0.9	0.9	6 0.89	9 0.83	600	3.1	4.2	1.0	1.9	-0.5	0.0	i 8	5 12	23.2	0.19	0.32
F31, INDUSTRIAL	2.6	0 2.0	60 16	7 19	5 0.7	1 0.8	0 0.8	5 0.93	2 0.7	1 0.89	600	7.6	9.4	5.7	7.1	3.3	4.2	4:	2 53	6.0	0.63	0.64
F33, AIRWING	2.3	0 2.3	30 5	4 7	5 0.7	9 0.9	8 0.7	8 0.9	7 0.79	9 0.93	600	1.5	1.6	1.8	1.9	0.3	0.3		9 9	2.4	0.67	0.68
F34, KIWALANI	5.8	0 5.4	80 6	4 10	0.9	1 1.0	0 0.8	5 0.9	7 0.9	1 0.88	600	1.9	3.1	5.4	7.5	-0.2	0.4	14	3 28	12.3	1.05	1.04
Kigam F1	10.0	0 10.	00 6	7 7	5 0.8	9 1.0	0.0.9	0 0.9	6 0,81	9 0.92	2 600	9.8	15.9	2,0	5.6	0.7	3.8	2:	3 56	5 24.4	0.27	0.40
Kigam F2	6.0	0 6.0	00 7	5 8	4 0.8	9 1.0	0 0.9	0 0.9	8 0.8	9 0.95	5 600	7.2	11.3	2.0	4.3	1.1	3.1	2	43	3 19.6	0.33	0.43

CAPACITOR APPLICATIONS LOSS REDUCTION RENEFITS ON 11 KV LINES.

.

Table C8-B

CAPACITOR APPLICATIONS LOSS REDUCTION BENEFITS ON 33 KV LINES

	1		Peak	Day	10090	Peak	Day	Base	Capacit	<		SAVINGS			·····> I		Unite	Annual	-				inc. of N	
eeder Name	Length (km)	Peak Amps	OldPF Cos é	OkiPF Cos ó	OldPF Cos á	NewPF Cos ó	NowPF Cos á	NewPF Cos ó	applied (kVA)	1991 níght	1995 níght	1991 day	1995 day	1991 base	1985 : base		Saved MWh	% inc. savings			saved M 1991 1			
ALA-C.C 1	2.1									1.2	1.6	1.2	1.5	0.6	0.8	8	10	e	0.7	2 0.73	l			
ALA-C.C 11	2.0	5 14	8 0.94	0.96	0.94	0.90	3 0.97	0.98	600	2.4	3.0	2.2	2.9	1.0	1.4	15	19	7	0.7	0 0.71	7	9	0.02	0.0
ALA-KURASINI	5.6									5,9	7.8	5.5	7.3	2.8	3.7	37	49	7	0.7	2 0.73	1			
ALA-KURASINI	5.0									11.4	14.9	10.7	14.2	5.4	7.1	71			0.7	2 0.72	34	46	0.11	0.
ALA-KURASINI	5.8									21.5	28.6	20.1	27.1	9.4	13.0	131						83	0.10	0.
ALA-KURASINI ALA-KURASINI	5.6 5.8			0.87						30.3 44.0	40.9 61.8	28.2 40.6	38.7 58.1	12.2	17.5 22.8	180 244				8 0.70		72		0.
								1.00		44.0	01.0		30.1	13.8	22.0	299	300		0.8	3 0.66	64	110	0.05	0.
RASINI-KIGAMBONI RASINI-KIGAMBONI	4.0									0.9 1.6	1.2 2.3	0.5 0.7	0.7 1.1	0.4 0.6	0.8 0.9	4	6 11	6 1 1		6 0.57 0 0.53	2	4	0.01	0.
																						•	0.01	υ.
LA-OYSTERBAY LA-OYSTERBAY	5.6									11.3	13.5	10.2	12.2	5.3	5.6	70				1 0.66				
LA-OYSTERBAY	5.6 5.6									21.4 30.2	25.7 38.8	19.3	23.2	9.5	9,9	129				9 0.66		69	0.10	
LA-OYSTERBAY	5.6									30.2	36.8	27.0 33.6	33.0 41.5	12.3 14.0	13.1 15.0	177 215			0.6			58	0.08	0.
LAOYSTEPBAY	5.6									40.1	49.7	56.0	41.5 72.8	14.0	19.1	215				5 0.62		48	0.08	0.
LAOYSTERBAY	5.6									42.2	52.6	57.8	75.2	14.5	19.6	205				1 0.85		114	0.35	0
LA-OYSTERBAY	5.0									44.2	55.3	59.4	77.5	14.4	20.0	301	394			8 0.81				
LA-OYSTERBAY	5.6			0.86						46.1	57.9	60,9	79.7	14.3	20.2	308				6 0.80				
LA-OYSTERBAY	5.6	28	5 0.93	0.86	0.9	3 0.91	9 0.96	1.00	3400	47.8	60,3	62.3	81.7	14.0	20.3	313				5 0.78				
LAFZI	4.7	, 80	0 0.71	0.85	5 0.71	0.74	0.88	0.78	300	2.6	3.3	1.7	2.1	1.3	1.6	14	18	e	0.6	2 0.62				
LA-FZ I	4.7	80	0 0.71	0.85	0.71	0.78	8 0.91	0.85	600	5.0	6.3	3.1	3.9	2.2	.2.9	28				0 0.60		16	0.04	0
UNGO-ALAF	9.2						0.91	0.91	300	3.8	4.3	3.7	4.2	3.8	4.3	33	37	. 3	0,9	9 0.96				
UNGO-ALAF	9.2									6.1	6.8	6.0	6,7	6.1	6,8	53	59	3	0.9	9 0.99	20	22	0.10	0
UNGO-ALAF ·	9.2	10	5 0.89	0.89	0.89	9 0.96	0.95	0.96	1000	10.9	12.3	12.6	14.2	10.8	12.2	100	113	3	1.0	5 1.05	47	54	0.09	0
UNGO-WAZO 1 *	8.8									8.0	11.1	7.6	10.7	3.5	5.1	50	70	6	0.7	1 0.72	!			
SUNGO-WAZO 1	8,8									14.1	20.4	13.6	19.5	5.1	8.3	83	123	10	0.6	7 0.69	33	53	0.05	0
SUNGO-WAZO 1 *	8,6									18.3	27.7	17.5	28.4	4.8	9.5	99			0.6	2 0.66	16	36	0.03	0
NNGO-WAZO 1 *	8.8	61	8 0,93	0.84	0.93	3 1.00) 1.00	0.96	2400	20.6	33.0	19,5	31.3	2.8	8.8	98	178	10	0.5	5 0.62	-1	19	-0.001	0
UNGO-WAZO 11	18.2										47.3	26.5	30.8	25.0	20.0	247				8 0.69				
IUNGO-WAZO 11 IUNGO-WAZO 11	18.									71.2	83.5	42.0	50.4	38.9	46.9	397				4 0.65		189		
01100-1120 11	18.2	2 140	0 0.80	0.82	2 0.92	2 0.96	8 1.00	1,00	3000	90.3	108.7	48.4	59,1	41.7	53,7	450	566	6	0.5	7 0.60	53	92	0.05	0
UNGO-TAZARA *	7.6	10	0 0.85	0.85	0.8	5 0.99	0.98	0.99	1200	8.0	6.7	7.0	7.8	6.0	6.7	55	62		1.0	6 1.06				
INGO-TAZARA *	7.6	10	0.85	0.85	0.8	5 1.00				6,4	7.5	7.9	9.2	6.4	7.5	60				8 1.08		8	0.01	0
JNGO-TAZARA *	7.6	100	0 0.65	0.85	0.85	5 0.90	0.98	0.96	2400	5.1	6.5	7.2	8.8	5.1	6.5	50				4 1.12		•7		
JNGO-MIKOCHENI	5.2									6.8	9.1	7.3	9.9	2.6	3.7	43	58	ε	0.7	2 0.73				
UNGO-MIKOCHENI	5.1									12.4	17.2	13.8	18.7	4.2	6.2	76	107	۶. د	0.7	0 0.71	33	49	0.06	0
UNGO-MIKOCHENI	5.2	2 191	9 0.94	0.87	0.9	5 0.98	0.95	1.00	1800	17.0	24.0	18.6	26,4	4.5	7.6	99	148	10	0.6	7 0.69	23	39	0.04	0
UNGO-F111	11.0									50,7	60.9	48.0	58,5	18.7	23.8	296		6	0.6	7 0.66	i			
UNGO-F111 UNGO-F111	11.0									66.1 74.7	81,3 95,0	62.0 69.3	77.7 90.3	18.0	25.8 20.8	356				2 0.64		94	0.08	
										1911	80.V	08.3	80.3	10.6	20.8	358	493	8	U.5	5 0.59	2	35	0.00	0
11-F11 11-F11	7.0 7.0								•	1.0	1.2 1.9	0.7 1.1	0.8 1.3	0.4	0.5 0,6	5 8	6 9			2 0.62 3 0.55		3	0.01	0
UNGOF.TX2*	1.6	5	0.80	0.80	0.80	0.80	6 · 0.85			0.4	0.4											•		Ű
UNGOF.TX2	1.6									0,4	0.4	0.5 1.0	0.6 1.1	0.4 0.7	0.4 0.8	4	4			9 1.09 4 1.14		4	0.01	0
UNGO-NORDIC *	55.0) 6	4 0.92	2 0.92	0.92	2 0.91	7 0.96	0.97	600	9.1	12.3	5.3	7.4	9.1	12.3	68	93	f	0.A	6 0.87	,			
BUNGO-NORDIC *	55.0	6	4 0.92	2 0.92	0.9																			

Note: LRLF = Loss reduction load factor

The loss reduction load factor has been calculated based on the system peak values and not the Individual peak values (for maximum savings)

-161-

Table 60

LOSS REDUCTION ON UBUNGO - ILALA 132 KV LINE AND TOTAL SYSTEM BY DOWN STREAM CAPACITOR APPLICATIONS

Year 1992 with existing system

	with existing						.		Increme	
UB- Ilala	- .	Capacit.	UB-IIala	-			Energy losses	•		savings
line loss	Tot. sys.	at Ilala	loss red/n	loss red/n		Tot. sys.		Tot. sys.	UB-IL	Tot. sys
MW	Loss MW	kVAr	kW	kW	UB-IL	Tot. sys.	MWh	MWh	MWh	MW
0.713	21.48									
0.69	21.16	1000	23	320	23	320	101	1402	101	140
0.668	20.86	2000	45	620	22	300	197	2716	96	131
0.648	20.59	3000	65	890	20	270	285	3898	88	118
0.629	20.37	4000	84	1110	19	220	368	4862	83	96
0.611	20.165	5000	102	1315	18	205	447	5760	79	89
0.594	19.965	6000	119	1515	17	200	521	6636	74	87
0.578	19.765	7000	135	1715	16	200	591	7512	70	87
0.563	19.57	8000	150	1910	15	195	657	8366	66	85
0.654	18.79	0								
0.629	18.68	2000	25	110		110		482	109	48
0.607	18.57	4000	47	220		110		964	96	48
0.585	18.47	6000	69	320		100		1402	96	43
0.565	18.38	8000	89	410	20	90	390	1796	88	39
ar 1995 v	with double	circuit Kid	atu - Morog	joro - Ubui	ngo					
0.763	17.59	0								
0.747	17.56	1000	16	30	16	30	70	131	70	13
	17.53	2000	27	60	11	30	118	263	48	13
0.736	17.00	2000								
0.736 0.725	17.49	3000	38	100	11	40	166	438	48	17
						40 50		438 657	48 48	17 21

Loss reduction load factor used for computation of energy savings = 0.50 -162-

-163-

ECONOMIC ANALYSIS OF SELECTED CAPACITOR APPLICATIONS ON II KV LINES

TABLE C 11 SECTION A

629.1 23.0

ANALYSIS OF BENEFITS WITH NETWORK UNCHANGED

FEEDER NAME	Capacitor KVA	ı	Jnits Saved 1991	MWh/ifeed 1995 load rate	i gr.	growth rate of benefits	MF for I loss red/i benefits i		efits	Benefit to Cost ratio '93-'96	Back in months	benefitst	atio
Fed from Ital	a Grrid SS		· ·				-						
		I	Benefits on	11 kV lines	i			11 kV lines	;	11 kV	lines onh	L	
K4, Industrial		600	199	256	4	6.5	3.69	67.6		26.4	2.0	75.1	27.5
K3, Kilwa road		600	46	59	4	6.4	3.68	15.6		6.1	8.8	20.1	7.3
Port		600	56	99	8	15.3	4.51	23.2		9.1	7.2	26.9	9.8
O3, Packers		600	81	106	4	7.0	3.73	27.8		10.9	5.0	31.5	11.5
D10, Magomeni		600	52	68	4	6.9	3.73	17.8		7.0	7.8	20.9	7.6
		I	Benefits on	33 kV lines	i			33 kV lines	33 & 11 kV lines	11_&3	3 kV line	s	
K4, Industrial		600	43	57		7.3	3.76	14.9	82	32.2	1.7	93.1	34.0
K3, Kilwa road		600	31	48		11.6	4.14	11.8	27	10.7	5.3	35.2	12.8
Port		600	20	56		29.4	6.10	11.2	34	13.4	5.3	41.2	15.0
O3, Packers		600	36	42		3.9	3.48	11.5	39	15.3	3.5	44.9	16.4
D10, Magomeni		600							18	7.0	I.	20.9	7.6
		1	Benefits on	UB-IL 132 I	kV lin	e.		132kV line	All		ines		
K4, Industriai		600	53	26			3.17	15.5	97.9		1.4	108.6	39.7
K3, Kilwa road		600	53	26			3.17	15.5	42.9	16.7	3.1	50.6	18.5
Port		600	53	26			3.17	15.5	49.9	19.5	3.1	56.6	20.7
O3, Packers		600	53	26			3.17	15.5	54.8	21.4	2.4	60.3	22.0
D10, Magomeni		600	53	26			3.17	15.5	33.3	13.0	3.9	36.4	13.3

Fed from Ubungo Grid SS

	B	enefits on	11 kV line	25		1	1 kV lines		11 kV line	s only		
MK1, Msasani	600	33	50	8	10.9	4.09	12.4		4.8	12.3	17.3	6.3
MK2, Tandale	600	112	182	8	12.9	4.27	44.0		17.2	3.6	54.4	19.9
Kunduchi	600	236	441	10	16.9	4.67	101.4		39.6	1.7	103.7	37.9
U1, Kisiwani	600	57	99	8	14.8	4.46	23.4		9.1	7.1	41.3	15.1
U2, Menzeese	600	50	67	4	7.6	3.79	17.4		6.8	8.1	28.2	10.3
							33 kV	33 & 11				
	B	enefits_on	33 kV line	<u>25</u>			lines	kV lines	11 & 33	kV line	<u>s</u>	
MK1, Msasani	600	28	37		7.2	3.75	9.7	22	8.6	6.6	34.1	12.5
MK2, Tandale	600	19	29		11.2	4.11	7.2	51	20.0	3.1	85.3	31.2
Kunduchi	600	38	51		7.6	3.79	13.2	115	44.7	1.5	117.9	43.1
U1, Kisiwani	600							23	9.1	7.1	41.3	15.1
U2, Menzeese	600							17	6.8	8.1	38.1	13.9

See section B (next page) for computation of benefits beyond 1996, after major network develoments are affected

TOTAL FOR ALL 10 APPLICATIONS

Note:

0.092 = Value of loss red/n benefits \$/ kWh 3100 = Cost of application, 600 kVA, \$ 2560 = Cost of application, 300 kVA, \$

10 = Discount factor in %

1996 = year of termination of benefits of lines to be attered 1993 = year of commencement of benefits

1991 = base year for discounting

ECONOMIC ANALYSIS OF SELECTED CAPACITOR APPLICATIONS ON II KV LINES (Cont.)

TABLE C 11 SECTION B

_

WITH NETWORK CHANGES AND RELOCATION EFFECTIVE 1997 (section B)

WITH NETWOR	CHANGES AND	RELOCAT	ION EFFE	CITAE 13	97 (Secue	n 15)					
FEEDER NAME		Capacit. KVA	MWh/pa 5 1991	Saving 1995	growth feeder load gr. rate %	gr. rate rate of benefits %	ive gr. rate	benefits	PW of loss benefits in 1997 to 20	\$000	B/C ratio
NEW LOCATION	OLD LOCATION						discount.				
Fed from Ital	a Grrid SS										
		Benefits	on 11 kV I	ines					1	1 kV lin	es only
Kigam F1	K4. Industrial	600	23	56	4	24.9	1.14	3.6	7.5		43.1
Kigam F2	K3, Kilwa road	600	21	43	4	19.6	1.09	2.3	4.5		25.5
Port	Port	600	25	44	8	15.2	1.05	1.6	3.6		20.8
O4, Kinondoni	O3, Packers	600	34	53	4	11.7	1.02	1.2	3.7		20.9
F2, RTD	Kunduchi	600	28	39	10	8.6	0.99	0.9	2.3		13.0
D2,Town1	D10, Magomeni	600	43	57	4	7.3	0.98	0.8	3.1		17.6
		<u>Benefits</u>	on 33 kV l	ines					33 kV _ only	11 & 33	kV lines
Kigam F1	K4, Industrial	600		57		7.3		0.8	3.1	10.6	60.8
Kigam F2	K3, Kilwa road	600	31	48		11.6	1.01	1.2	3.3	7.7	44.3
Port	Port	600	43	57		7.3	0.98	0.8	3.1	6.7	38.5
O4, Kinondoni	O3, Packers	600	36	42		3.9	0.94	0.6	1.9	5.5	31.6
F2, RTD			15	19		6.1	0.96	0.7	1.0	3.2	18.5
D2,Town1	D10, Magomeni	600							0.0	3.1	17.6

Fed from Ubungo Grid SS

		Benefits on 1	1 kV lin	es					<u>11 k</u>)	/ lines only
MK4,north east	MK1, Msasani	600	17	26	8	11.2	1.011	3.1	5	27.7
F31,Industrial	MK2, Tandale	600	42	53	8	6.0	0.9635	2.7	10	59.3
Lugalo	U2, Menzeese	600	47	54		3.5	0.9412	2.5	11	61.9
U1, Kisiwani	U1, Kisiwani	600	57	99	8	14.8	1.0436	3.4	18	102.3

		Benefits on (33 kV lin	es				33 kV oniv	11 & 33	kV lines
MK4, north east	MK1, Msasani	600	28	37	7.2	0.9747	2.8	7	12	68.6 _.
F31,Industrial	MK2, Tandale	600	99	120	4.9	0.9539	2.6	24	34	194.9
Lugalo	U2, Menzeese	600	38	51	7.6	0.9785	2.8	10	21	118.0
U1, Kisiwani	U1, Kisiwani	600							18	102.3

0.092 = Value of loss red/n benefits \$/ kWh 310 = Cost of application, 600 kVA

256 = Cost of application, 300 kVA

10 = Discount factor in %

2008 = year of termination of benefits of lines to be altered

1997 = year of commencement of benefits 1991 = base year for discounting

The benefit to cost ratio has been worked out assuming a new investment year in 1997 and counting the benefits from 1997 to 2008. The present value of these benefits is taken account in page 1when computing for the period 1997 to 2003.

Note: Losses for 1991 and 1995 are calculated as if the new proposed arrangements have been affected

	Capacit.	Cost of	Savings in yea	ar 1991	Savings in ye	ar 1995	savings	savings	benefit	MF for	Value of	Benefit	Pay back
FEEDER	in kVA	Installation	night peak	Units	night peak	Units	growth	growth	counted	Savings	Savings	to Cost	period
NAME	at SS	at SS in \$	kW	MWh	kW	MWh	rate in %	rate in %	up to		In \$000's	ratio	(months)
							(d	liscounted)					
ILALA-OYSTERBAY	600	4200	7.6	37.6	9.8	47.6	6.09	0.96	2003	8.9	30.8	7.3	14.6
ILALA-OYSTERBAY	800	5600	9.9	107.4	12.9	161.4	10.72	1.01	2003	11.4	113.1	20.2	6.8
UBUNGO-ALAF *	1000	7000	10.9	100	12.3	113	3.12	0.94	2003	7.6	70.0	10.0	9.1
UBUNGO-WAZ0 11	1000	7000	41.2	247	47.3	286	3.71	0.94	1997	4.2	95.5	13.6	3.7
UBUNGO-WAZ0 11	2000	14000	71.2	397	83.5	474	4.58	0.95	1997	4.3	157.2	11.2	4.6
UBUNGO-WAZ0 11	3000	21000	90.3	450	108.7	566	5.92	0.96	1997	4.5	185.1	8.8	6.1
UBUNGO-F111	2000	14000	50.7	296	60.9	364	5.29	0.96	2003	8,5	232.6	16.6	6.2
UBUNGO-F111	3000	21000	66.1	356	81.3	458	6.48	0.97	2003	9.1	298.1	14.2	7.7
UBUNGO-F111	4000	28000	74.7	358	95.0	493	8.36	0.99	2003	10.1	331.2	11.8	10.2

BENEFIT TO COST ANALYSIS FOR CAPACITOR APPLICATIONS AT THE 33/11 KV SUBSTATIONS INCLUDING CONSUMER INSTALLATIONS

Note:

0.092 Value of loss reduction benefits in \$ per kW

7 Cost of capacitors at Substations in \$ per kVAr

10 Discount factor in %

1991 base year for discounting

The OysterBay loss reduction is computed on the incremental benefits after allowing for downstream development

1 •

.

ANNEX D

PLANNING METHODS AND GUIDELINES FOR DISTRIBUTION SYSTEMS

.

. .

.

Annex D

PLANNING METHODS AND GUIDELINES FOR DISTRIBUTION SYSTEMS

Contents

Introduction

	Description of commonly used terms and formulae
Section D.1	Computation of line losses and voltage drop of distributors
	- Table D.1.1: Conversion factors for distributors
	- Figure D.1.1: Representation of a distributor
Section D.2	Charts of line length vs. load for constant voltage drop
D.2.1.1	- 33 kV lines, tail and voltage, 5% voltage drop
D.2.1.2	- 11 kV lines, tail and voltage, 5% voltage drop
D.2.1.3	- LV lines, tail and voltage, 5% voltage drop
D.2.2.1	- 33 kV lines, distributed load, 5% voltage drop
D.2.2.2	- 11 kV lines, distributed load, 5% voltage drop
D.2.2.3	- LV lines, distributed load, 5% voltage drop
Section D.3	Present worth factor tables used for economic analysis
D.3.1	Present worth factors of loss reduction benefits of future years (constant load growth)
D.3.2	Present worth factors of reliability benefits of future years (constant load growth)
D.3.3	Present worth factors of loss reduction and reliability benefits for variable load growth rates

ANNEX D

PLANNING METHODS AND GUIDELINES FOR DISTRIBUTION SYSTEMS

Introduction

This annex provides some basic information on the planning methods which were employed in the study of power distribution systems and the associated economic analysis. A description of the commonly used terms together with the relevant formulae is provided in page 2. During the course of the project specialized software to build network geographical data bases and to conduct load flow analysis was provided and TANESCO staff trained in their application. However due to the need to undertake extensive field verification of the existing networks the building up of this data base is quite time consuming. Thus in addition to the more detailed analysis provided by the computer programs an approximate methodology is also provided to determine the main characteristics required for the planning exercise, namely the determination of system losses and the tail end voltage conditions of the feeders. The method employed for this analysis is detailed in section D 1 and relies on the ability of modeling the distributor as a radial line with loads of equal magnitude acting at equally spaced distances along the distributor. The method provides a set of multiplying factors which can be used to convert the losses and tail end voltage drops of a tail end load condition (which is readily ascertainable) to that of a distributor. In instances where the distributor is too complex to be modeled in this manner it has been divided into a number of sections which are then amenable to such representation and the results for the original distributor has been built up from the individual components. In the course of the studies it has been found that the methodology provides results well within the limits of acceptable accuracy. Computer spreadsheets have also been built to use the formulae in a convenient fashion. Due to the simplicity of this method, results for all feeders and distributors can be obtained in a short time with minimum data requirements. Thus this method is recommended to be used when data and time limitations do not warrant a more detail analysis.

Section D 2 presents a sample from a set of charts which show the variation of the feeder or distributor load with line length for stipulated values of tail end voltage drops. These charts have also been developed using spreadsheets based on the computation described in section D 1. The charts can be used to determine the acceptable loading levels for different line lengths and conductor sizes; they are thus a convenient means of determining conductor configurations required for acceptable network performance.

The benefits of loss reduction and reliability improvement over a period of years need to be computed in order to undertake economic analyses of development proposals. Technical studies are usually done with the maximum loading of a particular year. However both loss reduction and reliability improvement benefits increase with network load over time. It is therefore necessary to find convenient methods of evaluating the discounted value of such benefits over a given period of time. Section D 3 contains tables providing factors that can be used to convert the benefits of a particular year to the present worth of a series of future benefits extending over a number of years. These tables are once again derived from simple computer spreadsheets which can be used to provide the required values for varying time periods, growth rates and discount factors. Tables D 3.1 and D 3.2 assume a constant rate of growth over the period of analysis. In Table D 3.3 the study period is broken down to a variety of sub periods and the growth rate could be varied between the sub periods. Thus the technique can be used to obtain the most appropriate conversion factor to suit the particular condition of the situation under study.

A DESCRIPTION OF COMMONLY USED TERMS AND FORMULAE

Each term described is followed by the symbol used, formulae connected with its use (if applicable), units used and a brief description.

Feeders: Lines that transport power over some distance. In general a feeder is higher in the supply hierarchy than a distributor. A line which will transport power between two points in the system without intermediate tappings will always be termed a feeder and a line which is tapped along its way will be termed a distributor.

Distributor: A power supply line which is tapped along its length to feed loads or consumers.

Load factor: $LF - E = P \cdot T \cdot (LF)$ - ratio or %

The ratio of average load (kW) to the peak load (kW) over some time period (usually one month or one year).

Loss load factor: LLF - $\Delta E = \Delta P \cdot T \cdot (LLF)$ - ratio or %

The ratio of average losses (kW) to the peak losses (kW) over some time period (usually one month or one year).

Loss reduction load factor: LRLF - $\Delta \Delta E = \Delta \Delta P$. T. (LRLF) - ratio or %

When loss reduction is achieved by the use of capacitors, the reduction in power losses has a wide variation over different loading conditions. In some instances a loss reduction at peak time may be accompanied by a loss increase during base load times. The loss reduction load factor is the total energy saved by the application divided by both the peak time loss savings and the applicable time period.

Coincidence factor: $C_f - C_f = P^* \div P$ - ratio or %

The ratio of the load (of the line or network section considered) at system peak time to its own peak load. This term is also called the Peak responsibility factor.

Note:

P (in kW)	= power supplied at peak load for the line, equipment or
	network considered over the time period, T
E (in kWh)	= energy supplied over time period, T
∆E (in kWh)	= energy losses in time period, T
ΔP (in kW)	= peak power losses in
$\Delta\Delta E$ (in kWh)	= reduction in energy losses by a specified application (usually capacitors)

COMPUTATION OF LINE LOSSES AND VOLTAGE DROP OF DISTRIBUTORS

The line losses and voltage drop of a short distribution line with a single load at its extremity can be found from the following simple formulae:

	line losses = Line end voltage drop =	$\begin{array}{l} 3 \cdot I^2 \cdot r \cdot L \\ I \cdot L \cdot (r \cdot \cos \Theta + x \sin \Theta) \end{array}$
where:	L = line length r = resistance in	Ohms per unit length A Ohms per unit length Fangle

In practice however a distribution line consist of a number of branches or tapping points and is loaded at various points along its length at irregular intervals. In such instances, the power flow characteristics including line losses and tail and voltage drops can only be accurately determined by using suitable computer programs to handle the iterative nature of the solution. However a simplified methodology can be developed to obtain an approximate solution which will yield results within acceptable accuracy limits.

The computation is made with the distributor modeled as a simple radial line with a number of loads of equal magnitude (acting at nodes along the line) separated from each other by equal distances (line sections) as shown in Fig: D 1. Experience has shown that it is fairly convenient to represent typical distributors by such models. The total length will be the radial length of the distributor ignoring the branch lines and the number of sections will be determined according to the magnitude and the dispersion pattern of the loads. In certain cases branch lines can be modeled separately and the total load of a branch taken as acting at the appropriate location along the main distributor (which is also modeled separately).

The power flow along each section of the model is the flow along the previous section less the load acting at the node at the beginning of the section. Neglecting the difference in the phase angle of the currents flowing along the various sections the following relationships can be derived.

Where: no. of sections = n

Load at each node = \underline{I} amps \underline{n}

Current flowing along the sections, commensing with the start of the distributor:

I, $I(\underline{n-1})$, $I(\underline{n-2})$, ..., \underline{I} n n n

The power loss along the section (r + 1) will be:

 $3 r L [I (n-r)]^2$ and n

the voltage drop in the section will be:

$$I (\underline{n-r}) (r \cos \Theta + jx \sin \Theta)$$

The total line loss and tail end voltage drop could now be obtained by summing up as follows: Total line loss

$$= \frac{3 \cdot r L}{n} \left[I^{2} \frac{(n)^{2}}{n^{2}} + I^{2} \frac{(n-1)^{2}}{n^{2}} + I^{2} \frac{(n-2)^{2}}{n^{2}} + \dots + \frac{I^{2}}{n^{2}} \right]$$

= 3. r L I² $\left[\frac{n^{2} n^{2} + (n-1)^{2} + (n-2)^{2} + \dots + 1^{2}}{n^{3}} \right]$
= 3. r L I² $\left[\frac{1^{2} + 2^{2} + 3^{2} + \dots + n^{2}}{n^{3}} \right]$
= (losses if total load was at line end). $\frac{(1^{2} + 2^{2} + \dots + n^{2})}{n^{3}}$
and,

Line end voltage drop

$$= (r \cos\theta + jx \sin\theta) \underbrace{L}_{n} [In + I(\underline{n-1}) + I(\underline{n-2}) + \dots + \underbrace{I}_{n}]$$

$$= (r \cos\theta + jx \sin\theta) \underbrace{L}_{n^{2}} [1 + 2 + 3 + \dots + n]$$

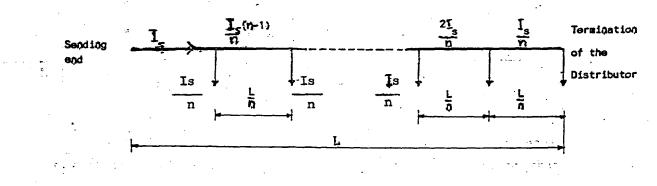
$$= (r \cos\theta + j \sin\theta) \underbrace{L}_{n^{2}} (\underline{1+n})$$

$$= (voltage drop if total load was at line end) \cdot (\underbrace{1+n}_{2n})$$

Using the above relationship a set of multiplying factors could be derived to convert the tail end load situation to that of a distributor with the same length and sending end load. Table D1.1 provides a summary of such multiplying factors.

<u>Table D 1.1</u>

CONVERSION FACTORS FOR DISTRIBUTORS


No. of Sections (with Identical loads)	Nultiplying	factor for
	Line end voltage	Line losses
(Tail end load)	1.0	1.0
2	0.750	0.625
3	0.667	0.519
4	0.625	0.469
5	0.600	0.440
6	0.583	0.421
7	0.571	0.408
8	0.563	0.398
9	0.556	0.391
10	0.550	0.385
11	0.545	0.380
Uniformly distributed load	0.500	0.333

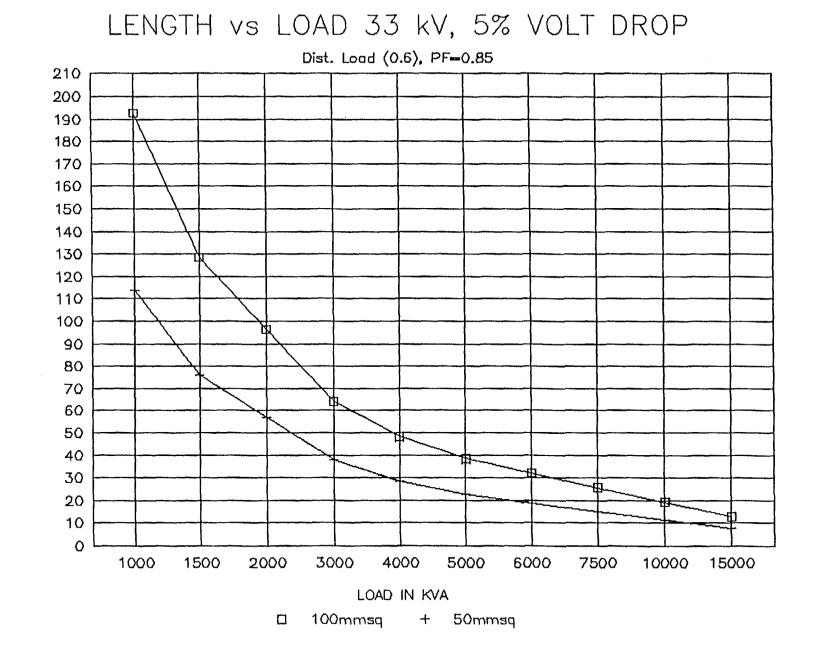

Note: The above factors convert the line end voltage and line losses of a terminally loaded line to that of a symetrical linear distributor of equal load consisting of a number of equally loaded sections.

Fig. D.1

......

Representation of a distributor.

LINE LENGTH IN KM

-176-

l

i

Table D.2.2.1.

-177-

Table D.2.2.2

•

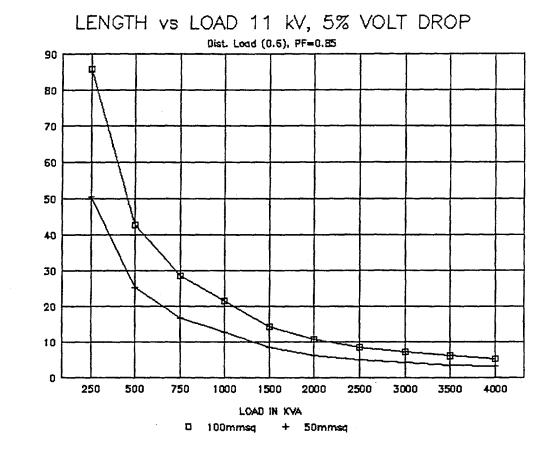
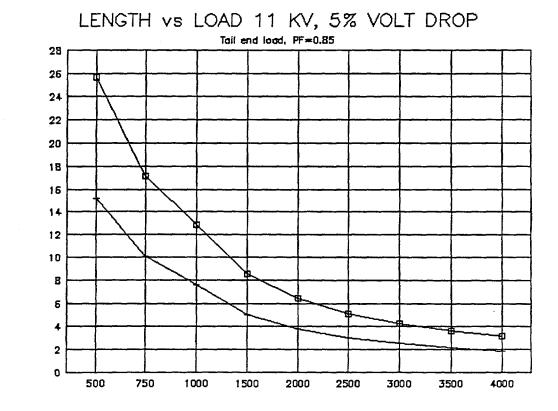
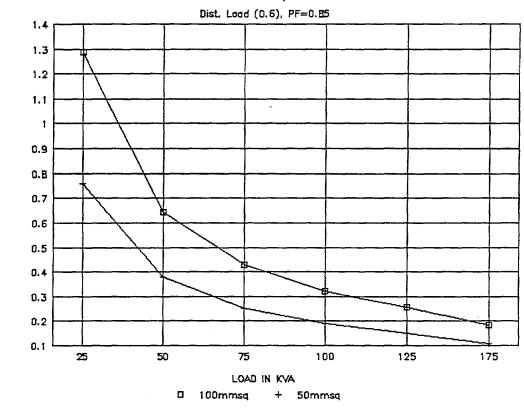
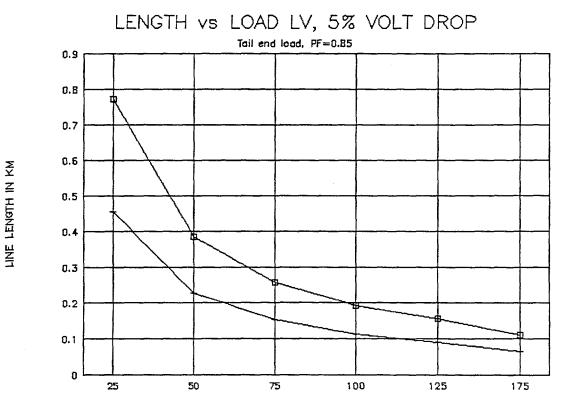



Table D.2.1.2


LINE LENGTH IN KM

LINE LENGTH IN KM

-178-


.

LINE LENGTH IN KM

LENGTH vs LOAD LV, 5% VOLT DROP

Table D.2.1.3

PRESENT WORTH FACTORS FOR LOSS REDUCTION BENEFITS OF FUTURE YEARS

	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
1.05 = GROWTH RATE	1.1 =	INTEREST R	ATE														
Increased losses p.u.																	
-with load growth	1.00	1.10	1.22	1.34	1.48	1.63	1.80	1.98	2.18	2.41	2.65	2.93	3.23	3.56	3.92	4.32	4,76
Discount factor	1.00	0.91	0.83	0.75	0.68	0.62	0.56	0.51	0,47	0.42	0.39	0.35	0.32	0.29	0.26	0.24	0.22
P.W. loss reduction benefits	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.02	1.02	1.02	1.02	1.03	1.03	1.03	1.03	1.03	1.04
Cumilative PW of benefits	1.00	2.00	3,01	4.01	5.02	6.03	7.05	8.06	9.08	10.10	11.13	12.15	13.18	14.21	15.24	16.28	17.31
1.07 = GROWTH RATE	1.1 =	INTEREST R	ATE														
Increased losses p.u.																	
-with load growth	1.00	1.14	1,31	1.50	1.72	1.97	2.25	2.58	2.95	3.38	3.87	4.43	5.07	5.81	6.65	7.61	8.72
Discount factor	1.00	0.91	0.83	0.75	0.68	0.62	0.56	0.51	0.47	0.42	0.39	0.35	0.32	0.29	0.26	0.24	0.22
P.W. loss reduction benefits	1.00	1.04	1.08	1.13	1.17	1.22	1.27	1.32	1.38	1,43	1.49	1.55	1.62	1.68	1.75	1.82	1,90
Cumilative PW of benefits	1.00	2.04	3.12	4.25	5.43	6.65	7.92	9.24	10.62	12.05	13.54	15.10	16.71	18.39	20.15	21.97	23.86
1.09 = GROWTH RATE	1.1 =	INTEREST R	ATE														
Increased losses p.u.																	
-with load growth	1.00	1.19	1.41	1,68	1.99	2.37	2.81	3.34	3.97	4.72	5.60	6.66	7.91	9.40	11.17	13.27	15.76
Discount factor	1.00	0.91	0.83	0.75	0,68	0.62	0.56	0.51	0.47	0.42	0.39	0.35	0.32	0.29	0.26	0.24	0.22
P.W. loss reduction benefits	1.00	1.08	1.17	1.26	1.36	1.47	1.59	1.71	1.85	2.00	2.16	2.33	2.52	2.72	2.94	3.18	3,43
Cumilative PW of benefits	1.00	2.08	3.25	4.51	5.87	7.34	8.93	10.64	12.49	14.49	16.65	18.99	21.51	24,23	27.17	30.35	33.78
1.11 = GROWTH RATE	1.1 =	INTEREST R	ATE														
Increased losses p.u.																	
-with load growth	1.00	1.23	1.52	1.87	2.30	2.84	3.50	4.31	5,31	6.54	8.06	9.93	12.24	15.08	18.58	22.89	28.21
Discount factor	1.00	0.91	0.83	0.75	0.68	0.62	0.56	0.51	0.47	0.42	0.39	0.35	0.32	0.29	0.26	0.24	0.22
P.W. loss reduction benefits	1.00	1.12	1.25	1.41	1.57	1.76	1.97	2.21	2.48	2.78	3.11	3,48	3.90	4.37	4,89	5.48	6.14
Cumilative PW of benefits	1.00	2.12	3.37	4.78	6.35	8.12	10.09	12.30	14.78	17.56	20.66	24.15	28.05	32.41	37.31	42.79	48.93
1.05 = GROWTH RATE	1.08 =	INTEREST R	ATE														
Increased losses p.u.																	
-with load growth	1.00	1.10	1.22	1.34	1.48	1.63	1.80	1.98	2.18	2.41	2.65	2.93	3.23	3.56	3.92	4.32	4.76
Discount factor	1.00	0.93	0.86	0.79	0.74	0.68	0.63	0.58	0.54	0.50	0.46	0.43	0.40	0.37	0.34	0.32	0.29
P.W. loss reduction benefits	1.00	1.02	1.04	1.06	1.09	1.11	1.13	1.16	1.18	1.20	1.23	1.25	1.28	1.31	1.33	1.36	1.39
Cumilative PW of benefits	1.00	2.02	3.06	4.13	5.21	6.32	7.45	8.61	9.79	10.99	12.22	13.48	14.76	16.06	17.40	18.76	20.15
1.07 = GROWTH RATE	1.08 =	INTEREST RV	ATE														
Increased losses p.u.																	
-with load growth	1.00	1.14	1.31	1.50	1.72	1.97	2.25	2.58	2.95	3.38	3.87	4.43	5.07	5.81	6.65	7.61	8.72
Discount factor	1.00	0.93	0.86	0.79	0.74	0.68	0.63	0.58	0.54	0.50	0.46	0.43	0.40	0.37	0.34	0.32	0.29
P.W. loss reduction benefits	1.00	1.06	1.12	1.19	1.26	1.34	1.42	1.50	1.59	1.69	1.79	1.90	2.01	2.14	2.26	2.40	2.54
Cumilative PW of benefits	1.00	2.06	3.18	4.38	5.64	6.98	8.40	9.90	11.50	13.19	14.98	16.88	18.89	21.03	23.29	25.69	28.24
1.09 = GROWTH RATE	1.08 =1	INTEREST R/	ATE														
Increased losses p.u.																	
-with load growth	1.00	1.19	1.41	1.68	1.99	2.37	2.81	3.34	3.97	4.72	5.60	6.66	7.91	9.40	11.17	13.27	15.76
Discount factor	1.00	0.93	0.86	0.79	0.74	0.68	0.63	0.58	0.54	0.50	0.46	0.43	0.40	0.37	0.34	0.32	0.29
P.W. loss reduction benefits	1.00	1.10	1.21	1.33	1.46	1.61	1.77	1.95	2.15	2.36	2.60	2.86	3.14	3.46	3.80	4.18	4,60
Cumilative PW of benefits	1.00	2.10	3.31	4.64	6.11	7.72	9,49	11.44	13.58	15.94	18.54	21.40	24.54	27.99	31.80	35.98	40.58

Note: The above computation assumes that the system load can be met in future years both by the existing and proposed systems. The growth rate and discount rate has been expressed as per unit factors

The table provides multiplying factors that convert the present year benefits to that of the discounted benefits of a period of future years If the period of benefits starts in a future year a subtraction of the relevant factors in the table will provide the appropriate multiplying factor

-179-

Table D3.1

PRESENT WORTH FACTORS OF REIABILITY BENEFITS OF FUTURE YEARS

	1991	1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
1.05 = GROWTH RATE	1.1 =	INTEREST R	ATE														
Increased reliability p.u.																	
-with load growth	1.00	1.05	1.10	1.16	1.22	1.28	1.34	1.41	1.48	1.55	1.63	1.71	1.80	1.89	1.98	2.08	2.18
Discount factor	1.00	0.91	0.83	0.75	0.68	0.62	0.56	0.51	0.47	0.42	0.39	0.35	0.32	0.29	0.26	0.24	0.22
P.W. reliability benefits	1.00	0.95	0.91	0.87	0.83	0.79	0.76	0.72	0.69	0.66	0.63	0.60	0.57	0.55	0.52	0.50	0.48
Cumilative PW of benefits	1.00	1.95	2.87	3.74	4.57	5.36	6.11	6.84	7.53	8.18	8.81	9.41	9.98	10.53	11.05	11.55	12.02
1.07 = GROWTH RATE	1.1 =	INTEREST R/	ATE														
Increased reliability p.u.																	
-with load growth	1.00	1.07	1.14	1.23	1.31	1.40	1.50	1.61	1.72	1.84	1.97	2.10	2.25	2.41	2.58	2.76	2.95
Discount factor	1.00	0.91	0.83	0.75	0.68	0.62	0.56	0.51	0.47	0.42	0.39	0.35	0.32	0.29	0.26	0.24	0.22
P.W. reliability benefits	1.00	0.97	0.95	0.92	0.90	0.87	0.85	0.82	0.80	0.78	0.76	0.74	0.72	0.70	0.68	0.66	0.64
Cumilative PW of benefits	1.00	1.97	2.92	3.84	4,73	5.61	6.45	7.28	8.08	8.66	9.62	10.35	11.07	11.77	12.45	13.11	13.75
1.09 = GROWTH RATE Increased reliability p.u.	1.1 -	INTEREST R/	ATE														
-with load growth	1.00	1.09	1.19	1.30	1.41	1.54	1.68	1.83	1.99	2.17	2.37	2.58	2.81	3.07	3,34	3.64	3.97
Discount factor	1.00	0.91	0.83	0,75	0.68	0.62	0.56	0.51	0.47	0.42	0.39	0.35	0.32	0.29	0.26	0.24	0.22
P.W. reliability benefits	1.00	0.99	0.98	0.97	0.96	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.90	0.89	0.88	0.87	0.86
Cumilative PW of benefits	1.00	1.99	2.97	3.95	4.91	5.87	6.81	7.75	8.68	9,60	10.51	11.42	12.31	13.20	14.08	14.95	15.82
	1.00	1.00	2.07	0.00	4.07	0.01	0.01	///0	0.00	0,00	10.01		12:01	10.20	14100	11.00	10101
1.11 = GROWTH RATE	1.1 =	INTEREST R	ATE														
Increased reliability p.u.																	
 with load growth 	1.00	1.11	1.23	1.37	1.52	1.69	1.87	2.08	2.30	2.56	2.84	3.15	3.50	3.88	4.31	4.78	5.31
Discount factor	1.00	0.91	0.83	0.75	0.68	0.62	0.56	0.51	0.47	0.42	0.39	0.35	0.32	0.29	0.26	0.24	0,22
P.W. reliability benefits	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.08	1.09	1.10	1.11	1.12	1.14	1.15	1.16
Cumilative PW of benefits	1.00	2.01	3.03	4.05	5.09	6.14	7.19	8.26	9.33	10.42	11.51	12.62	13.73	14.86	15.99	17,14	18.29
1.05 = GROWTH RATE	1.08 =	INTEREST R	ATE														
Increased reliability p.u.																	
-with load growth	1.00	1.05	1.10	1.16	1.22 0.74	1.28 0,68	1.34 0.63	1.41 0.58	1.48 0.54	1.55 0.50	1.63 0.46	1.71 0.43	1.80 0.40	1.89 0.37	1.98 0,34	2.08 0.32	2.18 0.29
Discount factor	1.00	0.93	0.86	0.79	0.74				0.54	0.50	0,46	0.43		0.37		0.32	0.64
P.W. reliability benefits	1.00	0.97 1.97	0.95	0.92 3.84	4.73	0.87 5.60	0.84 6.44	0.82 7.26	8.06	8.84	9.59	10.33	0.71 11.04	11.73	0.67 12.41	13.06	13.70
Cumilative PW of benefits	1.00	1.97	2.92	3.64	4.73	5.60	0.44	7.20	0.00	0.04	9,29	10.35	11.04	11.73	12,91	13,00	13.70
1.07 = GROWTH RATE Increased reliability p.u.	1.08 -	INTEREST R	ATE														
-with load growth	1.00	1.07	1.14	1.23	1.31	1,40	1.50	1,61	1.72	1.84	1.97	2.10	2.25	2.41	2,58	2.76	2.95
Discount factor	1.00	0,93	0.86	0.79	0.74	0.68	0.63	0.58	0.54	0.50	0.46	0.43	0.40	0.37	0.34	0.32	0.29
P.W. reliability benefits	1.00	0.99	0.98	0.97	0.96	0.05	0.03	0.94	0.93	0.92	0.91	0.90	0.40	0.89	0.88	0.87	0.86
Cumilative PW of benefits	1.00	1.99	2.97	3.94	4.91	5.86	6.81	7,75	8.67	9.59	10.50	11.41	12.30	13.19	14.07	14.94	15.80
Cumiative FW of benefits	1.00	1.00	2.07	3.84	4.01	0.00	0.01	7.75	0.07	8,58	10.50	11.41	12.50	15.18	14.07	14.84	15.60
1.09 = GROWTH PATE	1.08 =	INTEREST R	ATE														
Increased reliability p.u.																	
-with load growth	1.00	1,09	1.19	1.30	1.41	1.54	1.68	1.83	1.99	2.17	2.37	2.58	2.81	3.07	3.34	3.64	3.97
Discount factor	1,00	0.93	0.86	0.79	0.74	0.68	0.63	0.58	0.54	0.50	0.46	0.43	0.40	0.37	0.34	0.32	0.29
P.W. reliability benefits	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1,11	1.12	1.13	1.14	1.15	1.16
Cumilative PW of benefits	1.00	2.01	3.03	4.06	5.09	6.14	7.20	8.26	9.34	10.43	11.52	12.63	13.75	14.87	16.01	17.18	18.32

Note: The above computation assumes that the system load can be met in future years both by the existing and proposed systems. The growth rate and discount rate has been expressed as per unit factors The table provides multiplying factors that convert the present year benefits to that of the discounted benefits of a period of future years

If the perriod of benefits starts in a future year a subtraction of the relevant factors in the table will provide the appropriate multiplying factor

-180-

Table D.3.2

PRESENT WORTH OF LOSS REDUCTION AND RELIABILITY BENEFITS OF FUTURE YEARS WITH VARIABLE GROWTH RATES BETWEEN SUB-PERIODS

				YE	EAR OF COMME	ENCEMENT OF	SUB PERIOD		
1.1 = Discount	factor								
			1990	1993	1998	2001	2005	2007	2010
Load growth rate p.a.			1.08	1.05	1.04	1.03	1.02	1.01	
Load at year as pu. of load in yr	. 1		1	1.26	1.61	1.81	2.04	2.12	2.18
Loss red. benefits as pu. of ben	efits in yr. 1		1	1.59	2.58	3.27	4.14	4.48	4.76
Reliab. benefits as pu. of benefit	is in yr. 1	;	1	1.26	1.61	1.81	2.04	2.12	2.18
Benefit growth per yr./discount	fac.								
- loss reduction			1.060	1.002	0.983	0.964	0.946	0,927	
- reliability			0.982	0,955	0.945	0.936	0.927	0.918	
Years in sub period (from yr. in	column to yr. ir	n next colui	3	5	3	4	2	3	
Present Worth (to begining) of a	sub period								
loss reduction			3.18	7.97	7.63	12.40	8.06	12,50	
reliability			2.95	5.75	4.56	6.57	3.92	5.85	
Present Worth factor for Yr. to y	/r. 1		1.000	0.751	0.467	0.350	0.239	0.198	
	TOTAL	TOTAL							
PRESENT WORTH FACTORS	'90-'08	'93-'08							
loss reduction	21.48	18.296	3.185	5,988	3.557	4.347	1.930	2.473	
reliability	13.80	10.850	2.946	4.321	2.130	2.304	0.939	1.157	
renability	13.00	10.000	2.940	4.521	2.130	2.304	0.939	1.107	

Note: (1) The above is an example of a Lotus format prepared in order to calculate

the present worth of benefits of loss reduction and reliability improvements over a period of analysis where the load growth varies in each sub period.

(2) The second total column allows the benefits from the first period to be omitted.

(3) The variables are: discount rate, length and no. of sub periods, growth rate in each sub period.

(4) The benefits in the first year (1990 in this case) when muntiplied by the present worth factor (in the total column) will provide the present worth of benefits of the total period discounted to the first year (1990)

ANNEX E

ECONOMIC ANALYSIS FOR DISTRIBUTION SYSTEM DEVELOPMENT

.

ECONOMIC ANALYSIS FOR DISTRIBUTION SYSTEM DEVELOPMENT

List of Tables

Cost benefit analysis for development proposals Dar es Salaam

- E.1.1 30 MVA grid SS at Wazo Hill and 5 MVA primary SS at Kunduchi
- E.1.2 15 MVA primary SS at Msasani Peninsula
- E.1.3 15 MVA primary SS at Sokoine Drive
- E.1.4 5 MVA primary SS at Chang'ombe
- E.1.5 5 MVA primary SS at Mwembe-Chai
- E.1.6 5 MVA primary SS at Mbagala

Cost benefit analysis for development proposals Tanga region

- E.2.1 20 MVA grid SS at Cement Mill
- E.2.2 15 MVA primary SS at Sahare
- E.2.3.1 5 MVA primary SS at Lushoto
- E.2.3.2 Conversion to 33 kV, Lushoto-Bumbuli
- E.2.4 Developments to Korogwe North area
- E.2.4.1 2.5 MVA primary SS at Kwamndoluwa
- E.2.4.2 Conversion to 33 kV with existing copper conductors
- E.2.4.3 Conversion to 33 kV with new 100 mm.sq. conductors
- E.2.5 Developments to Korogwe West area
- E.2.5.1 Conversion to 33 kV with existing copper conductors
- E.2.5.2 Conversion to 33 kV with new 100 mm.sq. conductors
- E.2.6 5 MVA primary SS at Kibaranga

Cost benefit analysis for development proposals Moshi region

- E.3.1 5 MVA primary SS at Majengo
- E.3.2 conversion to 33 kV, Makombone
- E.3.3 66 kV line to Marangu

Cost benefit analysis for development proposals Arusha region

- E.4.1 33 kV line conversion Monduli feeder
- E.4.2 5 MVA primary SS at Magereza
- E.4.3 5 MVA primary SS at Mt. Meru hotel
- E.5.1 Summary of requirements for MV rehabilitation and transformers for LV rationalization
- E.5.2 Summary of requirements for LV rehabilitation and reinforcement

-186-

Annex E (cont'd)

List of Tables

Cost benefit analysis for rehabilitation of MV and LV systems

- Dar es Salaam Tanga Moshi E.6.1
- E.6.2
- E.6.3 E.6.4 - Arusha
- Cost-benefit anaylsis of LV rationalization E.7
- Sample calculation of cost-benefit analysis for individual system expansion works E.8.1
- Total costs of network expansion E.8.2

COST BENEFIT ANNALYSIS FOR

PROPOSED 30 MVA GRID SUBSTATION AT WAZO HILL AND 5 MVA PRIMARY SUBSTATION AT KUNDUCHI

TABLE E 1.1 pg 1

345

2204

					**			
(1) LOAD CHARACTERISTICS OF AFFECTED FEED		eriod	'90-'93	' 93- ' 96	'96-'99	'99-'02	'02-'05	'05-'08
AT TALE of A sectors	F	enoa	70- 73	93-90	70- 77	99-02	02-05	03-06
 (1.1) Load growth characteristics Estimated load growth put for feeders 			0.07	0.07	0.07	0.07	0.07	0.07
			0.07	0.07	0.015	0.015	0.07	0.015
Estimated load growth pu. for cement fac.			0.015	0.015	0.015	0.015	0.015	0.015
	YEAR	1990	1993	1996	1999	2002	2005	2008
(1.2) Peak Load in MW								
Cement Factory load		7.100	-7.424	7.763	8.118	8.489	8.877	9.282
Kunduchi SS load		2.267	2.777	3.402	4.168	5.106	6.255	7.662
Mbezi - Kunduchi leeder		0.800	0.980	1.201	1.471	1.802	2.207	2.704
Total Load affected by loss red/n								
and reliability improvement		10.167	11.181	12.366	13.757	15.396	17.338	19.648
Overall load growth p.a.			3.19	3.38	3.58	3.79	4.00	4.21
New load at Mbezi SS		4.936	6.047	7.408	9.075	11.117	13.619	16.683
(1.3) Annual energy in GWH								
0.85 = Load factor for Cement Factory								
0.65 = Load factor for all feeders								
Cement Factory load		52.867	55.281	57.807	60.447	63.208	66.096	69.11 5
Kunduchi SS load		12.908	15.813	19.371	23.731	29.071	35.613	43.628
Mbezi - Kunduchi feeder		4.555	5.580	6.836	8.375	10.259	12.568	15.396
Total Load affected by loss red/n								
and reliability improvement		70.330	76.675	84.014	92.552	102.539	114.277	128.139
Overall load growth p.a.			2.89	3.06	3.25	3.44	3.64	3.85
New load at Mbezi SS		28.106	34.430	42.179	51.671	63.299	77.544	94.995

(2) CONCLUSIONS FROM ESTIMATED LOAD DISTRIBUTION:

 Capacity of Kunduchi SS
 1*5 MVA by (1993) with augmentation to 2*5 MVA by Yr. 2000

 Capacity required at existing Mbezi SS
 Existing 1* 15 Mva is sufficient up to beyond Yr. 2000

 Estimation of benefits 76.7 GWH of sales by 1993 increasing at 3% pa. will be benefitted by (1) Loss reduction as calculated below on an analysis by feeder (2) Additional capacity provided to meet new loads

and

(3) Reliability benefits estimated by outages saved (as % of total sales)

(3) GAPITAL WORKS (all costs in \$ 000's)

Grid SS	Unit	Qty	Rate	Cost
132/33 kV transformer 30 MVA	nos	í	450	450
132 kV incommer	nos	1	220	220
33 kV feeder CB units	nos	4	120	480
Substation structure & auxiliaries	item	1	100	100
33 kV feeders dc 100 mm sq	km	5	35	175
Primary SS				
33 kV feeder CB units	nos	2	120	240
33/11 kV transformer 5 MVA	nos	1	170	170
11 kV CB units	nos	6	55	330
Substation structure & auxiliaries	item	1	50	50
11 kV feeders	km	3	21	63
T	'OTAL COST (Work proposed in 1991)			2278

Cost of augmentation of Kunduchi SS in 2000 Total Costs discounted to 1990 COST BENEFIT ANNALYSIS FOR

PROPOSED 30 MVA GRID SUBSTATION AT WAZO HILL AND 5 MVA PRIMARY SUBSTATION AT KUNDUCHI

-.

(4) COMPUTATION OF BENEFITS

(4.1) LOSS REDUCTION BENEFITS	0.1 =Energy cost S/kwh (at dist.) 0.35 =Loss load factor, feeders 0.85 =Loss load factor for cement fac.	0.25 =Energy cost at dist less up streem 1.1 = discount factor
-------------------------------	--	---

Original system losses 1	990	Proposed system losses	1990
Feeder	Losses kW	Feeder	Losses kW
Kunduchi 11 kV F	366	K/SS 11 kV feeders	9
Ub - Mbezi 33 kV	36	Mbezi-K 11kV feed.	4
W/Hill cement fac.	300	Ub - Mbezi 33 kV	21
		Ub - new G/SS	3
Total loss		Total loss	
W/Hill cement fac.	300	W/Hill cement fac.	3
Other feeders	402	Other feeders	37

Loss reduction benefits from 1993 1990 1990 Value of benefits in \$ 000's ĸw KWH Yr. 1990 W/Hill cement fac. 297 2211462 221.146

W/Hill cement fac.	297	2211462	221.146	9.87	2182.712
Other feeders	365	1118814	111.881	20.15	2254.410
TOTAL	662	3330276	333.028		4437.123
Value of benefit	s discounted	to 1990 \$ 0	00's		3333.676
BENEFIT/COST RATIO WITH	LOSS REDN	I. BENEFITS O	NLY		1.5

BENEFIT/COST RATIO WITH LOSS REDN. BENEFITS ONLY

(4.2) BENEFITS FROM ADDITIONAL CAPACITY TO SUPPLY NEW LOADS

YEAR	1993	1996	1999	2002	2005	2008
New Kunduchi SS load Load which could be supplied by former network New load possible by additional capacity p.u growth of additional capacity	2.777 2.000 0.777	3.402 2.000 1.402 0.217	4.168 2.000 2.168 0.156	5.106 2.000 3.106 0.127	6.255 2.000 4.255 0.111	7.662 2.000 5.662 0.100
PW to 1993, new Kunduchi SS load (15 years from 1993) GWH PW to 1993 possible supply (15 years from 1993) with existing system GWH PW (to 1993) of benefits from new capacity in S 000's Value of benefits discounted to 1990, S 000's			34.575 16.740 4459 3350	12.45 =/ 8.37 =/		
BENEFIT/COST RATIO WITH LOSS REDN. PLUS NEW CAPACITY			3.0			

MF •

Period '93-'08

(4.3) RELIABILITY BENEFITS

	Estimated Values							
Est, outages saved as % of annual energy	1.5	1.5	1		0.5	0.5		
Est, outages saved 1993 GWH	1.150	1.150	0.767	0.767	0.383	0.383		
PW fac. (MF) of reliab. benefits (15yrs.at 3% Load.gr.)	9.85	9.85	9.85	9.85	9.85	9.85		
PW outages saved 15 yrs from 1993 discounted to 1990. (GWH) Value of reliability benefits	8.511	8.511	5.674	5.674	2.837	2.837		
Value saved outages - multiple of energy cost	10	5	5	Э	3	2		
PW reliability benefits \$ 000's	8511	4256	2837	1702	851	567		
Total benefits (loss redn & reliabi.) \$000's	17407	13152	11733	10598	9747	9463		
BENEFIT/COST RATIO WITH ALL BENEFITS LISTED ABOVE	7.9	6.0	5.3	4.8	4.4	4.3		

• Note: MF - Provides the muntiplying factor for PW of benefits extended

over a given period taking into account the load growth (see annex 2)

TABLE E 1.1 pg 2

COST BENEFIT ANALYSIS FOR PROPOSED PRIMARY SUBSTATION 15	MVA AT MSAS	SANI PENIN	ISULAR				TABLE E 1.2 pg. 1
(1) LOAD CHARACTERISTICS OF AFFECTED F							
Period	'90-'93	'93-'96	'96-'99	'99 -' 02	'02-'05	'05-'08	
Estimated load growth pu. for all feeders	0.05	0.05	0.03	0.02	0.02	0.02	
YEAR	1990	1993	1996	1999	2002	2005	2008
New Msasani substation feeders							
Feeder F 1 Amps	101	117	135	148	157	167	177
Feeder F 2 Amps	109	126	146	160	169	180	191
Feeder F 3 Amps	167	193	224	245	260	275	292
Total load Amps	377	436	481	558	616	680	751
Total demand on SS (MVA)	7.183	8.315	9.168	10.628	11.734	12.955	14.303
System peak loads - affected sections							
New substation load MW	6.465	7.484	8.663	9.467	10.046	10.661	11.314
MK1 and O 2 & O 6 load MW	4.218	4.883	5.653	6.177	6.555	6.957	7.382
Total load MW	10.683	12.367	14.316	15.644	16.601	17.618	18.696
Overall load growth p.a.		4.95	4.95	2.97	1.98	1.98	1.98
Av.load factor 0.65							
Total energy MWH	60829	70418	81517	89076	94528	100314	106454
Overall load growth p.a.		4.95	4.95	2.97	1.98	1.98	1.98

(2) CONCLUSIONS FROM ESTIMATED LOAD DISTRIBUTION

Capacity of Msasani Substation: 1 x 15 MVA is sufficient up to and beyond Yr.2000

Estimation of benefits: (1) Loss reduction as calculated below on an analysis by feeder.

(2) The Oyster Bay substation is already fully loaded (considering also the other feeders not indicated above. Thus the cost of augmenting the existing SS to 2*15 may be set off as being avoided costs. Since the above avoided cost is taken account of no aditional benefits from new consumers are included in the analysis.

~~~

Dete

0--+

(3) Reliability benefits estimated by outages saved (as % of total sales).

(3) CAPITAL WORKS (all costs in \$ 000's)

	Unit	Qty	Hate	Cost
33 kV S.C.line 100 mm sq ACSR	km	5.3	23	122
33 kV feeder CB units	nos	2	120	240
33/11 kV transformer 15 MVA	nos	1	225	225
11 kV feeder CB units	nos	4	55	220
Substation structure & auxiliaries	item	1	50	50
11 kV line 100 mm sq ACSR	km	6	21	126
	TOTAL COSTS			983
	Avoded Costs of augume (only the cost of one 15 l as the existing 3*5 MVA	WVA Tf. is inclu	beb	225
	NET COSTS FOR ECONOM	IIC ANALYSIS		758
	Net Costs discounted to	1990		689

NOTE: Expenditure is assumed in 1991 and benefits are computed from 1993

Cont. pg.2

-190-

COST BENEFIT ANALYSIS FOR PROPOSED PRIMARY SUBSTATION 15 MVA AT MSASANI PENINSULAR (CONT)

TABLE **E** 1.2 pg. 2

_

(4) COMPUTATION OF BENEFITS

(4.1) LOSS REDUCTION BENEFITS	0.1 = Energy cost \$/KWH 0.35 = Feeder load loss factor	1.1 =Discount factor

Original syste	m losses 19	990		Proposed sys	tem losses	1990	
Feeder	Amps	Losses kW		Feeder	Amps	Losses kW	
06	120	24		06	32	1	
03	296	335		О 3	119	18	
MK 1	155	78		MK 1	95	16	
О/ВАҮЗЗК∿	260	376		F 1	101	7	
MK 33KV				F 2	109	11	
				F 3	68	4	
				F 4	99	7	
				O/BAY33KV	208	240	
				TO MS33KV	126	83	
				MK 33KV			
TOTAL		814		TOTAL		388	
Loss reductio	n benefits f	rom 1993:-					
		1990	1990		١	VALUE OF BEI	NEFITS
		ĸw	KWH	MF*		1993 - 2008	discounted to1990
All feeders		426	1306718	12.58		1644	
Benefit/Cost ratio considering only loss red.						2.4	

(4.2) RELIABILITY BENEFITS

	Estimated Sensitivity for variations in % units saved			saved		
	Values	and cost	of saved en	ergy		
Est. outages saved as % of annual energy	1.5	1.5	1	1	0.5	0.5
Est. outages saved 1990 loads (MWH)	912	912	608	608	304	304
PW fac. reliability benefits '93-08 (MF*)	8.83	8.83	8.83	8.83	8.83	8.83
PW outages saved 1993 to 2008 MWH	8057	8057	5371	5371	2686	2686
Value of reliability benefits						
Value saved outages - multiple of energy cost	8	5	5	3	3	2
PW reliability benefits \$ 000's	6445	4028	2686	1611	806	537
TOTAL BENEFITS (loss redn & reliabi.) \$000's	8089	5672	4329	3255	2450	2181
Benefit / Cost ratio	11.7	8.2	6.3	4.7	3.6	3.2

* Note: MF - Provides the muntiplying factor for PW of benefits discounted to 1990

extended over a given period from 1993 (taking into account the load growth effects (see annex D)

PROPOSED PRIMARY SUBSTA	TION 15 MVA AT SC	KONI DRIVE				· T	ABLE 61.3
(1) ESTIMATED LOAD DISTRIBU	JTION						
	Period	'90-'93	'9 3- ' 96	' 96- ' 99	'99-'02	'02-'05	'05-'08
Estimated load growth pu.		0.07	0.07	0.06	0.03	0.02	0.02
YEAR		1990	1993	1996	1999	2002	2005
New Sokoini Drive Sub Statio	n						
Total feeder load in Amps		367	450	505	586	647	714
Total substation load MVA		6.992	8.566	9.625	11.158	12.319	13.601
New substation load MW		6.293	7.709	8,662	10.042	11.087	12.241
C 3, C4, C8 Load MW		8.500	9.095	9.732	10.316	10.625	10.838
Total load MW		14.793	16.804	18.394	20.358	21.712	23.079
Overall load growth p.a.			4.30	3.03	3.40	2.15	2.03
Av.load factor	0.65						
Total energy MWH		84233	95685	104736	115916	123630	131410
Overall load growth p.a.			4.30	3.03	3.40	2.15	2.03

(2) CONCLUSIONS FROM ESTIMATED LOAD DISTRIBUTION

Capacity of Sokoini Drive SS.	1*15 MVA is sufficient up to and beyond Yr.2000
Estimation of benefits	 (1) Loss reduction as calculated below on an analysis by feeder. (2) The City Center substation would be fully loaded by 1993 Thus the cost of augmenting the existing SS to 2*15 may be set off as being avoided cost is taken account of no aditional benefits from new co are included in the analysis. (3) Reliability benefits estimated by outages saved (as % of total sales).
(2) CAPITAL WORKS (all costs in \$ 000's)	

	Unit	Qty	Rate	Cost		
33 kV S.C.line 100 mm sq ACSR	km		3.8	23	87	
33 kV feeder CB units	nos		2	120	240	
33/11 kV transformer 15 MVA	nos		1	225	225	
11 kV feeder CB units	nos		5	55	275	
Substation structure & auxiliaries	item		1	50	50	
11 kV line 100 mm sq ACSR	km		1	21	21	
		TOTAL	COST		898	
	Avoded Costs of augumentation of City Center SS					
	(only the cost of one 15 MVA Tf. is included					
	as the existing 3*5 MVA Tf. will be recovered)					
	NET COSTS FOR ECONOMIC ANALYSIS					
	Net Costs discounted to 1990				612	

NOTE: Expenditure is assumed in 1991 and benefits are computed from 1993

Cont. pg.2

-

COST BENEFIT ANALYSIS FOR

COST BENEFIT ANALYSIS FOR PROPOSED PRIMARY SUBSTATION 15 MVA AT SOKONI DRIVE (Cont.)

(4) COMPUTATION OF BENEFITS

(4.1) LOSS REDUCTION BENEFITS				= Energy c i = Feeder lo	1.1 =Discount factor			
Original s	ystem loss	ses 1990			Proposed s	ystem losses	; 1990	
Feeder	Amps	Los	ses kW		Feeder	Amps	Losses kW	
С З		240	27		C 3	32	12	
C 4		270	64		C 4	119		
C 8		180	19		C 8	95		
IL-City		320	254		SK 1	101		
Center 33	l kV				SK 2	109		
					SK 3	68		
					SK 4	99		
					IL-CC	198		
					IL-SkD	122		
TOTAL			364		TOTAL		208	
Loss redu	iction ben	efits from	1 1993 :-					
			1990	1990			VALUE OF BE	NEFITS
			ĸw	KWH	MF		1993 - 2008	discounted to1990
All feeders	S		156	478333	17.70		847	
Benefit/Co	ost ratio co	xnsiderin	g only lose	s red.			1.4	
(4.2) RELI	ABILITY B	enefits						

	Estimated Values	Sensitivity for variations in % units saved and cost of saved energy					
Est. outages saved as % of annual energy	1.5	1.5	1	1	0.5	0.5	
Est. outages saved 1990 loads (MWH)	1263	1263	842	842	421	421	
PW fac. reliability benefits *93-08 (MF*)	10.4	10.4	10.4	10.4	10.4	10.4	
PW outages saved 1993 to 2008 MWH	13140	13140	8760	8760	4380	4380	
Value of reliability benefits							
Value saved outages - multiple of energy cost	8	5	5	3	3	2	
PW reliability benefits \$ 000's	10512	6570	4380	2628	1314	876	
TOTAL BENEFITS (loss redn & reliabi.) \$000's	11359	7417	5227	3475	2161	1723	
Benefit / Cost ratio	18.6	12.1	8.5	5.7	3.5	2.8	

* Note: MF - Provides the muntiplying factor for PW of benefits discounted to 1990

extended over a given period from 1993 (taking into account the load growth effects (see annex 2)

×

TABLE 🗗 1.3 pg. 2

_

cb-Chang

Table E 1.4

COST BENEFIT ANNALYSIS FOR NEW PRIMARY SUBSTATION AT CHANG'OMBE

6 = %load growth	0.1 = Energy costs \$/KWH
15 = analysis period	0.35 = loss load factor
1.124 = loss gr.fac. pa.	1.1 = discount factor pa.
17.48 = P.W. factor for ioss red	n. over period of analysis

COMPUTATION OF BENEFITS:

(a) LOSS REDUCTION BENEFITS

(a) LOSS ALDOCTION DENETTIS				
	1991	1991	1993	
	KW	KWH/yr.	KWH/yr.	
Existing line losses	638	1,956,108	2,469,541	
Losses after new dev.	274	840,084	1,060,587	
Peak loss savings	364	1,116,024	1,408,955	
Value of savings 1993-2008 in \$ 000's			2462	
Value of savings discounted to 1991			2035	
COST OF CAPITAL WORKS in \$ 000's				
		Qty.	rate	Cost
33 kV line 100 mmsq.		0.7	22.8	16.0
Substation Costs:				
Transformer 5 MVA 33/11 kV		1	170.1	170.1
33 kV circuit breaker and bay		1	123.0	123.0
11 kV circuit breaker and bay		5	49.2	246.0
Total Cost (assumed in 1992)	US \$0	00's		555.1
Cost discounted to 1991				504.6

Benefit/Cost ratio considering loss reduction benefits only

(b) RELIABILITY BENEFITS

	Estimated Values	Sensitivity for variations in % units saved and cost of saved energy					
Est. outages saved as % of annual energy	1.5	1.5	1	1	0.5	0.5	
Est. outages saved 1991 loads (MWH)	460	460	307	307	153	153	
PW fac. reliability benefits '93-08 (MF*)	10.4	10.4	10.4	10.4	10.4	10.4	
PW outages saved 1993 to 2008 MWH	4783	4783	3189	3189	1594	1594	
Value of reliability benefits							
Value saved outages - multiple of energy cost	8	5	5	3	3	2	
PW reliability benefits \$ 000's	3826	2391	1594	957	478	319	
TOTAL BENEFITS (loss redn & reliabi.) \$000's	4331	2896	2099	1461	983	823	
Benefit / Cost ratio (loss reduction & reliability benefits)	12.6	9.8	8.2	6.9	6.0	5.7	

4.0

* Note: MF - Provides the muntiplying factor for PW of benefits discounted to 1990 extended over a given period from 1993 (taking into account the load growth effects (see annex 2)

30660 = System load in MWh (at 1991 level) benefiting by increased reliability

cb-MbCh

Table E 1.5

-

COST BENEFIT ANNALYSIS FOR NEW PRIMARY SUBSTATION AT MWEMBE-CHAI

Computation factors

1.1	= discount factor p.a.	
9	= % annual load growth	0.10 = Energy costs \$/KWH
15	= analysis period	0.60 = load factor
1.188	= loss growth factor p.a	0.35 = loss load factor

27.17 = P.W. factor for loss reduction over period of analysis (MFIr)

COMPUTATION OF BENEFITS:

(a) Loss reduction benefits

(a) Loss reduction benefits			
	1991	1991	1993
	KW	MWH/yr.	MWH/yr.
Existing line losses	866	2,655	3,748
Losses after new dev.	345	1,058	1,493
Peak loss savings	521	1,597	2,255
Value of savings 1993-2008 in \$ 000's			6127
Value of savings discounted to 1991 (\$000)			5063
COST OF CAPITAL WORKS in \$ 000's			_ .
	Qty.	rate	Cost
33 kV line 100 mmsq.	1.1	22.8	25.1
Substation Costs:			
Transformer 15 MVA 33/11 kV	1	225.5	225.5
33 kV circuit brreaker and bay	1	123.0	123.0
11 kV circuit brreaker and bay	5	49.2	246.0
11 KV line additions (100mmsq.)	1.5	20.7	31.1
Total Cost (assumed in 1992) US \$000	c		650.6
Cost discounted to 1991 (\$000)	3		591.5
Cost disconned to 1331 (\$000)			591.5
Benefit/Cost ratio considering loss reduce	ction benef	fits only	8.6

(b) Reliability benefits

System load in MW (at 1991 level) benefiting by increased reliability	11.7
Annual load, MWh (1991) of section with reliablity improvement	102493

	Estimated Sensitivity for variations in % units saved Values and cost of saved energy					
Estimated outages saved as % of annual energy	1.5	1.5	1	1	0.5	0.5
Estimated outages saved 1991 loads (MWH)	1537	1537	1025	1025	512	512
PW factor for reliability benefits '93-08 (MFrb*)	10.4	10.4	10.4	10.4	10.4	10.4
PW outages saved 1993 to 2008 MWH	15989	15989	10659	10659	5330	5330
Value of reliability benefits:						
Value saved outages - multiple of energy cost	8	5	5	3	3	2
PW reliability benefits \$ 000's	12791	7994	5330	3198	1599	1066
TOTAL BENEFITS (loss redn & reliabi.) \$000's	13383	8586	5921	3789	2190	1657
Benefit / Cost ratio (loss reduction & reliability benefits)	31.2	23.1	18.6	15.0	12.3	11.4

* Note: MFrb - Provides the muntiplying factor for PW of benefits discounted to 1991 extended over a given period from 1993 (taking into account the load growth effects (see annex B) cb-Mb

Table E 1. 6

_

COST BENEFIT ANNALYSIS FOR NEW PRIMARY SUBSTATION AT MBAGALA

Computation factors

1.1	= discount factor p.a.	
9	= % annual load growth	0.10 = Energy costs \$/KWH
15	= analysis period	0.60 = load factor
1.188	= loss growth factor p.a	0.35 = loss load factor

27.17 = P.W. factor for loss reduction over period of analysis (MFIr)

COMPUTATION OF BENEFITS:

(a) Loss reduction benefits

(a) Loss reduction benefits			
	1991	1991	1993
	KW	MWH/yr.	MWH/yr.
Existing line losses	82	251	355
Losses after new dev.	28	86	121
Peak loss savings	54	166	234
Value of savings 1993-2008 in \$ 000's			635
Value of savings discounted to 1991 (\$000)			525
COST OF CAPITAL WORKS in \$ 000's			
	Qty.	rate	Cost
33 kV line 100 mmsq.	1.4	22.8	31.9
Substation Costs:			
Transformer 5 MVA 33/11 kV	1	170.1	170.1
33 kV circuit brreaker and bay	1	123.0	123.0
11 kV circuit brreaker and bay	3	49.2	147.6
11 KV line additions (100mmsq.)	1	20.7	20.7
Total Cost (assumed in 1992) US \$000's			493.3
Cost discounted to 1991 (\$000)			448.5
Benefit/Cost ratio considering loss reduct	tion bene	fits only	1.2

(b) Reliability benefits

System load in MW (at 1991 level) benefiting by increased reliability4.873Annual load, MWh (1991) of section with reliability improvement42688

	Estimated Sensitivity for variations in % units saved Values and cost of saved energy					
Estimated outages saved as % of annual energy	1.5	1.5	1	1	0.5	0.5
Estimated outages saved 1991 loads (MWH)	640	640	427	427	213	213
PW factor for reliability benefits '93-08 (MFrb*)	10.4	10.4	10.4	10.4	10.4	10.4
PW outages saved 1993 to 2008 MWH	6659	6659	4440	4440	2220	2220
Value of reliability benefits:						
Value saved outages - multiple of energy cost	8	5	5	3	3	2
PW reliability benefits \$ 000's	5327	3330	2220	1332	666	444
TOTAL BENEFITS (loss redn & reliabi.) \$000's	5776	3778	2668	1780	1114	892
Benefit / Cost ratio (loss reduction & reliability benefits)	14.0	9.6	7.1	5.1	3.7	3.2

* Note: MFrb - Provides the muntiplying factor for PW of benefits discounted to 1991 extended over a given period from 1993 (taking into account the load growth effects (see annex B)

.

-196-

-

PROPOSED GRID SUBSTATION 30 MVA	AT TANGA C	EMENT FA	CTORY		т	ABLE E 2.1	
ESTIMATED LOAD DISTRIBUTION							
Period		'90-'93	'93-'95	'95-'9 7	'97-'00	'00-'02	' 02-'0 5
Estimated load growth pu. for feeders		0.07	0.07	0.07	0.07	0.07	0.07
Estimated load growth pu. for cement fac.		0.7	0.015	0.015	0.015	0	0
YEAR	1990	1993	1995	1997	2000	2002	2005
Cement Factory load MW	10.000	17.000	17.514	18.043	18.589	18.589	18.589
Moa feeder MW	1.000	1.145	1.311	1.501	1.838	2.105	2.579
Bushiri feeder MW	1.000	1.225	1.403	1.606	1.967	2.252	2.759
Total load MW	12.000	19.370	20.227	21.150	22.394	22.946	23.926

CAPITAL WORKS (costs in \$ 000's)

CAPITAL WORKS (COSIS IN \$ 000 S)					
	Unit	Qty	Rate	Cost	
132/33 kV transformer 30 MVA	nos		1	450	450
132 kV incommer	nos		1 '	220	220
33 kV feeder CB units	nos		6	120	720
Substation structure & auxiliaries	item		1	100	100
TOTAL COST					1490

COMPUTATION OF BENEFITS

(a) LOSS REDUCTION BENEFITS	0.1 =Energy cost \$/kwh		0.35
	and loss load factors	0.35 For feeders 0.85 For cement fac.	

Original s	ystem losses	5 1993	Proposed	disystem losse	es 1990
Feeder	Amps	Losses kW	Feeder	Amps	Losses kW
K 1		52	K 1 /1		2
K 2		52	K 2 /1		2
Cement		490	K 1 /2		2
			K 2 /2		2
			Cement		10
Total loss			Total los	s	
	Cernent	490		Cement	10
	Feeders	104		Feeders	8
			kW	\$ 000's	

_

Loss reduction benefits 1993

	1993	1993	VALUE in \$	000`s	
	KW	KWH	1993	MF	Value'93-'06
Cement	480	1471680	147.168	7.04	1036.063
Feeders	96	714816	71.482	20.74	1482.528
TOTAL	576	2186496	218.650		2518.591

Value of loss redn. benefits 1993 - 2003

(b) RELIABILITY BENEFITS

Sections with enhanced reliability Period		'90-'93	'93-'95	'95-'97	'97-'00	'00-'02	'02-'05
Estimated load growth pu. for feeders		0.07	0.07	0.07	0.07	0.07	02-03
Estimated load growth pu. for cement fac.		0.7					0.07
Estimated load growth pu. for Tanga & ass.		0.04		0.04	0.04	-	
YEAR	1990	1993	1995	1997	2000	2002	2005
Cement Factory load MW	10.000	17.000	17.514	18.043	18.589	18.589	18.589
Moa feeder MW	1.000	1.145	1.311	1.501	1.838		
Bushiri feeder MW	1.000	1.225	1.403	1.606	1.967	2,252	2.759
Tanga city and K1 K2 loads	7.000	7.874	8.857	9.963	11.207	12.607	14.181
Total load MW	10.000	07.044	~~ ~~ .				
Overall load growth p.a.	19.000				33.601	35.552	
Energy cement fac. (85%lf) MWH	74400	12.63		2.25	2.57		
Energy other loads (65%lf) MWH	74460			134350	138410		138410
Total energy MWH	51246			74419	85483		111137
	125706			208768			249547
Overall load growth p.a.		13.58	1.99	2.05	2.34	1.61	2.00
Est. outages saved as % of annual energy		5	5	0			
Est. outages saved as % of annual energy Est. outages saved 1993 MWH		9246		3 5547	3 5547	1 1849	1 1849
PW fac. reliability benefits '93-06 at 2% gr.		7.15		7.15	7.15		7.15
PW outages saved 1993 to 2006 MWH		66106			39663		13221
Value of reliability benefits		00100	00100	39003	39663	13221	13221
Value saved outages - multiple of energy cost		5	1	5	1	5	1
PW reliability benefits \$ 000's		33053	6611	19832	3966	6611	1322
Total benefits (loss redn & reliabi.) \$000's		35571	9129	22350	6485	9129	3841
Benefit / Cost ratio		24	6	15	4	6	3

cb-Sah

Table E 2.2

~

COST BENEFIT ANALYSIS FOR NEW PRIMARY SUBSTATION AT SAHARE

Computation factors

1.1	= discount factor p.a.		
6	= % annual load growth	0.10 = Energy costs \$/K	WН
15	 analysis period 	0.75 = load factor	
1.124	= loss growth factor p.a	0.40 = loss load factor	

17.48 = P.W. factor (MFIr*) for loss reduction over analysis period indicated above

COMPUTATION OF BENEFITS:

(a) Loss reduction benefits

(a) Luss reduction benefits			
	199 1	1991	1993
	KW	MWH/yr.	MWH/yr.
Existing line losses	122	427	540
Losses after new development	92	322	407
Peak loss savings	30	105	133
Value of savings 1993-2008 in \$ 000's			232
Value of savings discounted to 1991 (\$000)			192
COST OF CAPITAL WORKS in \$ 000's			
	Qty.	rate	Cost
33 kV line 100 mmsq.	1	22.8	22.8
Substation Costs:			
Transformer 5 MVA 33/11 kV	1	170.1	170.1
33 kV circuit breaker and bay	1	123.0	123.0
11 kV circuit breaker and bay	4	49.2	196.8
11 KV line additions (100mmsq.)	1	20.7	20.7
Total Cost (assumed in 1992) US \$0005	s		533.4
Cost discounted to 1991 (\$000)			484.9
Benefit/Cost ratio considering loss reduc	ction bene	fits only	0.4

(b) Reliability benefits

System load in MW (at 1991 level) benefiting by increased reliability4.6Annual load, MWh (1991) of section with reliability improvement40297

	Estimated Values	Sensitivity for variations in % units saved and cost of saved energy				
Estimated outages saved as % of annual energy	1.5	1.5	1	1	0.5	0.5
Estimated outages saved 1991 loads (MWH)	604	604	403	403	201	201
PW factor for reliability benefits '93-08 (MFrb*)	10.4	10.4	10.4	10.4	10.4	10.4
PW outages saved 1993 to 2008 MWH	6286	6286	4191	4191	2095	2095
Value of reliability benefits:						
Value saved outages - multiple of energy cost	8	5	5	3	3	2
PW reliability benefits \$ 000's	5029	3143	2095	1257	629	419
TOTAL BENEFITS (loss redn & reliability) \$000's	5514	3628	2580	1742	1114	904
Benefit / Cost ratio (loss reduction & reliability benefits)	11.8	7.9	5.7	4.0	2.7	2.3

* Note: See Annex D for determination of multiplying factors to obtain PW of benefits over a future time period (given a constant annual load growth) MFIr - represents the factor for loss reduction benefits and MFrb - represents the factor for reliability benefits CB-Luso 1

Table **E** 2.32

COST BENEFIT ANALYSIS FOR TRANSFER OF ZELEVA-BUMBUL LOADS TO 33 kV BY CONVERTING AND REHAB. OF EXISTING CU 25 LINES TO 33 kV

4 = %load growth 15 = analysis period 1.082 = loss gr.fac. pa 13.36 = P.W. factor for		0.35 =	Energy costs loss load fac discount facto of analysis	tor
COMPUTATION OF BENEFITS:		-		
33 kV system losses Existing line losses Proposed system line losses loss savings Value of savings 1993-2008 in \$ 000's Value of savings discounted to 1990	1990 KW 251 184 67	1990 KWH/yr. 769566 564144 205422	713822	
COST OF CAPITAL WORKS in \$ 000's			201	
convertion and rehab of line construction of new line Conversion of distribution stations		Qty. 45 12	rate 14 18	Cost 630.0 216.0
300 KVA trans. 200 KVA trans.		1	10.5 9.2	10.5 9.2
150 KVA trans. 100 KVA trans. 50 KVA trans.		3 3 2 1	8.4 7.8 5.8	25.2 23.4 11.6
25 KVA trans. 10 KVA trans	Т	1 7 otal cost	5 2	5.0 14.0 944.9
Cost saving due to deferment of augumt. of Cost saving due to avoiding of rehab. dist : Cost saving due to avoiding of rehab. line Economic costs (assumed incurred in 1992) Economic costs discounted to 1990	stn(20%ne (@8 k\$/ki	w)		100.0 189.0 360.0 295.9 244.6
		to constant		• •

Benefit/Cost ratio

1.1

COST BENEFIT ANNALYSIS FOR ERRECTION OF A 2.5 MVA PRIMARRY SS AT KWAMNDOLWA FOR LOSS REDUCTION OF THE KOROGWE NORTH FEEDER					
3 = %load growth		0.1 =	Energy cost	s \$/KWH	
15 = analysis period			loss load fac		
1.061 = loss gr.fac. pa			discount fac		
11.79 = P.W. factor for				F	
COMPUTATION OF BENEFITS:					
	1990	1990	1993		
	ĸw	KWH/yr.	KWH/yr.		
Existing line losses	41	125706	150100		
Losses after new dev.	8	24528	29288		
loss savings	33	101178	120812		
Value of savings 1993-2008 in \$ 000's			142		
Value of savings discounted to 1990			107		
COST OF CAPITAL WORKS in \$ 000's					
		Qty.	rate	Cost	
Conversion of 33 kV line (km)		6.2	23	142.6	
Substation Costs:					
Transformer 2.5 MVA 33/11 kV		. 1	125	125.0	
33 kV OCB		1	18	18.0	
11 kV OCB		1	10	10.0	
	T	otal Cost US	\$000's	295.6	
Cost savings by deferment of aug. of Kord	ogwe SS			150.0	
Economic costs (assumed incurred in 199	91)			145.6	
Economic costs discounted to 1990				132.4	
	В	enefit/Cost	ratio	0.8	

Note: In addition to the loss reduction benefits there are reliability benefits which are not accounted for.

cb-korn1

Table E.2.4.1

cb-korn3

COST BENEFIT ANALYSIS FOR CONVERTION OF KOROGWE NORTH FEEDER TO 33 kV (B) Converting and rehab. the existing line CU 25 to 33 kV.

3 = %load growth	0.1 = Energy costs /KWH
15 = analysis period	0.35 = loss load factor
1.061 = loss gr.fac. pa.	1.1 = discount factor pa.
11.79 = P.W. factor for loss redn.	over period of analysis

COMPUTATION OF BENEFITS:

	1990	1990	1993
	KW	KWH/yr.	KWH/yr.
Existing line losses	39	119574	142778
Proposed line losses	4	12264	14644
Back loss savings	35	107310	128134
Value of savings 1993-2008 in \$ 000's			151
Value of savings discounted to 1990			113

COST OF CAPITAL WORKS in \$ 000's

	Qty.	rate	Cost
conversion and rehab of line	32.5	14	455.0
Convertion of distribution stations			
300 KVA trans.	1	10.5	10.5
200 KVA trans.	1	9.2	9.2
150 KVA trans.	2	8.4	16.8
100 KVA irans.	2	7.8	15.6
50 KVA trans.	7	5.8	40.6
25 KVA trans.	3	5	15.0
	Total cost		562.7
Cost saving due to deferment of augumt. of 33/11	kV SS		100.0
Cost saving due to avoiding of rehab. dist stn(20%	new)		112.5
Cost saving due to avoiding of rehab. line (@8 k\$	/km)		. 260.0
Economic cost (assumed incurred in 1992)			90.2
Economic costs discounted to 1990			74.5

Benefit/Cost ratio

1.5

:

Table - E.2.4.3

COST BENEFIT ANNALYSIS FOR CONVERTION OF KOROGWE NORTH FEEDER TO 33 kV (B) Constructing a new line with 100 mmsq. ACSR

3 = %load growth	0.1 = Energy costs \$/KWH
15 = analysis period	0.35 = loss load factor
1.061 = loss gr.fac. pa.	1.1 = discount factor pa.
11.79 = P.W. factor for loss redn	. over period of analysis

COMPUTATION OF BENEFITS:

Com offenor of Denterno.				
	1990	1990	1993	
	KW	KWH/yr.	KWH/yr.	
Existing line losses	39	119574	142778	
Proposed line losses	2	6132	7322	
loss savings	37	113442	135456	
Value of savings 1993-2008 in \$ 000's			160	
Value of savings discounted to 1990			120	
COST OF CAPITAL WORKS in \$ 000's				
		Qty.	rate	Cost
Constructing of line (km)		32.5	23	747.5
Conversion of distribution stations				
300 KVA trans.		1	10.5	10.5
200 KVA trans.		1	9.2	9.2
150 KVA trans.		.2	8.4	16.8
100 KVA trans.		2	7.8	15.6
50 KVA trans.		7	5.8	40.6
25 KVA trans.		3	5	15.0
	T	otal cost		855.2
Cost saving due to deferment of augumt.	of 33/11	kV SS		100.0
Cost saving due to avoiding rehab ofline 32.5 km @8k\$				
Cost saving due to avoiding rehab of dist.t/f (20%new)				
Economic costs (assumed incurred in 199	2)			324.2
Economic costs discounted to 1990				267.9

Benefit/Cost ratio 0.4

cb-korw1

Table E 2.5,1

COST BENEFIT ANNALYSIS FOR CONVERTION OF KOROGWE WEST FEEDER TO 33 kV (A) Converting and rehab. the existing line CU 25 to 33 kV.

3 = %load growth	0.1 = Energy costs \$/KWH
15 = analysis period	0.35 = loss load factor
1.061 = loss gr.fac. pa.	1.1 = discount factor pa.
11.79 = P.W. factor for loss redn.	over period of analysis

COMPUTATION OF BENEFITS:

- -	1990	1990	1993	
	КW	KWH/yr.	KWH/yr.	
Existing line losses	41	125706	150100	
Proposed line losses	3.5	10731	12813	
loss savings	37.5	114975	137286	
Value of savings 1993-2008 in \$ 000's			162	
Value of savings discounted to 1990			122	
COST OF CAPITAL WORKS in \$ 000's				
		Qty.	rate	Cost
Constructing of line (km)		25	14	350.0
Conversion of distribution stations				
500 KVA trans.		1	12	12.0
300 KVA trans.		1	10.5	10.5
200 KVA trans.		1	9.2	9.2
100 KVA trans.		2	7.8	15.6
50 KVA trans.		1	5.8	5.8
25 KVA trans.		1	5	5.0
	Т	otal cost		408.1
Cost saving due to deferment of augumt.	of 33/11	kV SS		100.0
Cost saving due to avoiding rehab of line	25 km @	8k\$		200.0
Economic costs (assumed incurred in 199	92)			108.1
Economic costs discounted to 1990				89.3

Benefit/Cost ratio 1.4

cb-korn2

Table E.2.5.2

COST BENEFIT ANNALYSIS FOR CONVERTION OF KOROGWE WEST FEEDER TO 33 kV (B) Constructing a new line with 100 mmsq. ACSR

3 = %load growth	0.1 = Energy costs \$/KWH
15 = analysis period	0.35 = loss load factor
1.061 = loss gr.fac. pa.	1.1 = discount factor pa.
11.79 = P.W. factor for loss redn.	. over period of analysis

COMPUTATION OF BENEFITS:

Som of thore beller no.				
	1990	1990	1993	
	KW	KWH/yr.	KWH/yr.	
Existing line losses	41	125706	150100	
Proposed line losses	1	3066	3661	
loss savings	40	122640	146439	
Value of savings 1993-2008 in \$ 000's			173	
Value of savings discounted to 1990			130	
COST OF CAPITAL WORKS in \$ 000's				
		Qty.	rate	Cost
Constructing of line (km)		25	23	575.0
Conversion of distribution stations				
500 KVA trans.		1	12	12.0
300 KVA trans.		1	10.5	10.5
200 KVA trans.		1	9.2	9.2
100 KVA trans.		2	7.8	15.6
50 KVA trans.		1	5.8	5.8
25 KVA trans.		1	5	5.0
	T	otal cost		633.1
Cost saving due to deferment of augumt.	of 33/11	kV SS		100.0
Cost saving due to avoiding rehab of line 2	25 km @	8k\$		200.0
Economic costs (assumed incurred in 199	2)			333.1
Economic costs discounted to 1990				275.3

cb-kibar

Table E. 2.6

COST BENEFIT ANNALYSIS FOR ERRECTION OF A 2.5 MVA PRIMARRY SS AT KIBARANGA

3 = %load growth	0.1 = Energy costs \$/KWH
15 = analysis period	0.35 = loss load factor
1.061 = loss gr.fac. pa.	1.1 = discount factor pa.
11.79 = P.W. factor for loss redn	. over period of analysis

COMPUTATION OF BENEFITS:

	1990	1990	1993	··· #
	KW	KWH/yr.	KWH/yr.	
Existing line losses	209	640794	765142	
Losses after new dev.	65	199290	23796 3	
loss savings	144	441504	527179	
Value of savings 1993-2008 in \$ 000's			621	
Value of savings discounted to 1990			467	
COST OF CAPITAL WORKS in \$ 000's				
		Qty.	rate	Cost
Substation Costs:		-		
Transformer 2.5 MVA 33/11 kV		1	125	125.0
33 kV OCB		1	50	50.0
11 kV OCB		1	20	20.0
		Total Cost US	\$ \$000's	195.0
Cost savings by deferment of aug. of Mazi	nde SS			100.0
Economic costs (assumed incurred in 199	1)			95.0
Economic costs discounted to 1990				86.4
		Benefit/Cost	ratio	5.4

-

-

_ ··

•

		-206-		
cb-Majen			T	able E 3.1
COST BENEFIT ANNALYSIS FOR ESTABLISH AT MOSHI TOWN	HING A 33/	11 kV SUBATA	tion at maji	ENGO
7 = %load growt 15 = analysis perio 1.145 = loss gr.fac. p 1.07 = load gr.fac. p Present worth factors over period of analysi 20.15 = for loss redn.	od pa s:	0.35 = 0.55 = 1.1 =	= Energy costs = loss load fac = load factor = discount facto = for reliability	tor pr pa.
	•	12.40 -		inipi.
COST OF CAPITAL WORKS in \$ 000's Const. of 33 kV line 100 mmsq. (km)		Qty. 5	rate 23	Cost 115.0
Substation Costs:		5	25	115.0
Transformer 5 MVA 33/11 kV		1	170	170.0
33 kV bays 11 kV bays		2 4	120 55	240.0 220.0
		Total Cost US \$		745.0
PW of postponement of augn. of existing su Economic costs (assumed incurred in 1991) Economic costs discounted to 1990	ubstations			150.0 595.0 540.9
COMPUTATION OF BENEFITS:				
Loss reduction benefits Existing line losses Losses after new dev. Loss savings Value of savings 1993-2008 in \$ 000's Value of savings discounted to 1990 Benifit / Cost ratio for loss red/n benefits o	nly	1990 KW 124 47 77	1990 KWH/yr. 380184 144102 236082	1993 KWH/yr. 570554 216258 354295 714 536 1.0
Reliability benefits		1990	1990	1993
feeder sections with enhanced reliability M 3 from T/school Town F from Boma Total loads with enhanced reli	iability	KW 2429 1458	MWH/yr. 11703 7025	MWH/yr. 14337 8605 22942
	Estimated Values		t & est. saving	
Estimated energy saved (%) Value in (pu. of en.cost)	1.5 5	1.5	1 5	<u>1</u>
Value of sav. energy \$ 000's	2142	857	1428	571
Savings discounted to 1990	1609	644	1073	429
Total savings \$ 000's	2146	1180	1609	965
Benefit / Cast ratio	4.0	2.2	3.0	1.8

cb-Makomb.

•

Table E 3.2

COST BENEFIT ANNALYSIS FOR CONVERTION OF MAKOMBONE FEEDER TO 33 kV

3 = %load growth 15 = analysis period 1.061 = loss gr.fac. pa	i	0.35 =	Energy cost loss load fac discount fac	tor
11.79 = P.W. factor for	loss red	n. over period	l of analysis	·
COMPUTATION OF BENEFITS:				
CONFUTATION OF BEINEFITS.	1990	1990	1993	
m , , , , , , ,	KW	KWH/yr.	•	
Existing line losses	41			
Proposed line losses	3.5	10731	12813	
Peak loss savings	37.5	114975	137286	
Value of savings 1993-2008 in \$ 000's			162	
Value of savings discounted to 1990			122	
COST OF CAPITAL WORKS in \$ 000's				
		Qty.	rate	Cost
Constructing of line (km)		18	14	252.0
Convertion of distribution stations				
200 KVA trans.		1	9.2	9.2
100 KVA trans.		2	7.8	15.6
50 KVA trans.		6	5.8	34.8
25 KVA trans.		10	5	50.0
	7	otal cost	•	361.6
Cost saving due to deferment of augumt.				100.0
				144.0
Cost saving due to avoiding rehab of line		rvu .		
Economic costs (assumed incurred in 199	92)			117.6
Economic costs discounted to 1990				97.2
	-			

Benefit/Cost ratio 1.3

cb-Maran

Table E 3.3

COST BENEFIT ANALYSIS OF CONSTRUCTING A 66 kV LINE AND 66/33 kV SUBSTATION AT MARANGU

3 = %load grow 15 = analysis per 1.061 = loss gr.fac. 1.03 = load gr.fac. Present worth factors over period of ana 11.79 = for loss redn	iod pa. pa lysis:	0.35 0.55 1.1	= Energy cost = loss load fo = load factor = discount fac = for reliabilit	actor ctor pa.
COST OF CAPITAL WORKS in \$ 000's				c .
Construction of 66 kV line		Qty.	rate	Cost
with part recovered material		30	15	450.0
Construction of 66/33 substation				
33 kV breakers]	50	50.0
33 kV load break switches Costs (assumed incurred in 1991)		3	10	30.0 530.0
Economic costs discounted to 1990				481.8
COMPUTATION OF BENEFITS: Loss reduction benefits:		1990	1990	1993
		KW	KWH/yr.	KWH/yr.
Existing line losses		557	1707762	2039157
Proposed line losses		105	321930	384401
Loss savings		452	1385832	1654756
Value of savings 1993-2008 in \$ 000'.	5			1950 1465
Value of savings discounted to 1990 Benifit / Cost ratio for loss red/n benefits	only			3.0
	<i></i> ,			0.0
Reliability benefits		1990	1990	1993
 f 1		KW	MWH/yr.	MWH/yr.
feeder sections with enhanced reliability Loads on Boma and Majengo (new) SS		5186	24986	27303
Loads on new 66 kV line		2721	13110	14325
Total loads with enhanced r	eliability			41628
		c f	• .•	
	Estimated Values		or variations ost & est. sav	inas
Estimated energy saved (%)	1.5	1.5	1 c csi. suv	1
Value in (pu. of en.cost)	2	1.5	2	- 1
Value of sav. energy \$ 000's	1231	923	820	410
Savings discounted to 1990	925	693	616	308
Total savings \$ 000's	2390	2159	2082	1773
Benefit / Cost ratio	5.0	4.5	4.3	3.7

cb-Mon

Table E4.1

COST BENEFIT ANALYSIS FOR CONVERTION OF THE MONDULI LINE TO 33 kV OPERATION AND CONSTRUCTION OF A PRIMARY SUBSTATION AT MONDULI

Computation factors

1.1	= discount factor p.a.		
4	= % annual load growth	0.10	= Energy costs \$/KWH
15	= analysis period	0.50	= load factor
1.082	= loss growth factor p.e	0.30	= loss load factor

13.36 = P.W. factor (MFIr*) for loss reduction over analysis period indicated above

COMPUTATION OF BENEFITS:

(a) Loss reduction benefits

(a) Loss reduction denetits			
	1991	1991	1993
	KW	MWH/yr.	MWH/yr.
Existing line losses	119	313	366
Losses after new development	33	87	101
Peak loss savings	86	226	264
Value of savings 1993-2008 in \$ 000's			353
Value of savings discounted to 1991 (\$000)			292
COST OF CAPITAL WORKS in \$ 000's			
	Qty.	rate	Cost
33 kV line 100 mmsq. (initial section)	6	22.8	136.8
Substation Costs:			
Transformer 2.5 MVA 33/11 kV	1	170.1	170.1
33 kV circuit breaker and bay	1	55.4	55.4
11 kV circuit breaker and bay	4	24.6	98.4
11 KV line additions (100mmsq.)	0.5	20.7	10.4
Total Cost (assumed in 1992) US \$000	's		471.1
Cost discounted to 1991 (\$000)			428.2
Benefit/Cost ratio considering loss redu	iction bene	fits only	0.7

(b) Reliability benefits

System load in MW (at 1991 level) benefiting by increased reliability2.5Annual load, MWh (1991) of section with reliability improvement21901

	Estimated Values	Sensitivity for variations in % units saved and cost of saved energy				
Estimated outages saved as % of annual energy	1.5	1.5	1	1	0.5	0.5
Estimated outages saved 1991 loads (MWH)	329	329	219	219	110	110
PW factor for reliability benefits '93-08 (MFrb*)	10.4	10.4	10.4	10.4	10.4	10.4
PW outages saved 1993 to 2008 MWH	3416	3416	2278	2278	1139	1139
Value of reliability benefits:						
Value saved outages - multiple of energy cost	8	5	5	3	3	2
PW reliability benefits \$ 000's	2733	1708	1139	683	342	228
TOTAL BENEFITS (loss redn & reliability) \$000's	3161	2136	1567	1112	770	656
Benefit / Cost ratio (loss reduction & reliability benefits)	8.1	5.7	4.3	3.3	2.5	2.2

* Note: See Annex D for determination of multiplying factors to obtain PW of benefits over a future time period (given a constant annual load growth) MFir - represents the factor for loss reduction benefits and MFrb - represents the factor for reliability benefits cb-Magereza

Table E 4.2

-

COST BENEFIT ANALYSIS FOR NEW PRIMARY SUBSTATION AT MEGAREZA

Computation	factors
-------------	---------

1.1	= discount factor p.a.	
3	= % annual load growth	0.10 = Energy costs \$/KWH
15	= analysis period	0.75 = load factor
1.061	= loss growth factor p.e	0.40 = loss load factor

11.79 = P.W. factor (MFIr*) for loss reduction over analysis period indicated above

COMPUTATION OF BENEFITS:

(a) Loss reduction benefits

(a) Loss reduction denenits			
	1991	1991	1993
	KW	MWH/yr.	MWH/yr.
Existing line losses	77.4	271	305
Losses after new development	26.5	93	105
Peak loss savings	50.9	178	201
Value of savings 1993-2008 in \$ 000's			237
Value of savings discounted to 1991 (\$000)			196
COST OF CAPITAL WORKS in \$ 000's			
	Qty.	rate	Cost
33 kV line 100 mmsq.	. 1	22.8	22.8
Substation Costs:			
Transformer 2.5 MVA 33/11 kV	1	170.1	170.1
33 kV circuit breaker	1	55.4	55.4
11 kV circuit breaker	2	24.6	49.2
11 KV line additions (100mmsq.)	1	20.7	20.7
~			
Total Cost (assumed in 1992) US \$000	s		318.2
Cost discounted to 1991 (\$000)			289.3
		C 1	o 7
Benefit/Cost ratio considering loss reduce	ciion bene	nts only	0.7

(b) Reliability benefits

System load in MW (at 1991 level) benefiting by increased reliability	2.8
Annual load, MWh (1991) of section with reliability improvement	24529

	Estimated Values	Sensitivity for variations in % units saved and cost of saved energy					
Estimated outages saved as % of annual energy	1.5	1.5	1	1	0.5	0.5	
Estimated outages saved 1991 loads (MWH)	368	368	245	245	123	123	
PW factor for reliability benefits '93-08 (MFrb*)	10.4	10.4	10.4	10.4	10.4	10.4	
PW outages saved 1993 to 2008 MWH	3826	3826	2551	2551	1275	1275	
Value of reliability benefits:							
Value saved outages - multiple of energy cost	8	5	5	3	3	2	
PW reliability benefits \$ 000's	3061	1913	1275	765	383	255	
TOTAL BENEFITS (loss redn & reliability) \$000's	3350	2203	1565	1055	672	544	
Benefit / Cost ratio (loss reduction & reliability benefits)	12.3	8.3	6.1	4.3	3.0	2.6	

* Note: See Annex D for determination of multiplying factors to obtain PW of benefits over a future time period (given a constant annual load growth) MFIr - represents the factor for loss reduction benefits and MFrb - represents the factor for reliability benefits SUM-RR1

SUMMARY OF MV REHABILITATION & TRANSF. FOR LV REINFORCMENT

	M.V. REHABI Recondu	LITATION REC	QTS. Pole	MV LINE E 33 kV	EXTENSIONS A	and associat	TED TRANSFOR 33KV/LV Tra			ansformers b	DV KVA
REGION	100 mmsq	50 mmsq	Replace			50 mmsq			200/250		25to63
ARUSHA	10	1	606	б.4	11.8	2.1	1		1	8	1
MOSHI	21		171		3.8	2.7			8	4	
TANGA	1		77	5.0	13.1		2	2	4	. 2	5
DAR ES S	152		1281	5.0	24.0			10	40	20	
TOTAL Identif/d	184	1	2135	16.4	52.7	4.8	3	12	53	34	6
Project	200	10	2500	20	60	20	10	15	60	50	40
FOREIGN CC	DST										
Rate	12	10	0.22	21	18	13	9	5.5	9.3	6.5	4.4
Cost \$000 LOCAL COST	2400 T	100	550	420	1080	260	90	83	558	325	175
Rate	0.8	0.6	0.03	1	0.9	0.6	0.43	0.25	0.44	0.3	0.2
Cost \$000	160	6	5 75	20	54	12	4.3	3.8	26.4	15.0	8.0
TOT. COST	2560	106	625	440	1134	272	94	86	584	340	184
	TOTAL COST	S in \$ 000's	s:			MV RE	HABILITATION		TRANSF. AN	D LV REINFOR	CEMENT
		Works iden	tified above \$	\$000		Foreig 3050			•		l Total 3135
		S/Ph trans	sf. & LV lines						500	50	550
		Rehab. ma	terial for MVI	ines		1000	100	1100)		
		Rehab. ma	terial for Pr.	SS		1500	200	1700)		
		Total cost	in \$ 000's			5550	541	6091	3492	193	3685

-211-

Table E.5.1

SUM-RR2

SUMMARY FOR REHABILITATION AND REINFORCEMENT OF LV LINES

REGION	NEW LV EXTENSIO #100		ECOND. & REHA #100		REPLACE PH/ POLES	ASE ADDITION #100	# 50
Presently Identifie	ed Works in km:	948 •, #8 + ₁₄₉ #4 ₁₄₉				********	
ARUSHA	11.4		9.0	9.1	297		1
MOSHI	9.8			3,6	131		4
TANGA	18.3	12.2	25.8	2.7	667	13	18
DAR ES S	81.0		75.0	24.0	1000	10	12
TOTAL Identif/d	120.5	12.2	109.8	39.3	2095	23	35
Project	150.0	50.0	150.0	75.0	2500	30	50
FOREIGN COST Rate Cost \$000 LOCAL COST Rate Cost \$000	16 2400 0.8 120	12 600 0.6 30	10 1500 0.7 105	8 600 0.5 37.5	0.2 500 0.01 25	6 180 0.3 9	5 250 0.30 15.0
TOT. COST	2520	630	1605	638	525	189	265

TOTAL COST FOR LV REHAB & REINFORCEMENT IN \$ 000's:

	LV Reinforcement		Rehabilitation		
Works listed above \$ 000's	Foreign 3000	Local 150	Foreign 3030	Local 192	
Rehab, (only) of LV lines			500	25	
Rehab of trans. stns.			500	25	
TOTAL	3000	150	4030	242	

Т

REH-DAR

COST / BENEFIT ANALYSIS OF REHABILITATION OF MV AND LV SYSTEMS AT DAR ES SALLAM (based on outage savings)

	Estimated value for variables	Sensitivity	to changes i	n the value	of the variabl	es involved	
P.U OUTAGES AVOIDED	0.010	0.0075	0.0075	0.0075	0.005	0.003	
VALUE OF OUTAGES SAVED \$/KWH	1.00	1.00	0.75	0.75	0.75	0.75	
PERIOD OF ANALYSIS (years)	15	15	15	15	15	15	
GROWTH OF ENERGY SALES (PU)	0.09	0.09	0.045	0.045	0.045	0.045	
DISCOUNT FACTOR IN (PU)	0.10	0.10	0.10	0.10	0.10	0.10	
PRESENT VALUE FACTOR	14.08	14.08	10.73	10.73	10.73	10.73	
UNITS SOLD IN 1989 (GWH)	491.927	491.927	491.927	491.927	491.927	491.927	
Growth rate 1989-1994 (pa)	1.08	1.08	1.08	1.04	1.04	1.04	
Addl. increase due to syst. dev. (m.f.)	1.1	1.1	1.05	1.05	1.05	1.05	
EXPECTED SALES 1994 (GWH)	795.082	795.082	758.942	628.430	628.430	628.430	
Benefits and Costs in \$ '000 :		•					
P.V. OF OUTAGE SAVINGS	101785	83973	41659	34495	22997	13798	
COST OF REHABILITATION	5756	5756	5756	5756	5756	5756	
BENEFIT/COST RATIO	17.7	14.6	7.2	6.0	4.0	2.4	

NOTES:

1. The Rehabilitation costs are assumed to be incurred in 1993 and the benefits computed from 1994.

 The 1994 sales have been computed based on the growth rate indicated and a one time increase to account for the voltage improvement and removal of the capacity restriction (multiplying factor indicated in Table)

3. A number of associated benefits have been unaccounted for. These include:

(a) damage/burnout of equipment belonging to both the utility and the consumers

(b) avoided costs of 'breakdown maintenance'

4. All costs are in constant 1991 US \$. The PV is worked out for the investment year, 1993

REH-TAN

COST / BENEFIT ANALYSIS OF REHABILITATION OF MV AND LV SYSTEMS AT TANGA (based on outage savings)

	Estimated value for variables	Sensitivity	to changes	in the value	of the variab	les involved
P.U OUTAGES AVOIDED	0.010	0.0075	0.0075	0.0075	0.005	0.003
VALUE OF OUTAGES SAVED \$/KWH	1.00	1.00	0.75	0.75	0.75	0.75
PERIOD OF ANALYSIS (years)	15	15	15	15	15	15
GROWTH OF ENERGY SALES (PU)	0.09	0.09	0.045	0.045	0.045	0.045
DISCOUNT FACTOR IN (PU)	0.10	0.10	0.10	0.10	0.10	0.10
PRESENT VALUE FACTOR	14.08	14.08	10.73	10.73	10.73	10.73
UNITS SOLD IN 1989 (GWH)	95.284	95.284	95.284	95.284	95.284	95.284
Growth rate 1989-1994 (pa)	1.08	1.08	1.08	1.04	1.04	1.04
Addl. increase due to syst. dev.(N2)	1.1	1.1	1.05	1.05	1.05	1.05
EXPECTED SALES 1994 (GWH)	154.004	154.004	147.004	121.724	121.724	121.724
Benefits and Costs in \$ '000 :						
P.V. OF OUTAGE SAVINGS	19715	14787	8069	6682	4454	2673
COST OF REHABILITATION	2081	2081	2081	2081	2081	2081
BENEFIT/COST RATIO	9.5	7.1	3.9	3.2	2.1	1.3

NOTES:

- 1. The Rehabilitation costs are assumed to be incurred in 1993 and the benefits computed from 1994.
- The 1994 sales have been computed based on the growth rate indicated and a one time increase to account for the voltage improvement and removal of the capacity restriction (multiplying factor indicated in Table)
- 3. A number of associated benefits have been unaccounted for. These include:
 - (a) damage/burnout of equipment belonging to both the utility and the consumers
 - (b) avoided costs of 'breakdown maintenance'
- 4. All costs are in constant 1991 US \$. The PV is worked out for the investment year, 1993

REHIMOS

COST / BENEFIT ANALYSIS OF REHABILITATION OF MV AND LV SYSTEMS AT MOSHI (based on outage savings)

Estimated value Sensitivity to changes in the value of the variables							
P.U OUTAGES AVOIDED	0.010	0.0075	0.0075	0.0075	0.005	0.003	
VALUE OF OUTAGES SAVED \$/KWH	1.00	1.00	0.75	0.75	0.75	0.75	
PERIOD OF ANALYSIS (years)	15	15	15	15	15	15	
GROWTH OF ENERGY SALES (PU)	0.09	0.09	0.045	0.045	0.045	0.045	
DISCOUNT FACTOR IN (PU)	0.10	0.10	0.10	0.10	0.10	0.10	
PRESENT VALUE FACTOR	14.08	14.08	10.73	10.73	10.73	10.73	
UNITS SOLD IN 1989 (GWH)	64.76	64.76	64.76	64.76	64.76	64.76	
Growth rate 1989-1994 (pa)	1.08	1.08	1.08	1.04	1.04	1.04	
Addl. increase due to syst. dev. (m.t	F 1.1	1.1	1.05	1.05	1.05	1.05	
EXPECTED SALES 1994 (GWH)	104.669	104.669	99.911	82.730	82.730	82.730	
Benefits and Costs in \$ '000 :							
P.V. OF OUTAGE SAVINGS	13400	10050	5484	4541	3027	1816	
COST OF REHABILITATION	1703	1703	1703	1703	1703	1703	
BENEFIT/COST RATIO	7.9	5.9	3.2	2.7	1.8	1.1	

NOTES:

1. The Rehabilitation costs are assumed to be incurred in 1993 and the benefits computed from 1994.

 The 1994 sales have been computed based on the growth rate indicated and a one time increase to account for the voltage improvement and removal of the capacity restriction (multiplying factor indicated in Table)

3. A number of associated benefits have been unaccounted for. These include:

- (a) damage/burnout of equipment belonging to both the utility and the consumers
- (b) avoided costs of 'breakdown maintenance'

4. All costs are in constant 1991 US \$. The PV is worked out for the investment year, 1993

REH-ARU

COST / BENEFIT ANALYSIS OF REHABILITATION WORKS - MV AND LV SYSTEMS AT ARUSHA (based on outage savings)

	Estimated value for variables	Sensitivity	to changes ir	n the value c	f the variable	es involved
P.U OUTAGES AVOIDED	0.010	0.0075	0.0075	0.0075	0.005	0.003
VALUE OF OUTAGES SAVED \$/KWH	1.00	1.00	0.75	0.75	0.75	0.75
PERIOD OF ANALYSIS (years)	15	15	15	15	15	15
GROWTH OF ENERGY SALES (PU)	0.09	0.09	0.045	0.045	0.045	0.045
DISCOUNT FACTOR IN (PU)	0.10	0.10	0.10	0.10	0.10	0.10
PRESENT VALUE FACTOR	14.08	14.08	10.73	10.73	10.73	10.73
Computation of Expected Sales in 19	994:					
Units sold in 1989 (GWH)	70.114	70.114	70.114	70.114	70.114	70.114
Growth rate 1989-1994 (pa)	1.08	1.08	1.08	1.04	1.04	1.04
Addl. increase due to syst. dev. (N2)	1.1	1.1	1.05	1.05	1.05	1.05
EXPECTED SALES 1994 (GWH)	113.323	113.323	108.171	89.570	89.570	89.570
Benefits and Costs in \$ '000 :						
P.V. OF OUTAGE SAVINGS	14507	10881	5938	4917	3278	1967
COST OF REHABILITATION	1858	1858	1858	1858	1858	1858
BENEFIT/COST RATIO	7.8	5.9	3.2	2.6	1.8	1.1

NOTES:

- 1. The Rehabilitation costs are assumed to be incurred in 1993 and the benefits computed from 1994.
- The 1994 sales have been computed based on the growth rate indicated and a one time increase to account for the voltage improvement and removal of the capacity restriction (multiplying factor indicated in Table)
- 3. A number of associated benefits have been unaccounted for. These include:
 - (a) damage/burnout of equipment belonging to both the utility and the consumers
 - (b) avoided costs of 'breakdown maintenance'
- 4. All costs are in constant 1991 US \$. The PV is worked out for the investment year, 1993

ECONOMIC EVALUATION OF NETWORK EXPANSION

CBE-MAJENGO

NAME OF SCHEME: MAJENGO AREA

INVESTMENT DETAILS FOR FINAL SYSTEM

	11 KV LINES		TRANSFO	RMERS	L V LINES			
	#100	#50	100	200 KVA	315 KVA	#100	#50	
QUANTITY	0	0	0	2	· 0	0.9	0	
RATE \$ 000	18.9	13.6	7.0	7.5	8.5	16.8	12.6	
COST	0.0	0.0	0.0	15.0	0.0	15.1	0.0	

COST OF NETWORK EXPANSION

	TOTAL	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003 TO END
INVESTMENT COST	30	12	0	9	0	9							
PU OF TOTAL		0.4		0.3		0.3							
OP & MAINT. (2%pa)		0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0,6	0.6	6.6
TOTAL COST		12.7	0.6	9.6	0.6	9.6	0.6	0.6	0.6	0.6	0,6	0.6	6.6
PV OF COST	29	11.5	0.5	7.2	0.4	6.0	0.3	0.3	0.3	0.3	0.2	0.2	2.1

0.5 = AREA OF SUPPLY IN km sq

500 = LOAD DENSITY IN KW/km sq 250 = EXPECTED FINAL LOAD IN KW

VALUE OF BENEFITS

LOAD (PU) OF FINAL		0.2	0.4	0.5	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.925	
LOAD IN KW		50	100	125	150	162.5	175	187.5	200	212.5	225	231.25	2543.7
LOAD FACTOR		0.33	0.33	0.33	0.33	0.35	0.35	0.35	0.4	0.4	0.4	0.4	0.45
LOAD IN MWH		144.5	289.1	361.4	433.6	498.2	536.6	574.9	700.8	744.6	788,4	810.3	10027.5
VALUE OF SALES		14.5	28.9	36.1	43.4	49.8	53.7	57.5	70.1	74.5	78.8	81.0	1002.7
UPSTREAM COSTS		11.6	23.1	28.9	34.7	39.9	42.9	46.0	56.1	59.6	63.1	64.8	802.2
VALUE OF BENEFITS		2.9	5.8	7.2	8.7	10.0	10.7	11.5	14.0	14.9	15.8	16.2	200.5
PV OF BENEFITS	125	2.6	4.8	5.4	5.9	6.2	6.1	5.9	6.5	6.3	6.1	5.7	63.9
B/C PATIO	4.3												

NOTES:

.

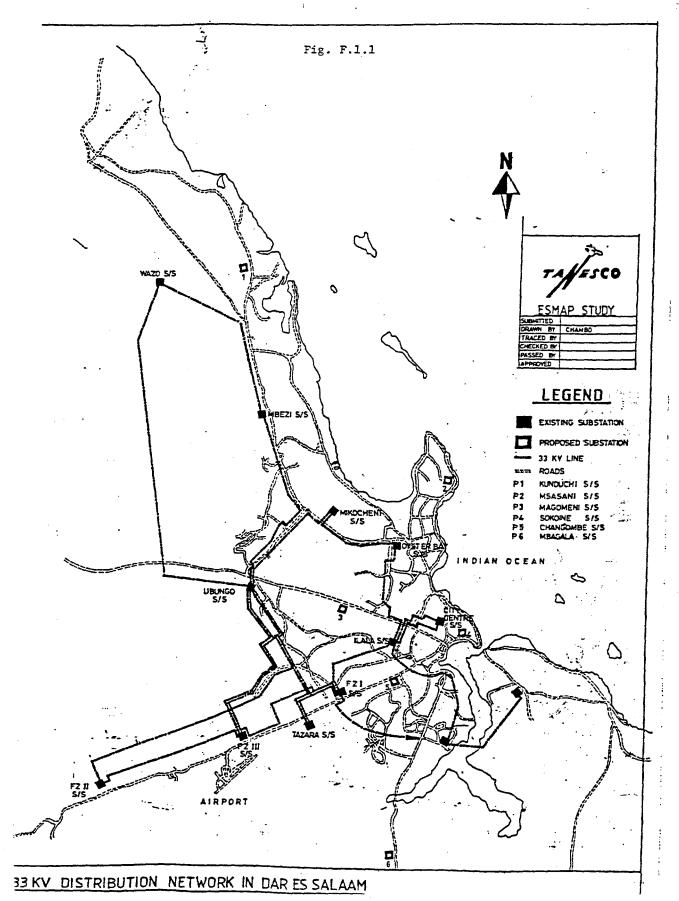
0.1 VALUE OF SALES IN \$ 0.08 UPSTREAM COSTS IN \$

ð

REGION 100MMSQ 50 MMSQ 100MMSQ 50 MMSQ 50 / 100 100/200 50 / 100 100/200 <		I 11 kV LIN	MEDIUM VOLT. IES	AGE LINES 33 kV LIN	IES		MV/LV TRANSFORMER STATIONS kV/LV TRANSF. 33 kV/LV			LV NETWORK 7 TRANSF. CONDUCTOR						
MOSHI & MWANCA 5.1 0.5 0.6 6 6 2 1 20.6 TANGA 7.4 1.7 45 4 2 3 1 22.7 DAR ES S 50.1 1.6 89 60 4 103.7 127.4 TOTAL WORK: Identif/d: 70 6 47 1 103 71 14 2 162 136 Project 80 15 60 10 110 80 20 10 20.0 150 FOREIGN COST Rate 18 13 21 16 5 7 5.5 9 16 12 LOCAL COST Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 1890 TOTAL COST 500 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 1890 </th <th>REGION</th> <th>100MMSQ</th> <th>50 MMSQ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	REGION	100MMSQ	50 MMSQ													
MWANGA 5.1 0.5 0.6 6 6 2 1 20.6 TANGA 7.4 1.7 45 4 2 3 1 22.7 DAR ES S 50.1 1.6 89 60 4 103.7 127.4 TOTAL WORK: Identif/d: 70 6 47 1 103 71 14 2 162 136 FOREIGN COST Rote 18 13 21 16 5 7 5.5 9 16 12 Cost \$000 1440 195 1260 160 550 560 110 90 3200 1800 LOCAL COST Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 0.6 TOTAL COST TOR NETWORK EXPANSION Foreign Local Total TOTAL COST FOR NETWORK EXPANSION Foreign Local Total TOTAL COST FOR NETWORK EXPANSION Foreign <td>ARUSHA</td> <td>7.8</td> <td>4.7</td> <td></td> <td></td> <td>4</td> <td>3</td> <td>5</td> <td></td> <td>15.3</td> <td>8.4</td> <td></td>	ARUSHA	7.8	4.7			4	3	5		15.3	8.4					
TANGA 7.4 1.7 45 4 2 3 1 22.7 DAR ES S 50.1 1.6 89 60 4 103.7 127.4 TOTAL WORK: Identif/d: 70 6 47 1 103 71 14 2 162 136 Project 80 15 60 10 110 80 20 10 200 150 FOREIGN COST Rate 18 13 21 16 5 7 5.5 9 16 12 Cost \$000 1440 195 1260 160 550 560 110 90 3200 1800 LOCAL COST Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 TOTAL COST FOR NETWORK EXPANSION Foreign Local Total 104 3360 1890																
DAR ES S 50.1 1.6 89 60 4 103.7 127.4 TOTAL WORK: Identif/d: 70 6 47 1 103 71 14 2 162 136 Project 80 15 60 10 110 80 20 10 200 150 FOREIGN COST Rate 18 13 21 16 5 7 5.5 9 16 12 Cost \$000 1440 195 1260 160 550 560 110 90 3200 1800 LOCAL COST Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 TOTAL COST 1512 204 1320 170 578 588 115 94 3360 1890 TOTAL COST FOR NETWORK EXPANSION Foreign Local Total Total 150 150 15	MWANGA	5.1		0.5	0.6	б	б	2	1	20.6						
TOTAL WORK: Identif/d: 70 6 47 1 103 71 14 2 162 136 Project 80 15 60 10 110 80 20 10 200 150 FOREIGN COST Rate 18 13 21 16 5 7 5.5 9 16 12 Cost \$000 1440 195 1260 160 550 560 110 90 3200 1800 LOCAL COST Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 TOT. COST 1512 204 1320 170 578 588 115 94 3360 1890 MV LINES Foreign Local Total	TANGA	7.4	1.7	45		4	2	3	1	22.7						
Identif/d:70647110371142162136Project80156010110802010200150FOREIGN COST Rate18132116575.591612Cost \$000144019512601605505601109032001800LOCAL COST0.90.6110.250.350.250.430.80.6Cost \$00072.09.060.010.027.528.05.04.3160.090.0TOT. COST151220413201705785881159433601890TOTAL COST FOR NETWORKEXPANSIONForeignLocalTotalTotalW LINES30551513206	DAR ES S	50.1		1.6		89	60	4		103.7	127.4					
Project 80 15 60 10 110 80 20 10 200 150 FOREIGN COST Rate 18 13 21 16 5 7 5.5 9 16 12 Cost \$000 1440 195 1260 160 550 560 110 90 3200 1800 LOCAL COST Rote 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 170 27.5 28.0 5.0 4.3 160.0 90.0 TOT. COST 1512 204 1320 170 578 588 115 94 3360 1890 TOTAL COST FOR NETWORK EXPANSION Foreign Local Total Total KUINES 3055 151 3206 KUINE KUINE 151 151 KUINE 151 151 151 151 150 KUINE 151 150 150 151 150 150 150 150 150 15			б		1	103		14		162	136					
FOREIGN COST Rate 18 13 21 16 5 7 5.5 9 16 12 Cost \$000 1440 195 1260 160 550 560 110 90 3200 1800 LOCAL COST Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 TOT. COST 1512 204 1320 170 578 588 115 94 3360 1890 TOTAL COST FOR NETWORK EXPANSION Foreign Local Total MV LINES 3055 151 3206	·											1				
Rate 18 13 21 16 5 7 5.5 9 16 12 Cost \$000 1440 195 1260 160 550 560 110 90 3200 1800 LOCAL COST Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 TOT. COST 1512 204 1320 170 578 588 115 94 3360 1890 TOTAL COST FOR NETWORK EXPANSION Foreign Local Total Total Total	Project	80	15	60	10	110	80	20	10	200	150					
Cost \$000 1440 195 1260 160 550 560 110 90 3200 1800 LOCAL COST Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 TOT. COST 1512 204 1320 170 578 588 115 94 3360 1890 TOTAL COST FOR NETWORK EXPANSION KUINES Foreign Local Total MY LINES 3055 151 3206		т														
LOCAL COST Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 TOT. COST 1512 204 1320 170 578 588 115 94 3360 1890 TOTAL COST FOR NETWORK EXPANSION Foreign Local Total Total VINES 3055 151 3206 VINES																
Rate 0.9 0.6 1 1 0.25 0.35 0.25 0.43 0.8 0.6 Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 .4.3 160.0 90.0 TOT. COST 1512 204 1320 170 578 588 115 94 3360 1890 TOTAL COST FOR NETWORK EXPANSION Foreign Local Total Total V <th< td=""><td></td><td>1440</td><td>195</td><td>1260</td><td>160</td><td>550</td><td>560</td><td>110</td><td>90</td><td>3200</td><td>1800</td><td></td></th<>		1440	195	1260	160	550	560	110	90	3200	1800					
Cost \$000 72.0 9.0 60.0 10.0 27.5 28.0 5.0 4.3 160.0 90.0 TOT. COST 1512 204 1320 170 578 588 115 94 3360 1890 TOTAL COST FOR NETWORK EXPANSION Foreign Local Total Total V V MV LINES 3055 151 3206		0.9	0.6	1	1	0.25	0.35	0.25	0.43	0.8	0.6					
TOTAL COST FOR NETWORK EXPANSION Foreign Local Total MV LINES 3055 151 3206	Cost \$000	72.0	9.0	60.0	10.0											
MV LINES 3055 151 3206	TOT. COST	1512	204	1320	170	578	588	115	94	3360	1890					
	TOTAL COST F	FOR NETWOR	k expansion			Foreign	Local	Total								
TRANSF 1310 65 1375				MV LINES		3055	151	3206				۲				
				TRANSF.		1310	65	1375				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
LV LINES 5000 250 5250				LV LINES		5000	250	5250								
TOTAL 9365 466 9831				TOTAL		9365	466	9831				1				

TOTAL COSTS FOR NETWORK EXPANSION TO SUPPLY NEW DEVELOPING AREAS IN \$ 000'S

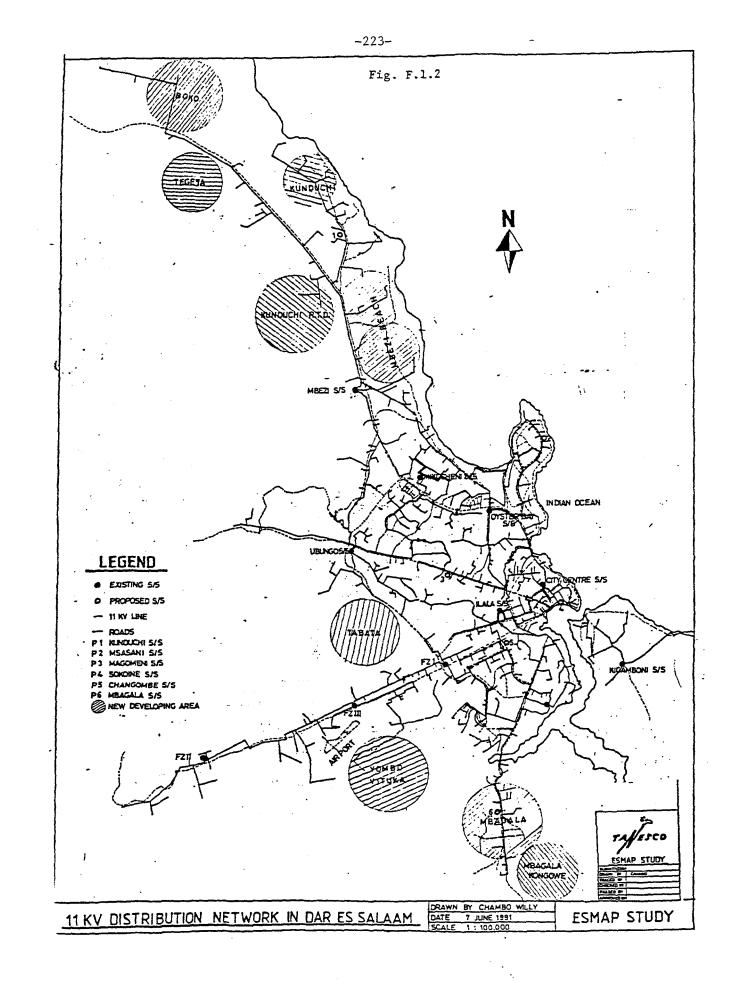
-218-

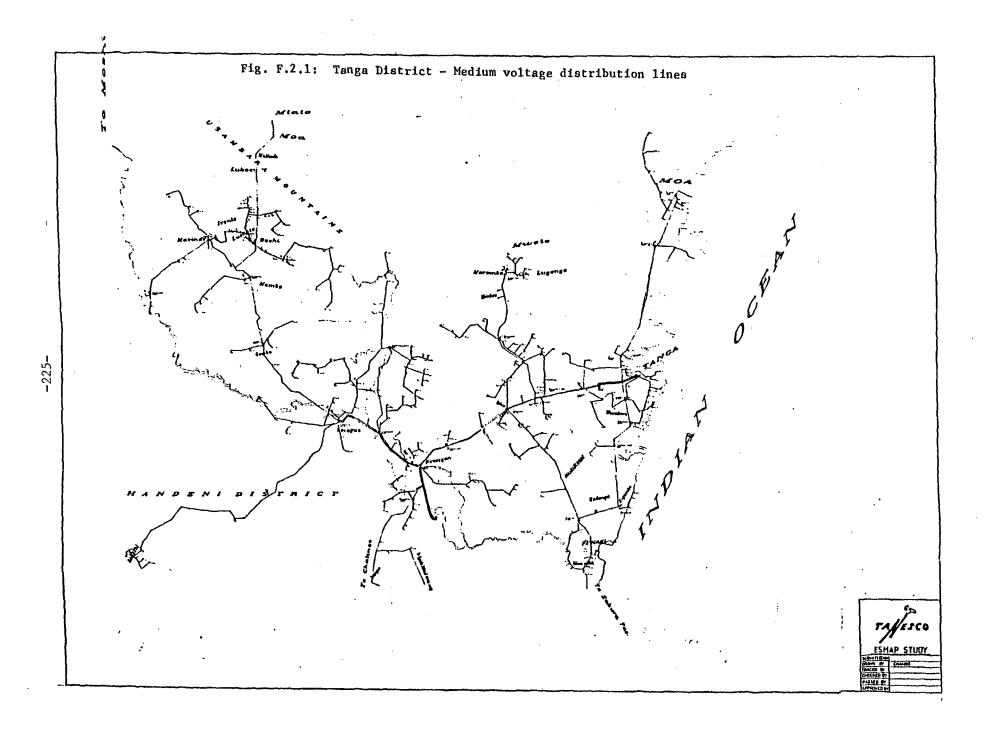

1

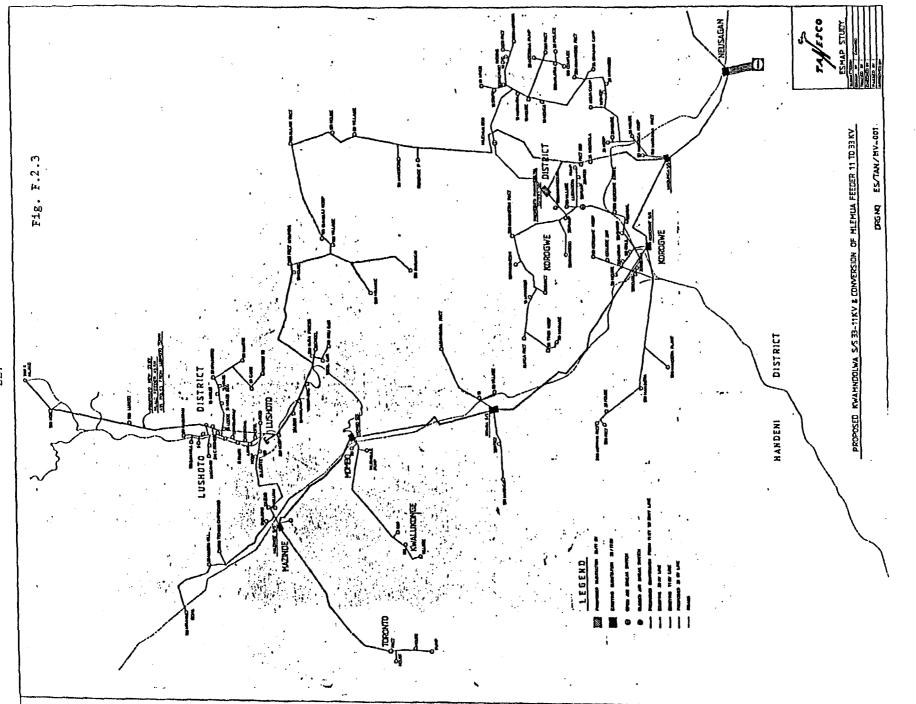
i

Table E.8.2

Annex F

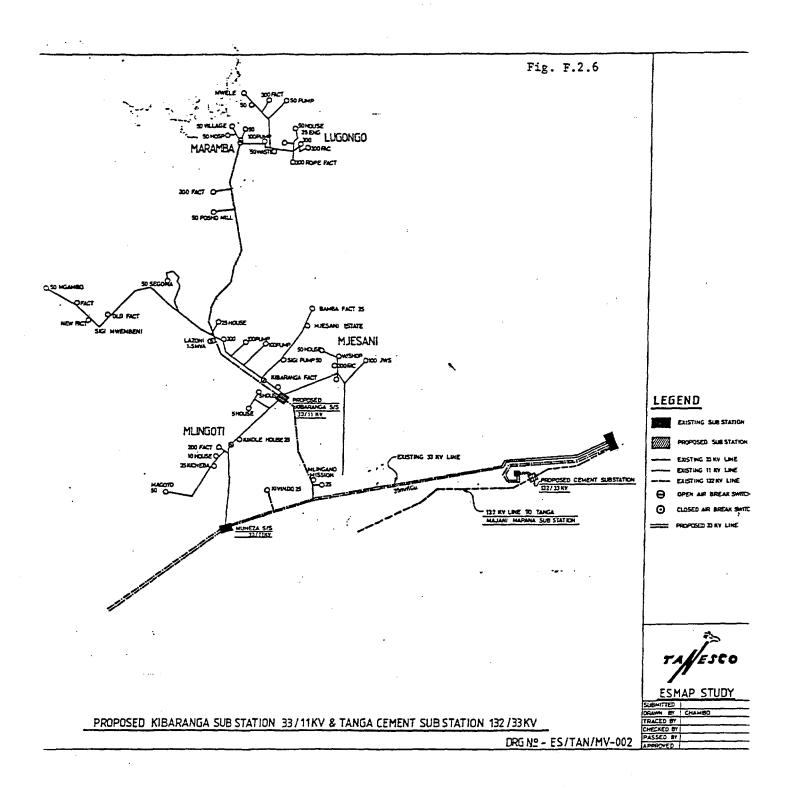

Distribution System network drawings

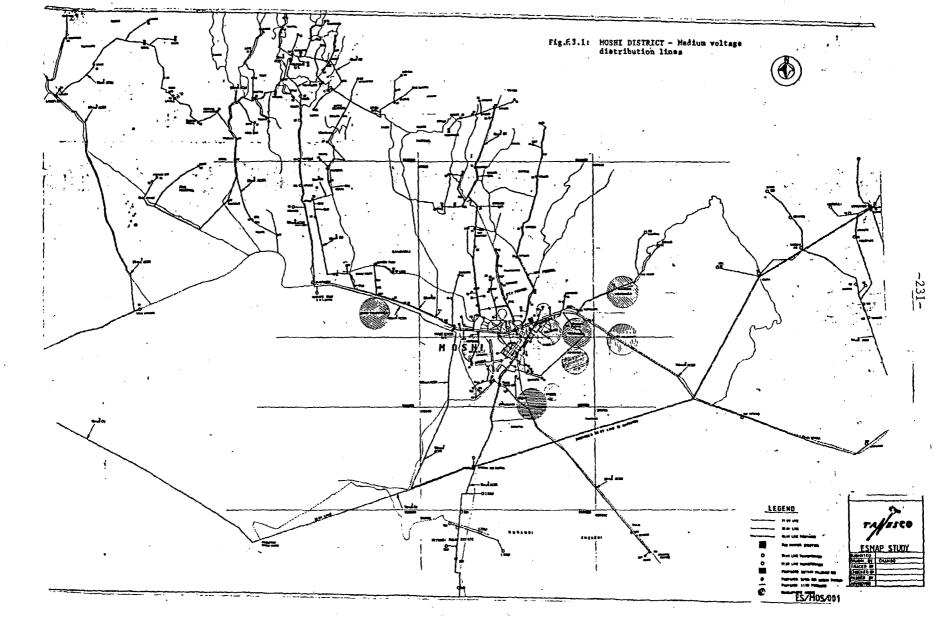


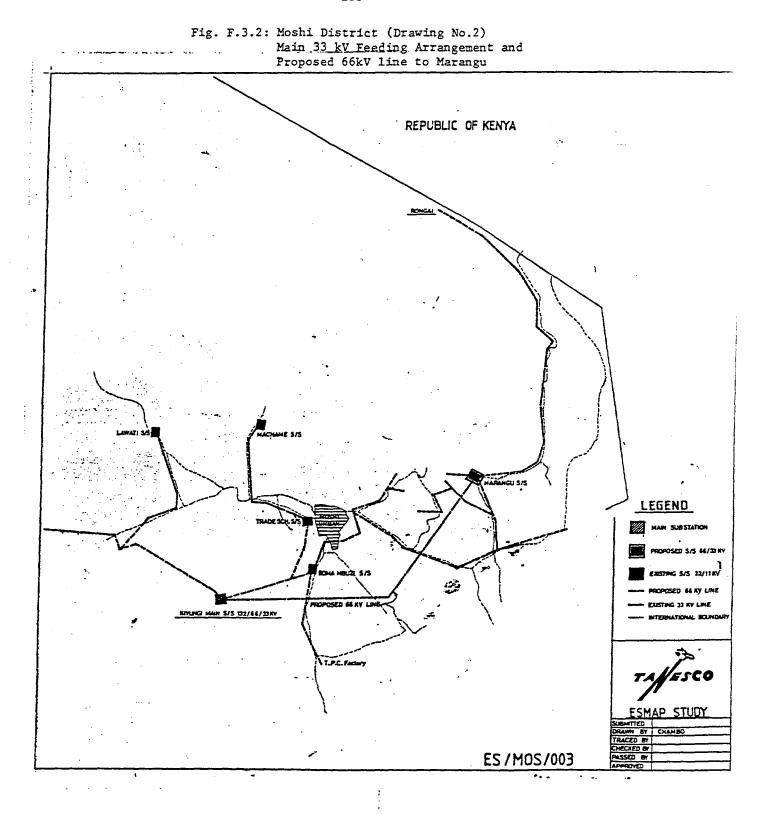

-221-

,

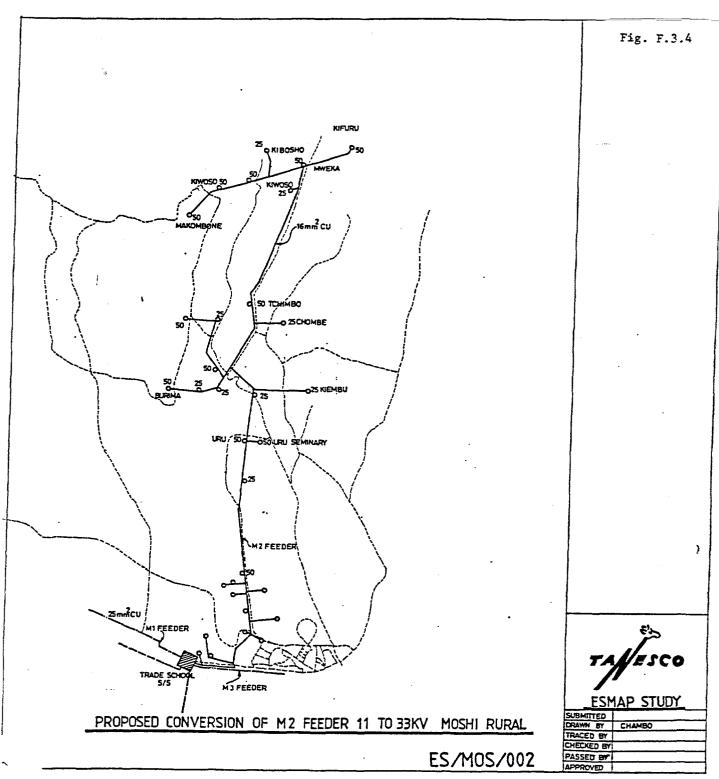
·



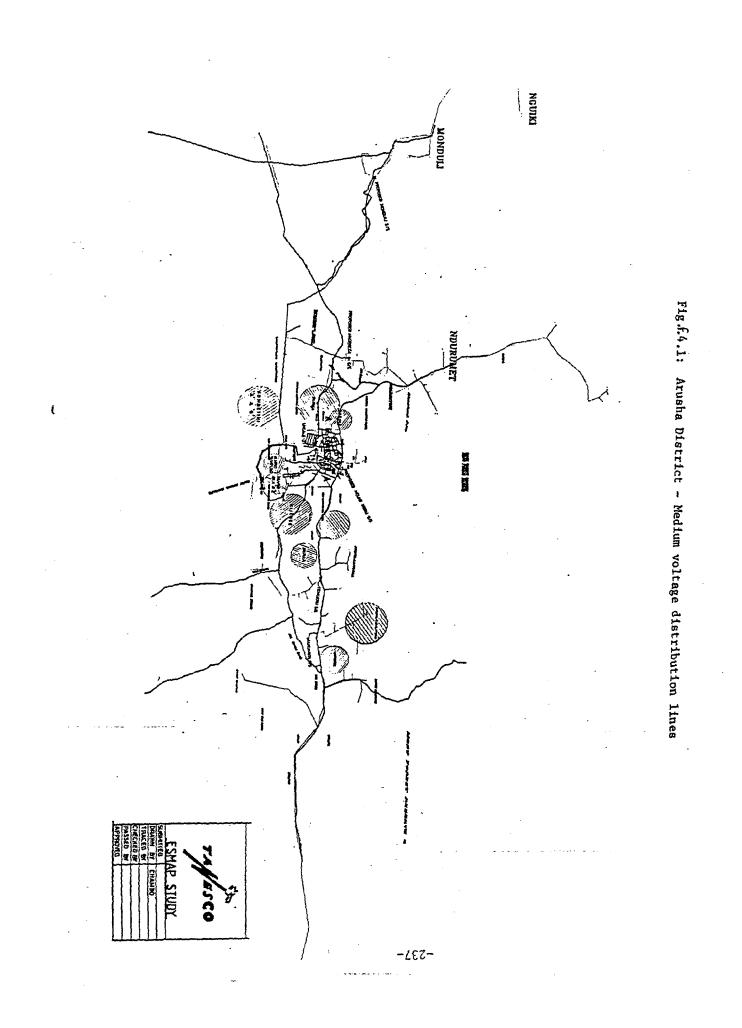



-227-

·



-229-



-233-


```` `



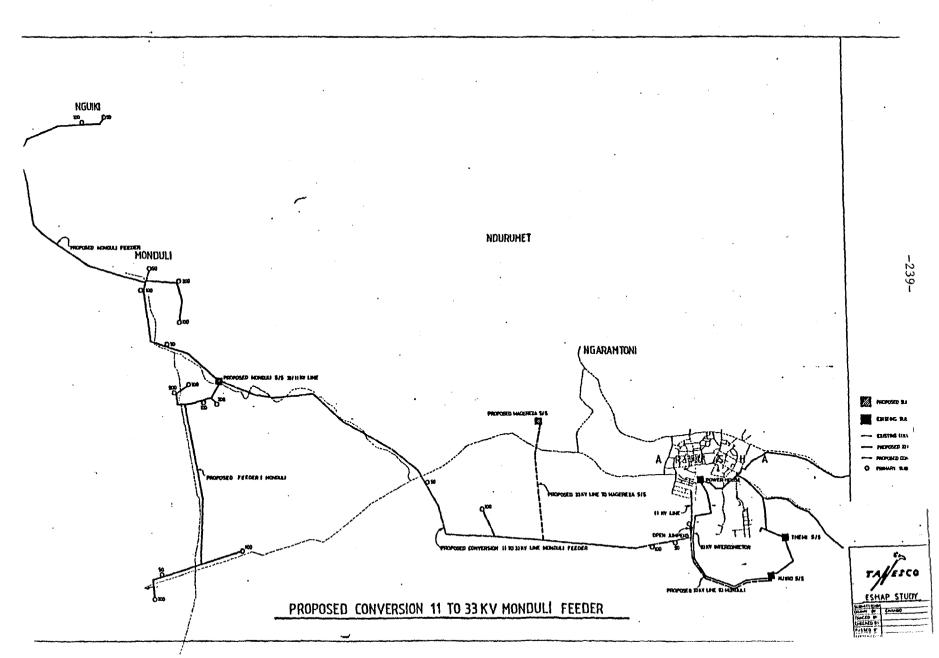
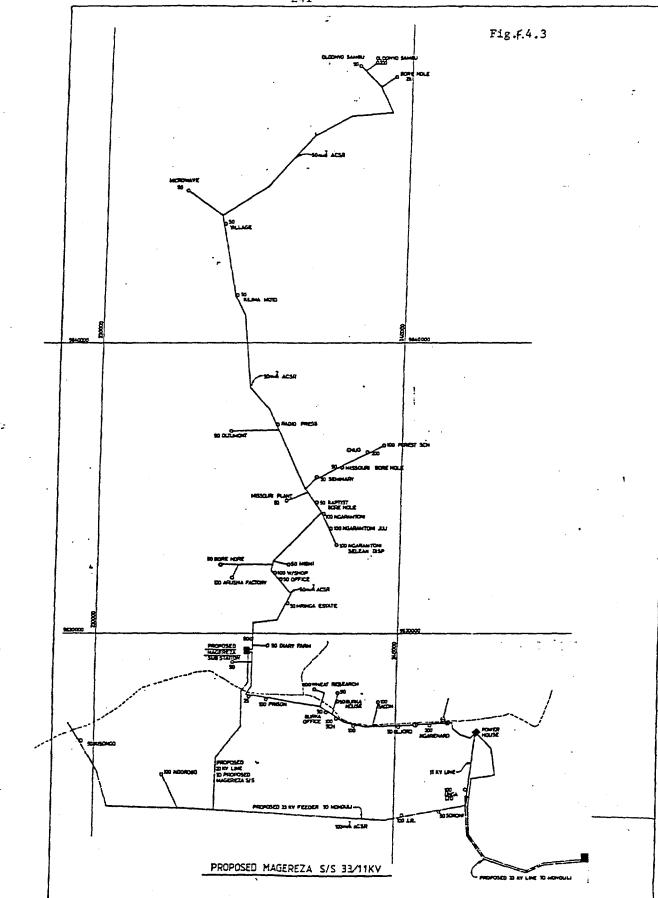




Fig.F.4.2

. 



-241-

.

## Joint UNDP/World Bank ENERGY SECTOR MANAGEMENT ASSISTANCE PROGRAMME (ESMAP)

\_

### LIST OF REPORTS ON COMPLETED ACTIVITIES

SUB-SAHARAN AFRIC	<b>A (AFR</b> )	
SUD-SAHARAN AFRIC		
frica Regional Anglophone Africa Household Energy Worksh		085/88
Regional Power Seminar on Reducing Electric I	Power System	
Losses in Africa (English)	08/88	087/88
Institutional Evaluation of EGL (English)	02/89	098/89
Biomass Mapping Regional Workshops (English		
Francophone Household Energy Workshop (Fre	-	
Interafrican Electrical Engineering College: Pro		
and Long-Term Development (English)	03/90	112/90
Biomass Assessment and Mapping (English)	03/90	
Symposium on Power Sector Reform and Effici		
in Sub-Saharan Africa (English)	06/96	182/96
Commercialization of Marginal Gas Fields (Eng		201/97
ngola Energy Assessment (English and Portuguese)	05/89	4708-ANG
Power Rehabilitation and Technical Assistance		142/91
enin Energy Assessment (English and French)	06/85	5222-BEN
otswana Energy Assessment (English)	09/84	4998-BT
Pump Electrification Prefeasibility Study (Engli		047/86
Review of Electricity Service Connection Policy		071/87
Tuli Block Farms Electrification Study (English		072/87
Household Energy Issues Study (English)	02/88	~~
Urban Household Energy Strategy Study (Englis	•	132/91
rkina Faso Energy Assessment (English and French)	01/86	5730-BUR
Technical Assistance Program (English)	03/86	052/86
Urban Household Energy Strategy Study (Englis	-	134/91
rundi Energy Assessment (English)	06/82	3778-BU
Petroleum Supply Management (English)	01/84	012/84
Status Report (English and French)	02/84	011/84
Presentation of Energy Projects for the Fourth F		00000
(1983-1987) (English and French)	05/85	036/85
Improved Charcoal Cookstove Strategy (English	-	042/85
Peat Utilization Project (English)	11/85	046/85
Energy Assessment (English and French)	01/92	9215-BU
pe Verde Energy Assessment (English and Portuguese)	08/84	5073-CV
Household Energy Strategy Study (English)	02/90	110/90
ntral African	00/00	0000 017
epublic Energy Assessement (French)	08/92	9898-CAR
Elements of Strategy for Urban Household Ener		1.00/04
The Case of N'djamena (French)	12/93	160/94
Energy Assessment (English and French)	01/88	7104-COM
ongo Energy Assessment (English)	01/88	6420-COB
Power Development Plan (English and French)	03/90	106/90
te d'Ivoire Energy Assessment (English and French)	04/85	5250-IVC
Improved Biomass Utilization (English and Free Bourge System Efficiency Study (English)		069/87
Power System Efficiency Study (English)	12/87 02/92	 140/91
Power Sector Efficiency Study (French) Project of Energy Efficiency in Ruildings (Engli		
Project of Energy Efficiency in Buildings (Engli	ish) 09/95	175/95

Region/Country	Activity/Report Title	Date	Number
thiopia	Energy Assessment (English)	07/84	4741-ET
	Power System Efficiency Study (English)	10/85	045/85
	Agricultural Residue Briquetting Pilot Project (English)	12/86	062/86
	Bagasse Study (English)	12/86	063/86
	Cooking Efficiency Project (English)	12/87	
	Energy Assessment (English)	02/96	179/96
abon	Energy Assessment (English)	07/88	6915-GA
ne Gambia	Energy Assessment (English)	11/83	4743-GM
lo Guinola	Solar Water Heating Retrofit Project (English)	02/85	030/85
	Solar Photovoltaic Applications (English)	03/85	032/85
	Petroleum Supply Management Assistance (English)	04/85	035/85
nana	Energy Assessment (English)	11/86	6234-GH
lalla	Energy Rationalization in the Industrial Sector (English)	06/88	084/88
	Sawmill Residues Utilization Study (English)	11/88	074/87
	Industrial Energy Efficiency (English)	11/88	148/92
linea	Energy Assessment (English)	11/92	6137-GUI
inca	Household Energy Strategy (English and French)	01/94	163/94
inea-Bissau	Energy Assessment (English and Portuguese)	08/84	5083-GUB
IIICa-Dissau	Recommended Technical Assistance Projects (English &	00/04	1083-005
	Portuguese)	04/85	033/85
	Management Options for the Electric Power and Water Supply	0.00	055/85
	Subsectors (English)	02/90	100/90
	Power and Water Institutional Restructuring (French)	04/91	
enya	Energy Assessment (English)	05/82	3800-KE
Jiiya	Power System Efficiency Study (English)	03/84	014/84
	Status Report (English)	05/84	016/84
	Coal Conversion Action Plan (English)	02/87	
	Solar Water Heating Study (English)	02/87	066/87
	Peri-Urban Woodfuel Development (English)	10/87	076/87
	Power Master Plan (English)	11/87	
	Power Loss Reduction Study (English)	09/96	186/96
sotho	Energy Assessment (English)	01/84	4676-LSO
beria	Energy Assessment (English)	12/84	5279-LBR
00114	Recommended Technical Assistance Projects (English)	06/85	038/85
	Power System Efficiency Study (English)	12/87	081/87
adagascar	Energy Assessment (English)	01/87	5700-MAG
uauguseu	Power System Efficiency Study (English and French)	12/87	075/87
	Environmental Impact of Woodfuels (French)	10/95	176/95
alawi	Energy Assessment (English)	08/82	3903-MAL
	Technical Assistance to Improve the Efficiency of Fuelwood		
	Use in the Tobacco Industry (English)	11/83	009/83
	Status Report (English)	01/84	013/84
ali	Energy Assessment (English and French)	11/91	8423-MLI
	Household Energy Strategy (English and French)	03/92	147/92
amic Republic			
of Mauritania	Energy Assessment (English and French)	04/85	5224-MAU
	Household Energy Strategy Study (English and French)	07/90	123/90
auritius	Energy Assessment (English)	12/81	3510-MAS
	Status Report (English)	10/83	008/83

- 2 -

-

Region/Country	Activity/Report Title	Date	Number
Aauritius	Bagasse Power Potential (English)	10/87	077/87
	Energy Sector Review (English)	12/94	3643-MAS
lozambique	Energy Assessment (English)	01/87	6128-MOZ
1	Household Electricity Utilization Study (English)	03/90	113/90
	Electricity Tariffs Study (English)	06/96	181/96
	Sample Survey of Low Voltage Electricity Customers	06/97	195/97
amibia	Energy Assessment (English)	03/93	11320-NAM
iger	Energy Assessment (French)	05/84	4642-NIR
0	Status Report (English and French)	02/86	051/86
	Improved Stoves Project (English and French)	12/87	080/87
	Household Energy Conservation and Substitution (English	12.01	
	and French)	01/88	082/88
igeria	Energy Assessment (English)	08/83	4440-UNI
	Energy Assessment (English)	07/93	11672-UNI
wanda	Energy Assessment (English)	06/82	3779-RW
	Status Report (English and French)	05/84	017/84
	Improved Charcoal Cookstove Strategy (English and French)	08/86	059/86
	Improved Charcoal Production Techniques (English and French)	02/87	065/87
	Energy Assessment (English and French)	07/91	8017-RW
	Commercialization of Improved Charcoal Stoves and Carbonization		
	Techniques Mid-Term Progress Report (English and French)	12/91	141/91
ADC	SADC Regional Power Interconnection Study, Vols. I-IV (English)	12/93	
ADCC	SADCC Regional Sector: Regional Capacity-Building Program		
	for Energy Surveys and Policy Analysis (English)	11/91	
io Tome			
nd Principe	Energy Assessment (English)	10/85	5803-STP
enegal	Energy Assessment (English)	07/83	4182-SE
	Status Report (English and French)	10/84	025/84
	Industrial Energy Conservation Study (English)	05/85	037/85
	Preparatory Assistance for Donor Meeting (English and French)	04/86	056/86
	Urban Household Energy Strategy (English)	02/89	096/89
	Industrial Energy Conservation Program (English)	05/94	165/94
chelles	Energy Assessment (English)	01/84	4693-SEY
	Electric Power System Efficiency Study (English)	08/84	021/84
erra Leone	Energy Assessment (English)	10/87	6597-SL
omalia	Energy Assessment (English)	12/85	5796-SO
outh Africa	Options for the Structure and Regulation of Natural		
epublic of	Gas Industry (English)	05/95	172/95
ıdan	Management Assistance to the Ministry of Energy and Mining	05/83	003/83
	Energy Assessment (English)	07/83	4511-SU
	Power System Efficiency Study (English)	06/84	018/84
	Status Report (English)	11/84	026/84
	Wood Energy/Forestry Feasibility (English)	07/87	073/87
waziland	Energy Assessment (English)	02/87	6262-SW
	Household Energy Strategy Study	10/97	198/97
anzania	Energy Assessment (English)	11/84	4969-TA
	Peri-Urban Woodfuels Feasibility Study (English)	08/88	086/88
	Tobacco Curing Efficiency Study (English)	05/89	102/89
	Remote Sensing and Mapping of Woodlands (English)	06/90	
	Industrial Energy Efficiency Technical Assistance (English)	08/90	122/90

.

- 3 -

---

Region/Country	Activity/Report Title	Date	Number
Tanzania	Power Loss Reduction Volume 1: Transmission and Distribution		
	System Technical Loss Reduction and Network Development		
	(English)	06/98	204A/98
	Power Loss Reduction Volume 2: Reduction of Non-Technical		
	Losses (English)	06/98	204B/98
Togo	Energy Assessment (English)	06/85	5221-TO
-	Wood Recovery in the Nangbeto Lake (English and French)	04/86	055/86
	Power Efficiency Improvement (English and French)	12/87	078/87
Uganda	Energy Assessment (English)	07/83	4453-UG
	Status Report (English)	08/84	020/84
	Institutional Review of the Energy Sector (English)	01/85	029/85
	Energy Efficiency in Tobacco Curing Industry (English)	02/86	049/86
	Fuelwood/Forestry Feasibility Study (English)	03/86	053/86
	Power System Efficiency Study (English)	12/88	092/88
	Energy Efficiency Improvement in the Brick and		
	Tile Industry (English)	02/89	097/89
	Tobacco Curing Pilot Project (English)	03/89	UNDP Terminal
			Report
	Energy Assessment (English)	12/96	193/96
Zaire	Energy Assessment (English)	05/86	5837-ZR
Zambia	Energy Assessment (English)	01/83	4110-ZA
	Status Report (English)	08/85	039/85
	Energy Sector Institutional Review (English)	11/ <b>86</b>	060/86
	Power Subsector Efficiency Study (English)	02/89	093/88
	Energy Strategy Study (English)	02/89	094/88
	Urban Household Energy Strategy Study (English)	08/90	121/90
Zimbabwe	Energy Assessment (English)	06/82	3765-ZIM
	Power System Efficiency Study (English)	06/83	005/83
	Status Report (English)	08/84	019/84
	Power Sector Management Assistance Project (English)	04/85	034/85
	Power Sector Management Institution Building (English)	09/89	
	Petroleum Management Assistance (English)	12/89	109/89
	Charcoal Utilization Prefeasibility Study (English)	06/90	119/90
	Integrated Energy Strategy Evaluation (English)	01/92	8768-ZIM
	Energy Efficiency Technical Assistance Project:		
	Strategic Framework for a National Energy Efficiency		
	Improvement Program (English)	04/94	
	Capacity Building for the National Energy Efficiency		
	Improvement Programme (NEEIP) (English)	12/94	
	EAST ASIA AND PACIFIC (EAP)		
Asia Regional	Pacific Household and Rural Energy Seminar (English)	11/90	
China	County-Level Rural Energy Assessments (English)	05/89	101/89
	Fuelwood Forestry Preinvestment Study (English)	12/89	105/89
	Strategic Options for Power Sector Reform in China (English)	07/93	156/93
	Energy Efficiency and Pollution Control in Township and		
	Village Enterprises (TVE) Industry (English)	11/94	168/94
	Energy for Rural Development in China: An Assessment Based		
	on a Joint Chinese/ESMAP Study in Six Counties (English)	06/96	183/96
Fiji	Energy Assessment (English)	06/83	4462-FIJ

- 4 -

-

Region/Country	Activity/Report Title	Date	Number
Indonesia	Energy Assessment (English)	11/81	3543-IND
	Status Report (English)	09/84	022/84
	Power Generation Efficiency Study (English)	02/86	050/86
	Energy Efficiency in the Brick, Tile and	02,00	000,00
	Lime Industries (English)	04/87	067/87
	Diesel Generating Plant Efficiency Study (English)	12/88	095/88
	Urban Household Energy Strategy Study (English)	02/90	107/90
	Biomass Gasifier Preinvestment Study Vols. I & II (English)	12/90	124/90
	Prospects for Biomass Power Generation with Emphasis on	12/90	124/90
	Palm Oil, Sugar, Rubberwood and Plywood Residues (English)	11/94	167/94
Lao PDR	Urban Electricity Demand Assessment Study (English)	03/93	154/93
		03/93	
Malaysia	Sabah Power System Efficiency Study (English)		068/87 0645 MA
\ <b>(</b>	Gas Utilization Study (English)	09/91	9645-MA
Myanmar	Energy Assessment (English)	06/85	5416-BA
Papua New		0.000	2002 010
Guinea	Energy Assessment (English)	06/82	3882-PNG
	Status Report (English)	07/83	006/83
	Energy Strategy Paper (English)		
	Institutional Review in the Energy Sector (English)	10/84	023/84
<b></b>	Power Tariff Study (English)	10/84	024/84
Philippines	Commercial Potential for Power Production from		
	Agricultural Residues (English)	12/93	157/93
	Energy Conservation Study (English)	08/94	
Solomon Islands	Energy Assessment (English)	06/83	4404-SOL
	Energy Assessment (English)	01/92	979-SOL
South Pacific	Petroleum Transport in the South Pacific (English)	05/86	
Thailand	Energy Assessment (English)	09/85	5793-TH
	Rural Energy Issues and Options (English)	09/85	044/85
	Accelerated Dissemination of Improved Stoves and		
	Charcoal Kilns (English)	09/87	079/87
	Northeast Region Village Forestry and Woodfuels		
	Preinvestment Study (English)	02/88	083/88
	Impact of Lower Oil Prices (English)	08/88	
	Coal Development and Utilization Study (English)	1 <b>0/89</b>	
Tonga	Energy Assessment (English)	06/85	5498-TON
Vanuatu	Energy Assessment (English)	06/85	5577-VA
Vietnam	Rural and Household Energy-Issues and Options (English)	01/94	161/94
	Power Sector Reform and Restructuring in Vietnam: Final Report		
	to the Steering Committee (English and Vietnamese)	09/95	174/95
	Household Energy Technical Assistance: Improved Coal		
	Briquetting and Commercialized Dissemination of Higher		
	Efficiency Biomass and Coal Stoves (English)	01/96	178/96
Western Samoa	Energy Assessment (English)	06/85	5497-WSO
	SOUTH ASIA (SAS)		
Bangladesh	Energy Assessment (English)	10/82	3873-BD
	Priority Investment Program (English)	05/83	002/83
	Status Report (English)	04/84	015/84
	Power System Efficiency Study (English)	02/85	031/85
	Small Scale Uses of Gas Prefeasibility Study (English)	12/88	

Region/Country	Activity/Report Title	Date	Number
India	Opportunities for Commercialization of Nonconventional		
	Energy Systems (English)	11/88	091/88
	Maharashtra Bagasse Energy Efficiency Project (English)	07/90	120/90
	Mini-Hydro Development on Irrigation Dams and		
	Canal Drops Vols. I, II and III (English)	07/91	139/91
	WindFarm Pre-Investment Study (English)	12/92	150/92
	Power Sector Reform Seminar (English)	04/94	166/94
Nepal	Energy Assessment (English)	08/83	4474-NEP
	Status Report (English)	01/85	028/84
	Energy Efficiency & Fuel Substitution in Industries (English)	06/93	158/93
Pakistan	Household Energy Assessment (English)	05/88	
	Assessment of Photovoltaic Programs, Applications, and		
	Markets (English)	10/89	103/89
	National Household Energy Survey and Strategy Formulation		
	Study: Project Terminal Report (English)	03/94	
	Managing the Energy Transition (English)	10/94	
	Lighting Efficiency Improvement Program		
	Phase 1: Commercial Buildings Five Year Plan (English)	10/94	
ri Lanka	Energy Assessment (English)	05/82	3792-CE
	Power System Loss Reduction Study (English)	07/83	007/83
	Status Report (English)	01/84	010/84
	Industrial Energy Conservation Study (English)	03/86	054/86
	EUROPE AND CENTRAL ASIA (ECA)		
Bulgaria Central and	Natural Gas Policies and Issues (English)	10/96	188/96
Eastern Europe	Power Sector Reform in Selected Countries	07/97	196/97
Eastern Europe	The Future of Natural Gas in Eastern Europe (English)	08/92	190/97
Kazahstan	Natural Gas Investment Study, Volumes 1, 2 & 3	12/97	199/97
Cazahstan &	Natural Gas investment Study, Volumes 1, 2 & 5	12/97	199191
Kyrgyzstan	Opportunities for Renewable Energy Development	11/97	16855-KAZ
Poland	Energy Sector Restructuring Program Vols. I-V (English)	01/93	153/93
Portugal	Energy Assessment (English)	04/84	4824-PO
Romania	Natural Gas Development Strategy (English)	12/96	4824-r0 192/96
	Matural Gas Development Sudiegy (English)	14/20	174/70

- 6 -

-

#### MIDDLE EAST AND NORTH AFRICA (MNA)

Arab Republic			
of Egypt	Energy Assessment (English)	10/96	189/96
Morocco	Energy Assessment (English and French)	03/84	4157-MOR
	Status Report (English and French)	01/86	048/86
	Energy Sector Institutional Development Study (English and French)	07/95	173/95
Syria	Energy Assessment (English)	05/86	5822-SYR
	Electric Power Efficiency Study (English)	09/88	089/88
	Energy Efficiency Improvement in the Cement Sector (English)	04/89	099/89
	Energy Efficiency Improvement in the Fertilizer Sector (English)	06/90	115/90

Region/Country	Activity/Report Title	Date	Number
Tunisia	Fuel Substitution (English and French)	03/90	
	Power Efficiency Study (English and French)	02/92	136/91
	Energy Management Strategy in the Residential and		
	Tertiary Sectors (English)	04/92	146/92
	Renewable Energy Strategy Study, Volume I (French)	11/96	190A/96
	Renewable Energy Strategy Study, Volume II (French)	11/96	190B/96
Yemen	Energy Assessment (English)	12/84	4892-YAR
	Energy Investment Priorities (English)	02/87	6376-YAR
	Household Energy Strategy Study Phase I (English)	03/91	126/91
	LATIN AMERICA AND THE CARIBBEAN (LAC)		
LAC Regional	Regional Seminar on Electric Power System Loss Reduction		
	in the Caribbean (English)	07/89	
	Elimination of Lead in Gasoline in Latin America and		
	the Caribbean (English and Spanish)	04/97	194/97
	Elimination of Lead in Gasoline in Latin America and		
	the Caribbean Phase II - Status Report (English and Spanish)	12/97	200/97
	Harmonization of Fuels Speficifications in Latin America and		
	the Caribbean (English and Spanish)	06/98	203/98
Bolivia	Energy Assessment (English)	04/83	4213-BO
	National Energy Plan (English)	12/87	
	La Paz Private Power Technical Assistance (English)	11/90	111/90
	Prefeasibility Evaluation Rural Electrification and Demand		
	Assessment (English and Spanish)	04/91	129/91
	National Energy Plan (Spanish)	08/91	131/91
	Private Power Generation and Transmission (English)	01/92	137/91
	Natural Gas Distribution: Economics and Regulation (English)	03/92	125/92
	Natural Gas Sector Policies and Issues (English and Spanish)	12/93	164/93
	Household Rural Energy Strategy (English and Spanish)	01/94	162/94
•	Preparation of Capitalization of the Hydrocarbon Sector	12/96	191/96
Brazil	Energy Efficiency & Conservation: Strategic Partnership for		
	Energy Efficiency in Brazil (English)	01/95	170/95
	Hydro and Thermal Power Sector Study	09/97	197/97
Chile	Energy Sector Review (English)	08/88	7129-CH
Colombia	Energy Strategy Paper (English)	12/86	
	Power Sector Restructuring (English)	11/94	169/94
	Energy Efficiency Report for the Commercial		
	and Public Sector (English)	06/96	184/96
Costa Rica	Energy Assessment (English and Spanish)	01/84	4655-CR
	Recommended Technical Assistance Projects (English)	11/84	027/84
	Forest Residues Utilization Study (English and Spanish)	02/90	108/90
Dominican			
Republic	Energy Assessment (English)	05/91	8234-DO
Ecuador	Energy Assessment (Spanish)	12/85	5865-EC
	Energy Strategy Phase I (Spanish)	07/88	
	Energy Strategy (English)	04/91	

- 7 -

Region/Country	Activity/Report Title	Date	Number
Ecuador	Private Minihydropower Development Study (English)	11/92	
Boundon	Energy Pricing Subsidies and Interfuel Substitution (English)	08/94	11798-EC
	Energy Pricing, Poverty and Social Mitigation (English)	08/94	12831-EC
Guatemala	Issues and Options in the Energy Sector (English)	09/93	12160-GU
Iaiti	Energy Assessment (English and French)	06/82	3672-HA
iuiti	Status Report (English and French)	08/85	041/85
	Household Energy Strategy (English and French)	12/91	143/91
Ionduras	Energy Assessment (English)	08/87	6476-HO
ionumas	Petroleum Supply Management (English)	03/91	128/91
amaica	Energy Assessment (English)	04/85	5466-JM
aillaica	Petroleum Procurement, Refining, and	04/85	J400-J141
	Distribution Study (English)	11/86	061/86
	Energy Efficiency Building Code Phase I (English)	03/88	
	Energy Efficiency Standards and Labels Phase I (English)	03/88	
	Management Information System Phase I (English)	03/88	
		03/88	 090/88
	Charcoal Production Project (English)		
	FIDCO Sawmill Residues Utilization Study (English)	09/88	088/88
Aexico	Energy Sector Strategy and Investment Planning Study (English) Improved Charcoal Production Within Forest Management for	07/92	135/92
	the State of Veracruz (English and Spanish)	08/91	138/91
	Energy Efficiency Management Technical Assistance to the		
	Comision Nacional para el Ahorro de Energia (CONAE) (English)	04/96	180/96
anama	Power System Efficiency Study (English)	06/83	004/83
araguay	Energy Assessment (English)	10/84	5145-PA
	Recommended Technical Assistance Projects (English)	09/85	
	Status Report (English and Spanish)	09/85	043/85
eru	Energy Assessment (English)	01/84	4677-PE
	Status Report (English)	08/85	040/85
	Proposal for a Stove Dissemination Program in		
	the Sierra (English and Spanish)	02/87	064/87
	Energy Strategy (English and Spanish)	12/90	
	Study of Energy Taxation and Liberalization		
	of the Hydrocarbons Sector (English and Spanish)	120/93	159/93
aint Lucia	Energy Assessment (English)	09/84	5111-SLU
t. Vincent and			0111 020
	Energy Assessment (English)	09/84	5103-STV
Tobago	Energy Assessment (English)	12/85	5930-TR
	GLOBAL		
	Energy End Use Efficiency: Research and Strategy (English)	11/89	
	Women and EnergyA Resource Guide The International Network: Policies and Experience (English)	04/90	
	Guidelines for Utility Customer Management and	07/01	
	Metering (English and Spanish)	07/91	
	Assessment of Personal Computer Models for Energy	10/01	
	Planning in Developing Countries (English)	10/91	
	Long-Term Gas Contracts Principles and Applications (English)	02/93	152/93

-

.

#### **GLOBAL** (Continuation)

Comparative Behavior of Firms Under Public and Private		
Ownership (English)	05/93	155/93
Development of Regional Electric Power Networks (English)	10/94	
Roundtable on Energy Efficiency (English)	02/95	171/95
Assessing Pollution Abatement Policies with a Case Study		
of Ankara (English)	11/95	177/95
A Synopsis of the Third Annual Roundtable on Independent Power		
Projects: Rhetoric and Reality (English)	08/96	187/96
Rural Energy and Development Roundtable (English)	05/98	202/98

06/26/98

# **ESMAP**

The World Bank 1818 H Street, N. W. Washington, D. C. 20433 U. S. A.

Joint United Nations Development Programme / World Bank



Energy Sector Management Assistance Programme