

Ouarzazate Solar Complex Phase 1: Up to 160MW CSP Trough

the World Renewable Energy Forum Colorado –May 13 to 17, 2012

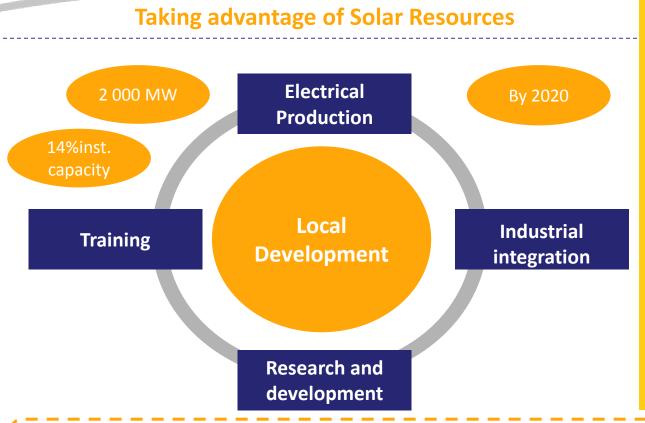
Sommaire

1. Brief on the Moroccan Solar Plan and the rationale behind

2. Ouarzazate Solar Complex: Various technologies with R&D Platform

3. Ouarzazate First Phase: The largest CSP Plant in the MENA region

4. Perspectives


The Moroccan Solar Plan

An integrated Plan held by Masen

2 000 MW by 2020

An ongoing Plan based on a Strong Government Support

Well on Track

Necessary means in place securing high standards' implementation

Government financial support materialized in a Convention signed on October 26, 2010

Each developed project should positively contribute to the achievement of the aforementioned objectives

Ouarzazate Solar Complex

Operational priority

500 MW by 2015

Ouarzazate Complex (OZZ): 500 MW by 2015

Ouarzazate Solar Complex

500MW

DNI of 6,5 kWh/m²/day

Operational priority

2015

≥ 2800 kWh/m²

2500 kWh/m²

2200 kWh/m²

1900 kWh/m²

< 1500 kWh/m²

Solar Direct normal rradiation

10 km North East Ouarzazate

2 500 hectares

Proximity to Mansour Dahbi dam 440 hm³

Proximity to transmission lines 225 / 60 KV

Perfect site conditions for Solar Projects:

A result of multiple site studies

Ouarzazate Complex (OZZ): multi-technologies + R&D

Multiple phases and technologies

Multiple phases

Phase 1: between 125 MW et 160 MW

Phase 2

Phase ...

Multiple technologies

Solar thermal, (CSP)/parabolic trough

CSP (Parabolic Trough, Tower)

Photovoltaic

Common infrastructure works for the site financed through Masen equity (from USD 100 to 130 m)

Research & Development Platform dedicated to the Solar sector

Ouarzazate Complex: positive socio-economic impact

Definition of preliminary measures to help the optimization of the socio-economic benefits of the Ouarzazate solar power complex

Encourage the participation of local labor and contribute to the implementation of fair recruitment mechanisms and adapted trainings.

Improve the existing infrastructure for the local communities and management of the additional traffic and extensions.

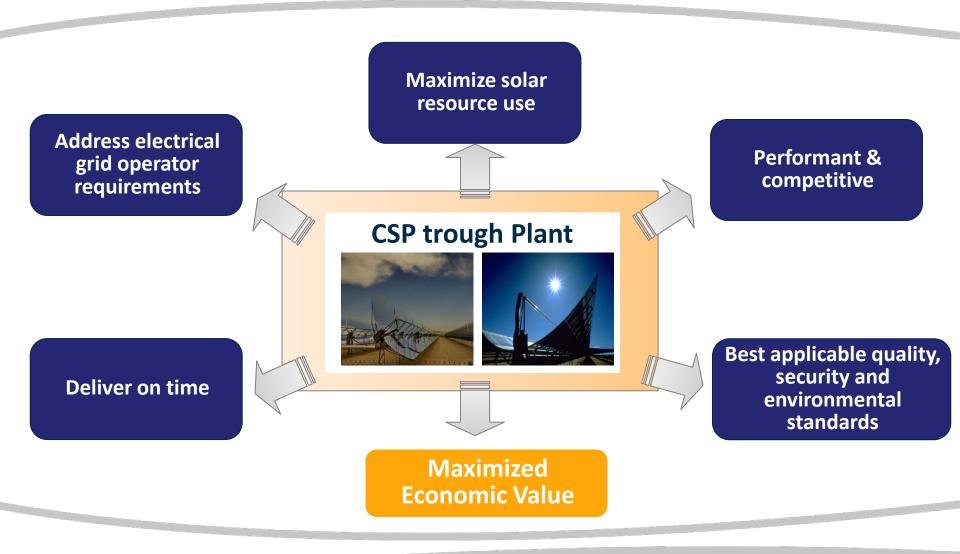
Introduce new activities to encourage job creation in relation with the complex (R&D Platform, scientific tourism, ...)

Estimated job creation

Construction: Thousands

O&M : Hundreds

For a local development promoting an optimized integration


OZZ 1: CSP Plant

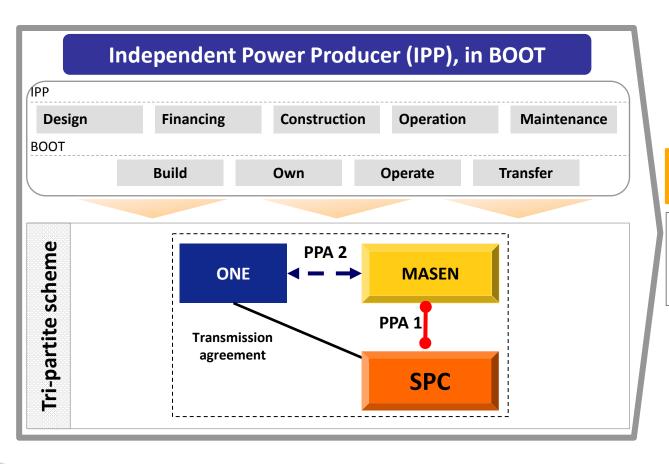
Largest in MENA region

Up to 160 MW by 2014

OZZ 1 : For a CSP Plant at Highest Standards

OZZ 1: Main Technical Specifications

First tier financial and technical consultants


Technology	CSP Trough	
Gross Capacity	125 – 160 MW	
Storage	3hours	
Cooling	Wet / Dry	
Land surface	450 ha maximum	

- Adequate answer to predictable needs of ONE by 2014 (to serve peak hours)
- A guarantee for large competition during the RFP process
- A cross criteria between production level, LCOE and subsidy per kWh
- A maximized use of available resources on site (water, land, ...)

Taking advantage of available local resource to maximize the value of the produced energy

OZZ 1: An IPP model in a Tri-Partite Scheme ...

Power Purchase Agreement (PPA)

- ✓ Take or Pay
- √ 25 years of Operation

^{*} Special Purpose Company

... towards an optimal risk allocation ...

Public	Shared	Private
 Regulation change specific to the project Change in the technical specification due to government's request Environmental risk (preexisting) Inflation / Foreign exchange risk 	e — Financing — Solar resource risk — Permits and authorizations — Regulation change non specific to the project — Force majeure	 Design / Planning Technology Construction (delays, cost overruns, under capacity) Performance during operation (incl. O&M) Operation over costs

... the aim being to transfer risks to the most appropriate actor to handle them

OZZ 1: Financing structure

OZZ 1 : Estimated project cost

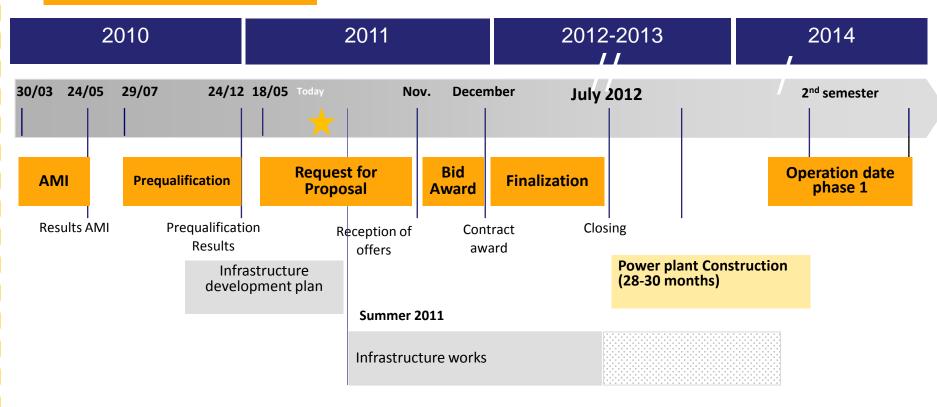
Assumptions	
Technology	CSP Trough
Capacity (Trough)	160 MW (Gross)
Storage	3 hours
Site surface	450 Ha (max)
Cooling	Wet / Dry
Construction period	3 years
PPA duration	25 years

Output

CAPEX (split over 3 years)	
Per MW (gross)	
2013 e	2014 e
242	485
26%	52%
	242

CAPEX split	USD m	%
Solar system*	578	60%
Power block	196	20%
Storage	123	15%
Site improvements	33	5%

^{**} includes solar field and HTF system



OZZ 1 next steps

Contemplated Project schedule

Project schedule

Perspectives

Short, medium and long term

For a Sustainable Replicability

2 key objectives

Environmental

Avoid CO2 emissions

Energy

Bring down solar energy cost to parity

3 levels

Immediately

Increased MDBs contribution through more and well-adapted instruments

- + MDBs contribution
- + Dedicated countries contribution in line with their double vision

Short and Medium Term

Electricity export in order to match environmental requirements and a viable economic balance

In parallel with Countries discussions, pilot project can pave the way (ex. Masen – Soitec)

Long Term

Mismatching between where solar resources are and where high consumption level is

Implementation of instruments and mechanisms dematerializing energy trade WW

We welcome exchanging experiences in the solar energy development:

- ✓ Multiple IFIs cooperation
- Risk allocation and sharing
- ✓ Socio Economic integration
- ✓ Implementation and Execution
- **√**

Thank you for your attention

