Discussion Draft – January 26, 2010

Energy Sector Management Assistance Program (ESMAP)

REVIEW OF POLICY FRAMEWORK FOR INCREASED RELIANCE ON WIND ENERGY IN COLOMBIA

Options for Market Entry of Wind Power in Colombia's Energy Mix

January 26, 2010

Energy Unit Sustainable Development Department Latin America and Caribbean Region The World Bank

List of Units

British Thermal Units
Calories
Ash
Gigajoule
Gigawatt hour
Thousand barrels per day
Kilo calories
Kilogram
Thousand tons of oil equivalent
Pounds
Meters per second
Million British Thermal Units
Megajoules
Million metric tons
Megawatt average
Megawatt hour (10 ⁶)
Quadrillion BTU
Trillion cubic feet
Terawatt hour
Purchasing power parity

Acronyms and Abbreviations

AGC	Automatic Generation Control
ANH	Agencia Nacional de Hidrocarburos (National Hydrocarbon Agency)
CCGT	Combined Cycle Gas Turbine
CCS	Carbon Capture and Storage
CDM	Clean Development Mechanism
CER	Certified Emission Reductions
CERE	Real Equivalent Cost of the Capacity Charge
CFB	Circulating Fluidized Bed
CNG	Compressed Natural Gas
COLCIENCIAS	Departamento Administrativo de Ciencia, Tecnología e Innovación
	(Colombian Institute for the Development of Science, Technology and
	Innovation)
CREG	Comisión de Regulación de Energía y Gas (Regulatory Commission for
	Electricity and Gas)
CTF	Clean Technology Fund
EPM	Empresas Públicas de Medellín ESP (Public Companies of Medellín),
	one of Colombia's largest energy producers
ENSO	El Niño-Southern Oscillation
ESMAP	World Bank Energy Sector Management Assistance Program
ESP	Electrostatic Precipitator
FAZNI	Fondo de Apoyo Financiero para la Energización de las Zonas No
	Interconectadas (Fund for the Electrification of Off-grid Regions)
FDG	Flue Gas Desulfurization Gypsum
FGD	Flue Gas Desulfurization
GCM	General Circulation Model
GDP	Gross Domestic Product
GHG	Greenhouse Gas
GOC	Government of Colombia
IDEAM	Instituto de Hidrología, Meteorología y Estudios Ambientales de
	Colombia (Institute of Hydrology, Meteorology and Environmental
	Studies of Colombia)
IEA	International Energy Agency
IGCC	Integrated Gasification Combined Cycle
IPCC	Intergovernmental Panel on Climate Change
IPP	Independent Power Producer
IRR	Internal Rate of Return
ISA	Interconexión Eléctrica S.A.
ISAGEN	A major power producer and commercialization company in Colombia
LVRT	Low voltage run-through
MEM	Wholesale Energy Market
NIS	National Interconnected System
NREL	National Renewable Energy Laboratory
O&M	Operation and Maintenance
PM	Particulate Matter

PPP	Purchasing Power Parity	
R&D	Research and Development	
RE	Renewable Energy	
RET	Renewable Energy Technologies	
SC	Subcritical	
SCR	Selective Catalytic Reduction	
SDL	Sistema de Distribución Local (Local Distribution System)	
SOPAC	Pacific Islands Applied Geoscience Commission	
SOx	Sulfur Oxide Gases	
SPC	Super Critical	
SSPD Superintendencia de Servicios Públicos Domiciliarios (Superinter		
	for Residential Public Services)	
STN	Sistema de Transmisión Nacional (National Transmission System)	
STR	Sistema de Transmisión Regional (Regional Transmission System)	
TPC	Total plant cost	
UNFCCC	United Nations Framework Convention on Climate Change	
UPME	Unidad de Planeamiento Minero-Energética (Colombia's Energy and	
	Mining Planning Unit)	
URE	Uso Racional de Energía (Rational and Efficient Use of Energy)	
USPC	Ultra Supercritical	

TABLE OF CONTENTS

TABL	E OF CONTENTS	5
EXEC	UTIVE SUMMARY	9
1.	OBJECTIVE	9
2.	GENERAL CONTEXT	9
3.	ALTERNATIVE POWER OPTIONS FOR COLOMBIA'S POWER MIX	11
4.	WIND ENERGY CAPITAL COSTS ARE EXPECTED TO DECREASE	11
5.	WIND AND HYDRO ENERGY RESOURCES ARE COMPLEMENTARY	12
6.	OPTIONS TO ADDRESS BARRIERS TO ENTRY	12
7.	IMPACT OF POLICY OPTIONS	14
8.	Lessons learned	15
١.	INTRODUCTION	18
1.	CONTEXT	18
2.	STRUCTURE OF THE REPORT	20
п	SUMMARY OF FINDINGS FROM FIRST STAGE REPORT. NONCONVENTIONAL RENEWARI F FNF	RGV
BARR	RIER ANALYSIS	21
III.	COST COMPARISON OF ALTERNATIVE POWER SOURCES BASED ON THE EXPANSION PLAN FOR	2
2008-	-2025	23
1.	METHODOLOGY FOR TECHNOLOGY COST COMPARISON	23
2.	LEAST (LEVELIZED) COST COMPARISON	25
IV.	WIND POWER COSTS OUTLOOK	29
1.	TECHNICAL VIABILITY OF WIND POWER	29
So	URCE: WORLD WIND ENERGY ASSOCIATION 2009.	29
2.	EFFICIENCY GAINS OVER TIME	29
3.	CAPITAL COST EVOLUTION	31
4.	OPERATION AND MAINTENANCE COSTS ARE DECREASING	31
5.	WIND POWER GRID INTEGRATION	32
6.	OUTLOOK	33
ν.	WIND AND HYDRO IN COLOMBIA: COMPLEMENTARITY ANALYSIS	34
1.	COMPLEMENTARITY OF THE WIND AND HYDRO REGIMES	34
2.	FIRM ENERGY AND JOINT OPERATION OF WIND AND HYDROELECTRIC PROJECTS	41
VI.	OPTIONS TO AID MARKET ENTRY OF WIND ENERGY IN THE COUNTRY'S POWER MIX	46

VIII.	CONCLUSIONS	69
PLAI	NT IN THE MEM	67
4.	CONCLUSIONS OF THE ESTIMATED IMPACT OF ALTERNATIVE POLICY OPTIONS FOR A 300 MW WIND ENERGY PO	WER
3.	Key findings: Options to foster investment in wind power	65
3.	IMPACT OF SELECTED POLICY OPTIONS	57
2.	BASELINE RESULTS	56
1.	BASELINE INFORMATION	53
300 M	IW WIND-POWERED POWER PLANT OPERATING IN THE WHOLESALE ENERGY MARKET	53
VII.	ASSESSING THE EFFECTIVENESS OF POLICY INSTRUMENTS AND POLICY OPTIONS: IMPACT	ON A
4.	POLICY INSTRUMENTS CONSIDERED	52
3	PROPOSAL TO ADDRESS THE RELIABILITY ISSUE FOR WIND ENERGY	49
2.	OPTIONS TO FACILITATE MARKET ENTRY OF WIND ENERGY	46

ANNEXES:

ANNEX 1. TECHNOLOGY COST COMPARISON	73
ANNEX 2.USE OF EARTH SIMULATOR TO ESTIMATE THE LIKELIHOOD OF EXTREME WEATHER EVENTS	77
ANNEX 3. POOL PRICES UNDER VARIOUS SCENARIOS	80
ANNEX 4. RESULTS OF THE EXPECTED RETURNS ON INVESTMENTS WITH THE INDIVIDUAL APPLICATION OF THE POLICY INSTRUMENTS FOR DIFFERENT MARKET SCENARIOS	82
ANNEX 5. EXEMPTING CERE PAYMENTS BY 50 OR 100 PERCENT	88
ANNEX 6. COMPLEMENTARITY BETWEEN WIND POWER AND HYDROELECTRIC RESOURCES	90

FIGURES

Figure I. Installed capacity per technology type
Figure III.1. Screening curve for levelized total costs (US\$/kW-yr) at different capacity factors.26
Figure III.2. Screening curve for levelized total costs at different capacity factors measured in terms of generation costs (UScents/kWh)
Figure IV.1. World total wind power installed capacity (MW)
Figure IV.2. Project capacity factors by commercial operation date
Figure IV.3. Reported US wind turbine transaction prices over time
Figure IV.3. Average operation and maintenance costs for available data years from 2000 to 2007, by last year of equipment installation
Figure V.1. Stations used to characterize wind power in Colombia
Figure V.2. Almirante Padilla Airport, Guajira
Figure V.3. Graphic representation of wind conditions in northern Colombia
Figure V.4. Firm energy for Guavio River as a result of isolated and joint operation
Figure V.5. Guavio River reservoir operation with a reservoir size of 0.2 in isolated and joint operation
Figure V.6. Guavio River reservoir operation with a reservoir size of 0.5 in isolated and joint operation
Figure VII.1. Colombia NIS demand forecasts, 2007–2028
Figure VII.2. Wind project generation estimates
Figure VII.3. Pool prices, base scenario
Figure VII.4. Comparison of pool prices for base, high and low scenarios

TABLES

Table ExSum 1. Actions required to reach a financial threshold for a 300 MW wind power plant on the northern coast 17
Table III.1. Power generation options included in the screening curve analyses
Table III.2. Least-cost capacity expansion mix (without CO2e revenue) 25
Table III.3. Suggested capacity expansion mix at US\$18 per ton CO ₂ e
Table V.1. Jepírachi monthly power generation
Table V.2. Wind speed as a fraction of mean yearly wind speeds 38
Table V.3. El Niño periods
Table V.4. Wind and hydro complementary during El Niño 41
Table V.5. Complementarity of joint operation of hydro plant and wind farm; the case of the Nare River 41
Table V.6. Firm energy results for Guavio River analyzed in isolated and joint operation 42
Table VII.1. Demand scenarios for the interconnected grid and resulting indicative prices 56
Table VII.2. Expected returns on equity before taxes for a 300 MW wind farm in Colombia.Business-as-usual results (no government intervention)
Table VII.3Policy options, allocation of responsibilities and associated costs
Table VII.4a. Financial results for a 300 MW wind farm in northern Colombia after use offinancial instruments; reliability payment considered with a 20% firm energy factor
Table VII.4b. Financial results for a 300 MW wind farm in northern Colombia after use offinancial instruments; reliability payment considered with a 30% firm energy factor
Table VII.4c. Financial results for a 300 MW wind farm in northern Colombia after use offinancial instruments; reliability payment considered with a 36% firm energy factor
Table VII.5. Key findings: Combination of policy instruments to reach a financial threshold 66

EXECUTIVE SUMMARY

1. **OBJECTIVE**

i) The purpose of this report is to provide decision makers in Colombia (and by extension other countries or regions), who are considering the deployment or consolidation of wind power, with a set of options to promote its use.¹ The options presented are the result of an analysis of the Colombian market which included simulations and modeling of the country's power sector, and extensive consultations with operators, managers and agents. More information on the analysis and simulations is presented in the annexes. Wind was chosen to exemplify the range of renewable energy alternatives available to complement traditional power sector technologies on the basis of its technical maturity, its relatively low cost compared to other options, the country's experience and its wind power potential. This report constitutes the second phase of a barrier analysis to wind energy in Colombia².

2. GENERAL CONTEXT

ii) **Colombia has a rich endowment of energy sources.** The natural gas reserves in 2008 were 7.3 Tera cubic feet (of which 60 percent were proven reserves) (ANH 2009). At the current rate of utilization these reserves would last 23 years (ANH 2009). Likewise, Colombia's coal reserves are rated at seven billion tons (or about 100 years of production at the present mining rate). Most coal mined is anthracite, with very low ash and sulfur content, ideal for exports to the European market. Oil reserves are much more limited and may not be sufficient to maintain self-reliance in the short term. Reserves may only last 8 years (Memorias del Ministro de Minas y Energia 2007–2008). The country has also a substantial, relatively low-cost hydropower potential resulting from its location in the tropical inter-convergence zone and its mountain ranges.

iii) Within this context, the country has developed a power sector that relies heavily on installed, large-capacity hydropower units which provide cost-effective electricity. In 2008 the installed power mix in Colombia (13.5 GW) was 67 percent hydro, 27 percent natural gas, five percent coal, and 0.3 percent wind and cogeneration. The total power demand that same year was 54 TWh (Ministry of Mines and Energy, and UPME 2009), met with about nine GW of installed capacity.³ This structure also results in a low carbon footprint, among the lowest in the region, with 87 percent of power

¹ Other than hydro, which is a well established alternative in Colombia and in the region.

² Vergara, et al, 2008. "Review of Policy Framework for Increase Reliance on Renewable Energy in Colombia", ESMAP – World Bank.

³ However, in 2008 there was an increase in registration of coal power projects (totaling 2,884 MW) and for the first time, fuel oil projects (totaling 305 MW of installed capacity). In contrast, 2,520 MW were natural gas, 7,770 MW were hydropower, and (as mentioned previously) 19.5 MW were wind.

generated and delivered to the grid by hydropower plants, resulting in an estimated 350 tons of CO_2 per GWh generated (about half that of Mexico).

iv) From a management perspective, Colombia's power sector is maturing quickly, with relative stability in its regulations, an unbundled system, and a dispatch mechanism that closely resembles a well-functioning competitive market. Competition is promoted and tools have been designed to attract cost-effective capacity expansions that would promote reliability⁴ of service (a fuller description of the system and its dispatch mechanism was included in the phase one report).

v) The wind regime in Colombia has been rated among the best in South America. Offshore regions of the northern part of Colombia have been classified with class seven winds (winds over nine meters per second [m/s] at heights of 50 m). The only other region in South America with similar wind intensity is the Patagonia region of Chile and Argentina. Colombia has an estimated wind power potential of 18 GW in the Guajira region—enough to generate power to meet the national power demand twice over⁵ (Pérez and Osorio 2002). However, the country has an installed capacity of only 19.5 MW of wind energy (Jepírachi Project) and several projects under consideration, including a 200 MW project in Ipapure, northern Colombia.

vi) Under the current circumstances, and on its own, the interconnected system would not likely promote nonconventional renewable energy resources (e.g., other than hydropower), such as wind, but would instead maintain its high-capacity share of hydro; alternatively, the system may move toward a more carbon-intensive energy resource mix (likely reliant on abundant coal reserves) to meet any additional demand that cannot be met through hydropower and/or to strengthen the system's resilience to deal with the effects of droughts and El Niño years. Expanding the coal-based power generation capacity would result in an increase in the carbon footprint of the economy from its current relatively low level of greenhouse gas (GHG) emissions.⁶

⁴ Generally, the term reliability refers to the certainty that operators may have with regard to the future power output of their power plant. In the context of conventional and nonconventional power sources, although some may claim that conventional power sources are more reliable, others show that their reliability is hampered by the sudden shutdown of a power plant. Alternatively, nonconventional renewable power plants (such as wind farms) are claimed to be highly reliable because wind turbines do not all shut down simultaneously and instantaneously. As explained in this document, this is not a concept that has been integrated in the energy market in Colombia. It should be noted that in this document and for the case of Colombia, the term reliability is necessarily related to the reliability payment and the firm power output that power plants can produce during dry periods and in times of drought (this is further explained throughout the document).

⁵ However, current technical constraints do not allow a system to be fully based on wind power.

⁶ The level of emissions of the sector is well below the average in the US, the European Union, Canada and Mexico (0.35 ton CO_2e/MWh). Some power plants that utilize renewable energies have already tapped into the international carbon trade (Jepírachi Wind Farm, Amoyá Run-of-River Power Plant) at an individual level, and new mechanisms are being developed globally to promote low-carbon development paths.

3. ALTERNATIVE POWER OPTIONS FOR COLOMBIA'S POWER MIX

vii) A cost comparison of 37 alternative technology options for power generation in Colombia, using a levelized curve/netback analysis, indicates that, as expected, large hydropower is the least-cost power option with or without CO_2e emission reduction revenues over a wide range of capacity factors. After hydropower, the rehabilitation of existing (subcritical) coal power plants and the fuel switch from oil or natural gas to coalfired power plants present some of the lowest levelized costs at any capacity factor; these options are not currently used in the country.

viii) Allowing for CO_2 revenues does not significantly change the least-cost capacity expansion ranking. For 2007 investment costs (based on which the analysis was made) even at a CO_2e price of US\$50, wind power is still not the least-cost option. Within this range of revenues, carbon credits fail to effectively affect the ranking of options, proving that the Clean Development Mechanism (CDM) alone at the 2007 price level is not enough to promote alternative zero-carbon energy under existing conditions in Colombia. Therefore, other policy options are required to facilitate market entry for wind power.

4. WIND ENERGY CAPITAL COSTS ARE EXPECTED TO DECREASE

ix) **Primarily because of the increased interest caused by climate concerns, wind power installations are experiencing rapid change and improvements.** For example, the energy produced per unit of installed capacity (measured as weighted average of capacity factors) went from 22 percent for wind power projects installed before 1998 to 30–32 percent for projects installed from 1998 to 2003 and to 33–35 percent for projects installed during 2004–2006 (LBNL 2008).

x) **Investment costs have decreased in the last year after peaking late in 2008.** Investment costs for wind energy projects experienced a decreasing trend, which interrupted between 2004 and 2008 as consequence of high demand, limited production capacity and the global high demand for raw materials. Recent information indicates that investment costs have continued the long-term downward trend, with mid-2009 average costs at around \$1,800/kW.

xi) Annual average operation and maintenance costs of wind power production have also continuously declined⁷ since 1980. Most importantly, the capacity-weighted average of 2000–2007 operation and management costs for projects constructed in the 1980s was equal to US30/MWh, but dropped to US20/MWh for projects installed in

⁷ Lawrence Berkeley National Laboratory (LBNL) estimates that this drop in costs could be due to the following: a) operation and maintenance (O&M) costs generally increase because as turbines age, component failures become more common; b) as manufacturer warranties expire, projects installed more recently with larger turbines and more sophisticated designs may experience lower overall O&M costs on a per-MWh basis; and c) project size. To normalize for factors a) and b) above, LBNL produces other figures and analyses that can be found in the original publication but nonetheless reveal O&M cost declines.

the 1990s and to US\$9/MWh for projects installed in the 2000s. These trends are expected to continue in the foreseeable future, gradually improving the relative competitiveness of wind power.

5. WIND AND HYDRO ENERGY RESOURCES ARE COMPLEMENTARY

xii) The report examines the extent to which the wind resource is complementary to the hydro regime in Colombia.⁸ Wind power appears to be available when its contribution to the national grid is most needed, that is, during the dry periods and to an extent during the early evening when demand peaks.

xiii) Colombia's interconnected power system could be affected by large-scale droughts due to its high reliance on hydropower. Historically, critical drought conditions are linked to El Niño events, such as those of 1991–1992 and 2002–2003. Existing power generation data from Jepírachi (for the period from February 2004 to March 2009) and wind velocity records data from Puerto Bolívar were extended to cover the period from 1985 to 2008 to assess wind generation capacity during drought periods. The analysis considered four rivers with substantial hydropower development: Guavio, Nare, Cauca and Magdalena. The most severe droughts in these basins correspond to the El Niño period from April 1991 to July 1992 when severe energy rationing occurred, and from April 1997 to May 1998 when pool prices reached very high spot prices, forcing regulatory changes in the market. During these periods the estimated generation from wind was well above the mean value. That is, during periods of extreme drought associated with El Niño, wind energy from northern Colombia was above average. This analysis is described in detail in Annex 13.

xiv) Complementarity was also explored by analyzing the joint operation of a simple system consisting of a wind farm operating in tandem with a hydropower plant of similar size for each of the rivers studied and for a range of reservoir sizes. The analysis is summarized for each of the rivers is also described in Annex 13. **Results suggest that firm energy from the joint operation of wind and hydropower plants surpasses the isolated operation of the hydropower plant and of the wind farm.** This result holds for a wide range of possible reservoir sizes studied. **The strong complementarity that the joint operation** of wind and hydropower plants exhibits has not been recognized by the current regulatory system adopted by Colombia.

6. **OPTIONS TO ADDRESS BARRIERS TO ENTRY**

xv) **Despite the resource endowment and strategic advantages, under current circumstances wind-based generation faces considerable obstacles to participate in the nation's power mix.** Key obstacles (described in the first-stage report⁹) include the

⁸ The analysis is based on Jepírachi's operational record and wind data in meteorological stations in northern Colombia.

⁹ Vergara et al, 2008, already cited.

current relatively high capital intensity and the structure of the regulatory system, which does not acknowledge wind's potential firm capacity.¹⁰ Specifically, there is a mechanism in place that remunerates firm energy¹¹ (through auctions), in which wind power currently cannot participate. The first stage report identifies barriers that nonconventional renewable energy sources face in the country and to propose various set of policy options that may lead to a wide market entry.

xvi) There is a wide range of potential instruments through which governments can guide the functioning of power markets. Many of these instruments would be applicable to the energy sector in Colombia. However, only a subset of options was explored in detail (those that are in agreement with the existing regulatory system in Colombia and have the effect of changing the financial results for a potential investor):

- a) Access international financial instruments to internalize *global* externalities in national and private decisions. The government can play an active role in promoting access to financial instruments aimed at reducing GHG emissions through:
 - Active participation in the Clean Development Mechanism (CDM) by engaging in the global carbon market. This is already mainstreamed into the environmental policy in Colombia, but it could be further strengthened within the energy policy; and
 - Access to multilateral soft loans earmarked for alternative energies or other concessionary funding sources for low carbon investments such as the Clean Technology Fund.
- b) **Target subsidies through government fiscal mechanisms.** The government could utilize fiscal measures for the benefit of potential investors. Specifically, the mechanisms identified:
 - *Reduction in income tax.* As previously indicated, tax exemptions or reductions are policy mechanisms to guide investment toward areas of policy interest. From the investor's point of view, such policies are tools to improve the after-taxes returns.
 - *Exemptions from system charges.* The government could use the regulatory system to reduce or eliminate charges paid for automatic generation control, environmental charges and/or contributions to the fund for the electrification of off-grid regions, FAZNI.

¹⁰ Note that the firm capacity of renewable energy is the capacity of conventional sources replaced, such that demands can be met with a specified reliability. The firm capacity of a renewable source depends on the correlated variations in demands and renewable supplies (Barrett 2007).

¹¹ Firm energy is defined as the maximum monthly energy that can be produced without deficits during the analysis period which includes El Niño occurrences (this is further explained throughout the document).

- c) **Reform the regulatory system.** The regulatory system should be adjusted to promote a level playing field for wind power, and to guide the country toward low carbon intensity development. The existing regulatory system has developed mechanisms to steer the market in order to provide a more resilient interconnected system (measured by its capacity to deliver the demand even during the most difficult hydrological conditions). In doing so, renewable energy technologies (RETs) have not received adequate compensation for their contribution. This situation could be remedied by:
 - Adjustment of the reliability charge. Colombia has developed a financial mechanism to produce an economic signal to investors as a price premium on reliable installed power capacity. Unfortunately, the existing regulation does not count with clear rules to assess the potential contribution of wind energy to the overall reliability of the interconnected system and thus favors conventional power plants. In practice this discriminatory treatment has been identified as a major barrier to further investments in the wind sector
 - In relation to above, alternative policy option analyzed is *the possibility of reducing or eliminating CERE (real equivalent cost of capacity charge) payment obligations for certain RETs,* as an extension of the existing option for small-scale investments¹²; and
 - Governments could also utilize the regulatory system to correct market failures by creating charges and payments to correct for externalities. To correct the economic signal for environmental externalities with impacts on local communities, ecosystems and economic sectors, a sustainability charge (green charge) has been proposed. Highly polluting technologies would be charged while clean technologies would receive a payment, making the system cost neutral to the government.

xvii) As found out in discussions with decision makers and high-level policy advisors, the selected options are consistent with the existing regulatory system in Colombia and agreeable to the key stakeholders for further analysis. This analysis could likely take place when the government further fine-tunes its decision on policy instruments and policy options to guide the power sector in the future.

7. IMPACT OF POLICY OPTIONS

xviii) The assessment focuses on the identification of policy options (government intervention) that would enable a wind power plant to reach a 14 percent rate of financial

¹² It should be noted that simultaneously allowing for reliability charges and waiving CERE payments is not recommended. It would imply a logical contradiction because funds for the reliability charge come from CERE.

return (independent investor decision). The main results of the assessment can be found below. Also the table ExSum1 summarizes the results of applying different options to a 300 MW wind power project, assuming three investment costs. For each investment cost, three scenarios are described, depending on the reliability factor used to recognize the project's contribution to firm energy during dry periods. The values include a worst case assessment of firm energy contribution (reliability factor of 0.20), an intermediate value (reliability factor of 0.30), and a moderate estimate of the reliable firm energy (0.36).

- *xix)* Main results of the impact assessment of the policy instruments are:
 - a. The single **most effective policy instrument** to promote wind power in Colombia is the granting of **access to reliability payments**, recognizing the firm energy and complementarity offered by wind. The implementation of this policy option is relatively easy to incorporate into the existing regulatory system.
 - b. For new wind-power plants with costs in the range of \$1,800/kW installed, the adoption of the reliability payments is enough to attract investors, operating in wind fields with similar characteristics to that found in Northern Guajira.
 - c. **Higher capital costs require** access to **concessionary financial conditions**, such as those provided under the Clean Technology Fund or fiscal incentives.

8. LESSONS LEARNED

- *xx*) The principal lessons learned from this study are as follows:
 - a. Wind-powered power plants are experiencing improvements in efficiency and reductions in operation and maintenance costs. Moreover, since 2008 investment costs have decreased, returning to the expected technology maturing behavior of cost reductions with time, a trend that is expected to continue.
 - b. In certain locations, such as northern Colombia, **wind resources** are plentiful and could provide **substantial complementarity** to hydro-based power systems.
 - c. Under existing conditions wind is not a competitive technology option in Colombia. Of the several **barriers** found, the most relevant is the difficulty in accessing payments for its contribution to firm energy.
 - d. Governments have a wide range of **policy instruments and policy options available** to promote renewable energy technologies (RET).
 - e. To foster wind resources, governments should **strengthen wind data collection** as a public service, **improve access to research** and technology developments, and **modernize grid access** to wind power.

- f. Although the analysis has centered on Colombia and its energy sector, the approach and main **results are applicable to other countries** relying on hydropower.
- g. In summary, under existing conditions wind-farms are not financially attractive in Colombia even considering the drop in investment costs recorded during 2009. Wind investments however would become financially attractive if the benefits of reliability payments are extended to wind power, even under current investment costs. The government has other multiple policy instruments to steer independent investors towards RETs. Adopting several of these options, as detailed in the report seems relatively simple and will not distort the market. Improving the conditions for market entry of the wind option will serve to prepare the sector for the anticipated improvement of conditions as investment costs for wind decrease over time.
- h. Finally, deployment of the wind option would help the sector to strengthen its climate resilience and be better prepared to face climate variability, without increasing its carbon footprint.

Table ExSum 1. Actions required to reach a financial thresholdfor a 300 MW wind power plant on the northern coast

Investment	If reliability payment	
(US\$)	considered at %	Required actions to reach a 14% Internal Rate of Return (IRR) ¹³
	None	Elimination of sector fees (AGC, FAZNI, CERE) and considerable financial support: i.e., 10% CTF financing and access to 60% soft loans
\$2.400	20%	Requires considerable financial support: i.e., 40% CTF financing and access to 20% in soft loans
\$2,400	30%	Requires considerable financial support: i.e., 30% CTF financing and access to 30% in soft loans
	36%	Requires considerable financial support: i.e., 20% CTF financing and access to 50% in soft loans
	None	Elimination of sector fees (AGC, FAZNI, CERE) and special financial support: i.e., access to 30% soft loans
\$2 100	20%	Requires considerable financial support: i.e., 15% CTF financing and access to 55% in soft loans
\$2,100	30%	Requires considerable financial support: i.e., 5% CTF financing and access to 65% in soft loans
	36%	Requires special financing support: i.e., 60% access to soft loans
	None	Elimination of sector fees (AGC, FAZNI, CERE). No additional intervention is required
\$1 800	20%	Requires special financing support: i.e., 40% access to soft loans
\$1,000	30%	No additional interventions required
	36%	No additional interventions required

This report was prepared by W. Vergara (engineer), A. Deeb (hydrologist), A. Valencia (renewable energy specialist), N. Toba (economist), J. Mejía (energy specialist), A. Brugman (power engineer), P. Cramton (energy regulation specialist) and I. Leino (JPO).

¹³ Clean Technology Fund,(CTF) is a climate change donor driven fund seeking the implementation of transformational low carbon options. CTF financial conditions are typically, 0.65% interest rate with 20 to 40 year repayment period and 10 years of grace. Soft loans are those with conditions typical of IBRD lending conditions.

I. INTRODUCTION

1. CONTEXT

1. This report constitutes the second phase of an effort to identify and address barriers to the deployment of wind energy in Colombia's power sector. The first phase was reported in a document entitled Nonconventional Energy Barrier Analysis, completed in February 2008 and discussed with high-level energy authorities in Colombia. It concluded that (i) Colombia has a substantial nonconventional renewable energy resource endowment, in particular wind and solar but also significant prospects for geothermal, that complements the existing large hydropower potential; (ii) nonconventional energy options face important policy and regulatory barriers that prevent market entry; (iii) globally, several nonconventional renewable energy options are becoming financially more attractive as a result of a normal maturity process and commercialization of low carbon options; (iv) internalizing global and local externalities increases the competitiveness of selected nonconventional sources; and (v) options are available to decision makers to address barriers to the expansion of nonconventional power in the Colombian power mix. It was designed to explore the impact of options identified for addressing these barriers.

2. The wind regime in Colombia has been rated among the best in South America. Offshore regions of the northern part of Colombia have been classified with class seven winds (winds over nine meters per second [m/s] at heights of 50 m). The only other region in South America with such high wind availability is the Patagonia region of Chile and Argentina. Colombia has an average estimated wind power potential of 18 GW in the Guajira region—enough to meet the national power demand twice over (Pérez and Osorio 2002). However, the country only has an installed capacity of 19.5 MW of wind energy (Jepírachi Project, supported by the Bank) with a few additional projects under consideration, including a 200 MW project in Ipapure. Consequently, wind power today represents a small fraction of the installed capacity. In 2008 the installed capacity in Colombia (13.4 GW) was 67 percent hydro (including small hydro), 27 percent natural gas, five percent coal, and 0.3 percent wind and cogeneration. Figure I, below, illustrates the installed capacity per technology type¹⁴. The total annual electricity demand that same year was 54 TWh (Ministry of Mines and Energy, and UPME 2009).

¹⁴ In 2008 there was an increase in the registration of prospective coal power projects (totaling 2,884 MW) and, for the first time, of fuel oil projects (totaling 305 MW of installed capacity). In contrast, 2,520 MW were natural gas, 7,770 MW were hydropower, and (as mentioned previously) 19.5 MW were wind.

Figure I. Installed capacity per technology type

3. Colombia also has substantial reserves of natural gas and coal, which could be used to generate power. The natural gas reserves in 2007 were seven Tera cubic feet, including proven and unproven reserves (Ministry of Mines and Energy 2008). The La Guajira region of Colombia supplies most of the demand, 62 percent in 2007, compared to the next highest supplier (Cusiana) with 26 percent.

4. Colombia's coal reserves are estimated at seven billion tons (or about 100 years of production at the present mining rate). These reserves are mostly located in the northern part of the country. These are the largest coal reserves in South America. Most coal mined is anthracite, with very low ash and sulfur content, ideal for exports to the European market. Current production is 59 MMT (42 MTOE), with plans to increase production to 100 MMT by 2010.¹⁵ Most of Colombia's coal production is exported. Of the coal used internally (2.4 MMT in 2000), more than 75 percent goes to industrial uses and the rest goes to the power sector (equivalent to 378 KTOE or ~4,400 GWh).

5. Colombia's power sector is maturing quickly, with relative stability in its regulations, an unbundled system, and a dispatch mechanism that closely resembles a well-functioning competitive market. Competition is promoted and tools have been designed to attract cost-effective capacity expansions that would promote reliability¹⁶ of

¹⁵ Although there are plans to expand production, there is also a holdback based on fears that this would cause a drop in coal prices because Colombia is such an important player in the world's thermal coal market.

¹⁶ Generally, the term "reliability" refers to the certainty that operators may have with regard to the future power output of their power plant. In the context of conventional and nonconventional power sources, although some may claim that conventional power sources are more reliable, others show that their reliability is hampered by the sudden shutdown of a power plant. Alternatively, nonconventional renewable power plants (such as wind farms) are claimed to be highly reliable because wind turbines do not all shut down simultaneously and instantaneously. As explained in this document, this is not a concept that has been integrated in the energy market in Colombia. It should be noted that in this document and for the case of Colombia, the term "reliability" is necessarily related to the "reliability payment" and the "firm power" output that power plants can produce during dry periods and in times of drought (this is further explained throughout the document).

service. (A fuller description of the system and its dispatch mechanism was included in the stage-one report.)

6. However, the interconnected system, if unguided, is not likely to promote nonconventional renewable energy resources such as wind, but rather maintain a high capacity share of hydropower or alternatively move toward a more carbon-intensive energy resource mix (likely reliant on abundant coal reserves). In the latter case this would result in an increase in the carbon footprint of the economy from its current relatively low level of greenhouse gas (GHG) emissions.¹⁷

7. The analysis focuses on wind power. Wind is currently the least-cost nonconventional renewable energy alternative. There is also the possible complementarity of the wind regime with periods of low hydrology, which is further explored in this report. The World Bank was an early supporter of the wind option in Colombia through its participation in the Prototype Carbon Fund of the Jepírachi Wind Power Plant in the province of Guajira.

2. STRUCTURE OF THE REPORT

8. After the introduction, Section II summarizes the main findings of the first phase. It describes Colombia's energy profile and presents the main barriers that limit the development of nonconventional renewable energy sources. Section III presents a comprehensive comparison of 37 energy technologies through levelized costs analysis. The analysis permits the identification of the technologies most likely to participate in the future expansion of the interconnected system. It also studies whether CO2 revenues change the least-cost capacity ranking. Section IV summarizes the cost evolution of wind energy units over time, and provides an overview of the trends that define the future of this technology. Section V presents the complementarity of joint operation of wind and hydro in Colombia and explores the possible contribution of wind to firm energy. Sections VI introduces different policy options to facilitate the market entry of wind power, and VII reviews the effectiveness of the selected policy options in creating the adequate incentives (i.e., expected financial returns on equity) to attract potential investors. Key findings and conclusions are summarized in the last section.

¹⁷ The sector's level of emissions is well below the average in the US, the European Union, Canada and Mexico (0.35 ton CO_2e/MWh). Some power plants that utilize renewable energies have already tapped into the international carbon trade (Jepírachi Wind Farm, Amoyá Run-of-River Power Plant) at an individual level, and new mechanisms are being developed globally to promote low-carbon development paths.

II. SUMMARY OF FINDINGS FROM FIRST STAGE REPORT: NONCONVENTIONAL RENEWABLE ENERGY BARRIER ANALYSIS

9. This section summarizes the results of the first stage of the ESMAP-funded Review of Policy Framework for Increased Reliance on Renewable Energy in Colombia. Its objective was to identify barriers to the development of nonconventional renewable energy resources in Colombia. Large hydro is not included as part of nonconventional energy resources because it is a well-established option in Colombia. Large hydropower is also a relatively low-cost renewable energy source and already constitutes the bulk of the base load in the power sector. This document emphasizes nonconventional renewable energy sources.

10. **Colombia is a net energy exporter.** Colombia is not one of the world's leading energy producers, but the country is a net energy exporter. Colombia's demand for energy has been increasing over the past decade and is expected to grow at an average of about 3.5 percent per year through 2020 (UPME 2009). The country's total energy production in 2006 was 3.3 QUADS (quadrillion¹⁸ BTU),¹⁹ while consumption was 1.2 QUADS, from which electricity consumption stood at 0.14 QUADS.²⁰ This highlights the energy export nature of the Colombian economy. The difference between its energy production and consumption has been due mostly to oil and large coal exports.

11. The country is a modest energy user and CO_2 emitter. The power sector in Colombia already has a very low carbon footprint (0.35 tons/MWh generated²¹). Energy demand is characterized by growing requirements in the transport sector, followed by the industrial and domestic sectors. The average power use per capita is 923 kilowatt hours (kWh)/year. National carbon dioxide (CO₂) emissions are 59.4 million metric tons (MMT), or 1.3 tons of CO₂ (tCO₂)/capita, less than half the world average. Colombia's energy intensiveness is 0.2 CO₂/GDP (PPP) (kg CO₂/2000 US\$ PPP), according to the International Energy Agency or IEA (2006).²² This is much lower than that of countries in Europe and North America.

12. **Hydropower is the dominant source of energy and is likely to continue to characterize Colombia's power sector for the foreseeable future.** Currently, about 64 percent of capacity and 81 percent of generation are hydro based. A generous hydrological regime and a favorable orography provide the basis for a large hydropower potential. The most recent bid for power supply resulted in an overwhelming supply of new hydropower plants to meet the projected increase in demand in the immediate future.

13. A largely hydro-based power system may be susceptible to anticipated climate variability affecting rainfall patterns. A projected increase in the intensification of the water cycle and the possible intensification of extreme events (El Niño-Southern Oscillation [ENSO] and La Niña) associated with temperature dipoles on

¹⁸ 10¹⁵; <u>SI prefix peta</u> (P).

¹⁹ 3.3 QUADS or 85 Mtoe (IEA 2006).

²⁰ 0.14 QUADS or 42 TWh (IEA 2006).

²¹ As estimated in the recently completed PDD for the Amoyá Environmental Services Project.

²² http://www.iea.org/Textbase/stats/indicators.asp?COUNTRY_CODE=CO&Submit=Submit

the Pacific coast of Colombia may raise the vulnerability of the power sector by affecting the reservoir capacity of hydropower-based plants. It is therefore prudent to examine how its climate resilience could be strengthened.

14. **Colombia's oil reserves are limited and may not be able to maintain selfreliance in the short term.** The country has long relied on a generous endowment of fossil fuels, oil, coal and gas to meet domestic energy needs as well as to contribute substantially to the balance of trade in international markets. However, self-reliance on domestic oil is in question because reserves in number of years of supply have decreased and would only last 7 years at the current rate of production (Memorias del Ministro de Minas y Energia 2007–2008). Natural gas supplies are sufficient for 27 years of supply at the current rate of consumption; however, bottlenecks in the gas distribution system limit its use in several areas of the country. The main transportation restrictions will be removed in the 2010–2012 period with new pipelines and transport loops that are under construction and that could facilitate natural gas transport from the main fields to the large natural gas markets.

15. **Prior to the use of nonconventional renewable resources in the power sector, there is a need to address a number of barriers that impede their wide deployment.** These include: capital intensity, local financial market limitations, lack of regulations and regulatory uncertainty, lack of adequate data to assess resource availability, lack of clear rules for nonconventional energy sources, bias toward conventional technologies (for example, with the firm energy reliability payment), and limited strategic planning.

16. The Government of Colombia (GOC) can play a significant role in facilitating the entry of nonconventional energy sources. Policy options include: i) developing a strategic energy plan beyond ten years that includes nonconventional energy resources; ii) similarly, adopting least-cost planning that includes environmental and social costs in decision making; iii) modifying the regulatory framework to address obstacles that prevent a level playing field for nonconventional renewable power resources; iv) facilitating information sharing on wind endowment; and v) facilitating access to financial instruments available under climate change investment funds.

17. This report focuses on alternatives to address (counter) the relatively higher capital intensity of the wind power option, which may result in a more attractive energy source in the country, provided that certain potential regulatory framework modifications are made.

III. COST COMPARISON OF ALTERNATIVE POWER SOURCES BASED ON THE EXPANSION PLAN FOR 2008–2025

18. Before a detailed assessment is made of policy options to facilitate market entry for wind power, this section provides a cost comparison of available technologies for power generation, based on the generation expansion plan for 2008–2025 prepared by the Mines and Energy Planning Unit (UPME) of the Colombian Ministry of Mines and Energy. For this purpose, the analysis includes simple screening curves of 37 power generation technologies to compare with the results of the wind option.

19. Hydropower is the dominant source in the National Interconnected System (NIS) and is expected to continue to be so for the foreseeable future. The large base-load hydro capacity is complemented today by thermal power, mostly from domestic natural gas-fired power plants and a much smaller amount from domestic coal-fired power plants.

1. METHODOLOGY FOR TECHNOLOGY COST COMPARISON

20. Due to data availability restrictions, the analysis is limited to a simple static analysis to provide indicative values. Projections of increase or change in capital cost of power plants are beyond the scope of this study, especially considering the rapid growth and volatility in capital costs experienced since the early part of the present decade. Therefore, the most recent capital costs available are used (2007/2008). Price assumptions, in line with national projections, are made as follows: coal at US\$35 per ton, natural gas at US\$4/MBTU, and residual fuel oil for power plants at US\$51 per barrel.

21. The calculation of levelized total plant costs (TPC) is based on the *Technical and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies* (World Bank 2007). The 37 electricity generation options are listed in Table III.1 below. Coal-fired power plants are considered as equipped with flue gas desulfurization (FGD) and selective catalytic reduction (SCR). Although Colombia currently does not require FGD, equipping coal-fired power plants with FGD and SCR represents best international practice even when low-sulfur coal is used. In addition, equipping SCR and FGD is a prerequisite for coal-fired power plants to be carbon capture- and storage (CCS) -ready. Coal-fired power plant options include those that are much less expensively made in China. Two metrics are used to assess the relative rating, as per the procedure mentioned above. The cost of capacity of the plant per year (US\$/kW per year) and the cost of generation (US\$/kWh).

Table III.1. Power generation options included in the screening curve analyses

Plant Type			
Subcritical (SC) coal-fired 300 MW/550MW	Diesel 5 MW		
Supercritical (SPC) coal-fired 550 MW	Hydro 400 MW/1200 MW		
Ultra supercritical (USPC) coal-fired 550 MW ²³	Wind 10MW/300 MW		
Subcritical (SC) 300 MW/550 MW coal-fired carbon capture and storage (CCS)	Subcritical (SC) Circulating Fluidized Bed (CFB) 300MW/500MW		
Supercritical (SPC) coal-fired 550 MW carbon capture and storage (CCS)	Subcritical (SC) Natural Gas Steam 300 MW		
Ultra supercritical (USPC) coal-fired 550 MW carbon capture and storage (CCS)	Subcritical (SC) Oil Steam to Coal 300 MW		
Integrated Gasification Combined Cycle (IGCC) 300 MW/640 MW	Subcritical (SC) Nat Gas Steam to Coal 300 MW		
Integrated Gasification Combined Cycle (IGCC) carbon capture and storage (CCS) 220 MW/555 MW	Subcritical (SC) 500 MW Rehabilitation		
Simple Cycle Gas Turbine (GT) 150 MW	China subcritical (SC) 300 MW/550 MW		
Combined Cycle Gas Turbine (CCGT) 140 MW/560 MW	China supercritical (SPC) 550 MW		
Combined Cycle Gas Turbine (CCGT)	China ultrasupercritical (USPC) 550 MW		
Combined Cycle Gas Turbine (CCGT) carbon capture and storage (CCS) 50 MW	China subcritical (SC) 300 MW/SC 550 MW carbon capture and storage (CCS)		
Combined Cycle Gas Turbine (CCGT) carbon capture and	China supercritical (SPC) 550 MW carbon		
storage (CCS) 482 MW	capture and storage (CCS)		
Fuel Oil Steam 300MW			
CFB: Circulating Fluidized Bed. IGCC: Integrated Gasification Combined Cycle. CCS: Carbon Capture and Storage, CCGT: Combined Cycle Gas Turbine, SC: Subcritical, SPC: Supercritical, USPC: Ultra			
supercritical			

22. As of 2006, nine coal-fired power plants were installed in Colombia (totaling 700 MW); these were commissioned between 1963 and 1999. Although it is unclear whether these power plants have been rehabilitated to prolong their plant life, they are included in the analysis. Moreover, although a few hydropower plants operate at a high capacity factor of around 80 percent, it is assumed that, on average, the hydropower capacity factor is 60 percent. A 40 percent capacity factor is assumed for wind power.²⁴

23. Within the screening curves, the electricity generation plants were ranked in order of least-levelized cost per kW for different capacity factors. The levelized cost analysis is done with and without consideration of carbon revenues. The results are presented below.

 $^{^{23}}$ According to the World Coal Institute, new pulverized coal combustion systems—utilizing supercritical and ultra-supercritical technology—operate at increasingly higher temperatures and pressures and therefore achieve higher efficiencies and significant CO₂ reductions to conventional pulverized-coal fired units (World Coal Institute 2009).

 $^{^{24}}$ A capacity factor of 40 percent is assumed: the winds on the northern coast of Colombia are class 7 and are constant. This number has been discussed with the utility that owns, maintains and operates the only wind farm in Colombia. Values have been and can be obtained in the area (in a location near the site where a larger wind project can be located).

2. LEAST (LEVELIZED) COST COMPARISON

24. Clearly, the low cost of hydropower in Colombia is evidenced by the high hydropower capacity reserve of its power system, in which many hydropower plants function as base load. The total hydropower net effective installed capacity is 13 GW with a peak power demand at 9 GW. With or without CO_2e emission reduction revenues, large-scale hydropower is the least-cost power option.

25. The rehabilitation of subcritical coal power plants and the fuel switch from oil or natural gas to coal-fired power plants present the next lowest levelized costs at any capacity factor. However, these options do not add to installed capacity.

26. The next low-cost option is low-cost manufactured coal-fired power plants, without allowance for carbon capture and storage (CCS). Likewise, Combined Cycle Gas Turbines (CCGT) are among the cheapest technology options. Wind power generation under current scenarios and conditions, and even with possible capacity factors of up to 40 percent, is not among the least-cost choices. Similarly, Integrated Gasification Combined Cycle (IGCC) and CCS technologies are also not among the least-cost options in Colombia.

27. The most cost-effective power generation options are presented in Tables III.1 and III.2. The options presented are similar to the current generation picture of Colombia, but with more inclusion of coal power plants due to their lower cost. Abundant coal reserves would back up the development of this option. This assumes that the internalization of global environmental issues is not considered. Figures III.1²⁵ and III.2 provide a graphic representation of the results of the analysis. Figure III.1 presents the results for the aggregate cost over a year; this figure increases as the capacity factor increases since the amount of power generated over the year. Figure III.2 presents the calculated generation costs, which decrease as the capacity factor increases.

Electricity Generation	Base load	Medium Load	Peak load
Major additions of new capacity	Large and medium hydropower with modest backup requirement of low-cost coal-fired SC, SPC and USPC power plants using most advanced clean coal technology	Large and medium hydropower	Large and medium hydropower
Minor additions of capacity	CCGT and old SC coal power plant rehabilitation using most advanced clean coal technology	CCGT (which could also operate both base load and peaking, as backup)	Gas turbines and Diesel
Additional 15%	Large and medium hydropower	Large and medium	Large and

Table III.2. Least-cost capacity expansion mix (without CO₂e revenue)

 $^{^{25}}$ Figure III.1 shows the cost per year of operation of a power plant operating at different plant factors. The higher the plant factor the higher the costs (although the cost per unit of energy generated decreases). On the other hand, Figure III.2 presents the average generation costs, which decreases as the capacity factor increases.

for capacity	hydropower	medium
reserve	5 1	hydropower

Electricity Generation	Base load	Medium Load	Peak load
Major new capacity	Large and medium hydropower with modest backup requirement of low-cost coal-fired SC, SPC and USPC power plants using most advanced clean coal technology	Large and medium hydropower and wind power	Large and medium hydropower and wind power
Modest new capacity	CCGT and old SC coal power plant rehabilitation using most advanced clean coal technology	CCGT (which could also operate both base load and peaking, as backup)	Gas turbines and Diesel
15% or more capacity reserve	Large and medium hydropower	Large and medium hydropower	Large and medium hydropower

Table III.3. Suggestee	l capacity o	expansion mix	x at US\$18	per ton	CO ₂ e
------------------------	--------------	---------------	-------------	---------	-------------------

Figure III.1. Screening curve for levelized total costs measured in cost of capacity of a plant per year (US\$/kW-yr) at different capacity factors.

Coal price US\$35/ton; Emission reductions US\$18/ton CO2e.

Figure III.2. Screening curve for levelized total costs at different capacity factors measured in terms of generation costs (UScents / kWh)

2.1. Coal netback calculations

28. For coal prices ranging up to US\$60 per ton, the rehabilitation of existing coalfired power plants (limited to a total of 700 MW) is among the least-cost options for adding capacity. Rehabilitating existing coal-fired power plants is a good option for the range of coal prices indicated.²⁶

29. At a price of more than US\$50 per ton of coal, and including US\$18 per CO₂e ton, new coal power plants are not a least-cost option. Furthermore, if low-cost coal-fired

²⁶ In Colombia, most coal power plants are old and have not been retrofitted (there has been a focus on building natural gas plants, rather than coal plants). These coal power plants could be modernized to achieve greater efficiencies.

power plants²⁷ options are excluded, coal-fired power plants become the least-cost options only at very low coal prices from US\$10–20 per ton.

30. Allowing for CO_2 revenues does not significantly change the least-cost capacity expansion ranking. For analysis purposes it is assumed that CO_2e is valued at US\$18 per ton for the 37 options (the results are similar to those presented in Table A2.1 of Annex 1). For 2007 investment costs (based year used) even at a CO_2e price of US\$50, wind power is still not the least-cost option. Within this range of revenues, carbon credits fail to effectively affect the ranking of options, proving that the Clean Development Mechanism (CDM) alone at the 2009 price level is not enough to promote alternative zero-carbon energy under existing conditions in Colombia. Therefore, other policy options are required to facilitate market entry for wind power.

31. From the results of the analysis, and under current and foreseeable conditions, large hydro remains the best option for power generation and guarantees a power sector that is relatively low in carbon footprint. Moreover, under the current scenario, coal seems an obvious backup option to the base load.

32. Since this is a limited estimate, based on secondary data, a more comprehensive modeling exercise and impact analyses on low carbon growth should be conducted; this would include all other relevant costs (e.g., transportation costs, transmission pipeline and distribution costs, transaction costs, environmental and social costs, institutional costs, logistical costs, etc.). Tools available to perform this analysis include MARKAL.²⁸ Moreover, although not directly assessed, the deployment of renewable sources, including hydro, reduces exposure to volatility in fossil fuel prices.

²⁷ New low-cost coal-fired power plants (imported from China, with operational reliability yet to be defined) result in least cost; this is especially true if a supercritical (SPC) coal-fired power plant of 550 MW is installed.

²⁸ MARKAL is a generic model tailored by the input data to represent the evolution over a period of usually 40 to 50 years of a specific energy system at the national, regional, state, provincial or community level. MARKAL was developed by the Energy Technology Systems Analysis Programme (ETSAP) of the International Energy Agency. Source: <u>http://www.etsap.org/Tools/MARKAL.htm</u>.

IV. WIND POWER COSTS OUTLOOK

33. The results of the technology cost comparison show that under existing conditions (based year 2007) wind power is not a least-cost option for power generation in Colombia, even at CO_2e price of US\$50/ton CO2e and high capacity factors. However, wind power costs are expected to decrease with time, as the technology matures. This section examines the trends in wind power costs and performance.

1. TECHNICAL VIABILITY OF WIND POWER

34. In early 2009 wind power installed capacity worldwide reached 121 GW. Since the late 1990s, wind power installed capacity has increased by over 20 percent annually and is expected to continue increasing in 2009 and 2010 by similar magnitudes (Figure IV.1).

Figure IV.1. World total wind power installed capacity (MW)

SOURCE: WORLD WIND ENERGY ASSOCIATION 2009.

2. EFFICIENCY GAINS OVER TIME

35. Project **capacity factors have increased** in recent years due to technological advancements, higher hub height and improved siting. The weighted average of capacity factors went from 22 percent for wind power projects installed before 1998 to 30–32 percent for projects installed from 1998 to 2003 and to 33–35 percent for projects installed during from 2004 to 2006 (LBNL 2008). Even capacity factors above 40 percent can be found in excellent wind resource areas, such as in northern Colombia. The following figure (IV.2) presents the evolution of capacity factors by commercial operation date in the US.

Figure IV.2. Project capacity factors by commercial operation date

36. A cost study conducted by the US Department of Energy (DOE) Wind Program identified numerous opportunities for reductions in the life-cycle cost of wind power (Cohen and Schweizer et al. 2008).²⁹ Based on machine performance and cost, this study used advanced concepts to suggest pathways that integrate the individual contributions from component-level improvements into system-level estimates of the capital cost, annual energy production, reliability, operation, maintenance and balance of station. The results indicate significant potential impacts on annual energy production increases (estimated with an average efficiency increase of 45 percent) and capital cost reductions of ten percent. Changes in annual energy production are equivalent to changes in the capacity factor because the turbine rating was fixed.

²⁹ Cohen, J., T. Schweizer, A. Laxson, S. Butterfield, S. Schreck, L. Fingersh, P. Veers, and T. Ashwill. 2008. *Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction*. Report No. NREL/SR-500-41036. Golden, CO: NREL.

3. CAPITAL COST EVOLUTION

Figure IV.3. Reported US wind turbine transaction prices over time

38. Wind power project costs are a function of turbine prices. Turbine prices went from US\$700/kW in 2000–2002 to US\$1240/kW in 2007; these costs were even higher in 2008 (US\$2,200/installed kW). Higher costs in 2006–2008 were likely due to the high demand for technology (shortages in certain turbine components and turbines -greater demand than supply), the high cost of materials/inputs (such as oil and steel), a general move by manufacturers to improve their profitability, the devaluation of the dollar in comparison to the Euro, an upscaling of turbine size and hub height, and improved sophistication in turbine design such as improved grid interaction (LBNL 2008).

39. After the peak values exhibited in 2008 (equivalent to unit investment costs around US\$2,400/kW) new transactions indicate a return to a more competitive market. As of March 2009, the European Wind Energy Association (EWEA) reported that **the average cost of recent projects is now back to around** the level of \pounds ,225/kW. This translates to approximately **US\$1,800/kW** as the average 2009 transactions in the European market. This would continue the long-term trend in capital cost reductions observed earlier.

4. OPERATION AND MAINTENANCE COSTS ARE DECREASING

40. Annual **average operation and maintenance costs of wind power production have declined**³⁰ **substantially** since 1980. Operation and maintenance cost declines can be observed in the following figure (IV.4) for projects that were installed in 1980, until

Source: LBNL 2008.

³⁰ LBNL estimates that this drop in costs could be due to the following: a) O&M costs generally increase because as turbines age, component failures become more common; b) as manufacturer warranties expire, projects installed more recently with larger turbines and more sophisticated designs may experience lower overall O&M costs on a per-MWh basis; and c) project size. To normalize for factors a) and b) above, LBNL produces other figures and analyses that can be found in the original publication but nonetheless reveal O&M cost declines.

2005. The figure specifically suggests that capacity-weighted average 2000–2007 operation and maintenance costs for projects constructed in the 1980s equal US\$30/MWh, dropping to US\$20/MWh for projects installed in the 1990s, and to US\$9/MWh for projects installed in the 2000s.

Figure IV.4. Average operation and maintenance costs for available data years from 2000 to 2007, by last year of equipment installation

5. WIND POWER GRID INTEGRATION

41. **Integration of large capacities of wind energy into power systems is increasingly less of a concern** (there is growing literature in this respect³¹). In fact, as an example, the European Wind Energy Association³² considers that integrating 300 GW of wind power by year 2030 into European power systems is not only a feasible option for the electricity supply, but it has the benefits of increasing the security of supply and could contribute to low and predictable electricity prices. Furthermore, wind power has also been stated to help with system stability by providing Low Voltage Run-Through (LVRT)³³ and dynamic variable support to thus reduce voltage excursions and dampen swings (UWIG 2007). Moreover, by integrating wind power into the energy grid, the aggregation of wind turbines reduces variability in power generation;³⁴ simultaneous loss of capacity does not occur in a broad geographic region (as shown by extensive modeling studies); meso-scale wind forecasting could provide some predictability of plant output within some margin of error; similarly, forecasts are improving (UWIG 2007).

³¹ See, for example, Renewable electricity and the grid: the challenge of variability. Godfrey Boyle. Ed. 2007. Earthscan London.

³² European Wind Energy Association. 2008. Integrating 300 GW wind power in European power systems: challenges and recommendations. Frans Van Hulle, Technical Advisor. Presented at the World Bank's SDN Week. Washington. February 21–22.

³³ Also called ride-through faults, LVRTs are devices that may be required to be available when the voltage in the grid is temporarily reduced due to a fault or load change in the grid. Wind generators can serve as LVRTs. (Wikipedia 2009).

³⁴ Aggregation provides smoothing in the short term. However, there are significant benefits to geographical dispersion because dispersion provides smoothing in the long term.

42. Turbine orders larger than 300 MW tend to result in lower costs than turbine orders of less than 100 MW (likely due to economies of scale and lower transaction costs/kW) (LBNL 2008). However, there seems to be a small difference in costs for projects between 30 and 200 MW and in general, variations in costs of wind projects are more likely due to regional differences such as development costs, site and permitting requirements and construction expenses (URS 2008).

6. OUTLOOK

43. Wind power has undergone a fast developmental phase. The unprecedented pace of growth during this decade has outpaced manufacturing capabilities, creating a seller's-side market. Prices have also been affected by commodity price fluctuations, associated with the increasing levels of economic activity seen in the last five years, and more recently by changes in the worldwide economy. Wind power capacity is expected to continue to rise significantly worldwide, and to play an increasingly relevant role in meeting the growing energy demands of the future.

44. Wind power installed capacity in Latin America is very low and is increasing slowly. However, the slow pace of growth is expected to change once the downward trend in prices induces more stable market conditions. The financial crisis might allow the industry to find opportunities for development and to deal with demand expectations.

45. Figure III.3 below shows the threshold price for the wind power option (300 MW) to become competitive with large hydro power (1,200MW), which is currently the least cost option. Wind power would become competitive with large hydro power without reliance on incentives or other subsidies with the 30 or 40 percent capacity factor when the levelized cost of wind energy is at US\$ 940/KW and hydro power at US\$1,200/KW, totaling for both options either US\$136/KW/year at the capacity factor of 30 percent or US\$139/KW/year at the capacity factor of 40 percent.

V. WIND AND HYDRO IN COLOMBIA: COMPLEMENTARITY ANALYSIS

46. Although the levelized cost analysis indicates that under current conditions wind is not competitive with hydro, wind power under proper circumstances could complement the sector's large hydro-based capacity. This section examines the extent to which the wind resource complements the hydro regime in the country. It also characterizes some of the climate vulnerabilities of a hydro-based power sector to future climate change.

1. COMPLEMENTARITY OF THE WIND AND HYDRO REGIMES

47. Does the wind energy potential in northern Colombia have a distribution that is complementary to the availability of hydropower? This question can be examined on the basis of Jepírachi's³⁵ power generation records available since it started operations in 2004³⁶, and on the analysis of wind data in meteorological stations in northern Colombia. Complementarity could also be measured by wind availability during extreme drought conditions associated with El Niño events, and through the analysis of independent and joint operation of the Jepírachi wind farm and hydropower plants on selected rivers in Colombia. This section presents the results of the said analyses.

1.1 Generation data from Jepírachi

48. Power generation data at hourly level were available for the Jepírachi plant during its operation period.³⁷ This data makes it possible to estimate the distribution of the average monthly generation under peak, medium and base loads (Table V.1). For the dry period of December 1 to April 30 (as defined by the regulatory agency, CREG), Jepírachi produces ten percent more energy than its yearly average. The historical generation in Jepírachi during the first four months of the year is 17 percent above the yearly monthly generation.

³⁵ Jepírachi is a small wind farm, with 19.6 MW of nominal capacity, located in Northern Guajira, owned by EPM and in operation since 2004.

³⁶ Note that the capacity factor of Jepírachi during the 2004–2008 period was lower than expected, nearly 32 percent. Communication with the wind farm's owners reveals that some wind turbines were turned off for maintenance and that there were periods (normally between midnight and 6 a.m.) in which the wind farm did not generate due to tension imbalances in the transmission lines to which the wind farm is connected. These issues have now been resolved but it is believed that without these issues the capacity factor for Jepírachi could have been higher than that experienced.

³⁷ Data are from the Neon database with historical operation data created by Expertos en Mercados S.A. E.S.P. (XM), the Colombian hydrothermal system operator.

	Jepírachi average generation (MWh)				Ratio of average generation			
			Demand Block			Demand Block		
	Total	Peak Load	Med Load	Low Load		Peak Load	Med Load	Low Load
Jan	5098	232	4074	792		1.08	1.13	1.00
Feb	5338	258	4269	811		1 20	1 18	1.03
Mar	6414	313	5041	1060		1.20	1.10	1 34
Apr	4803	230	3737	026		1.40	1.40	1.54
May	4515	230	2420	920		1.07	0.05	1.00
Jun	4515	215	2559	755		1.00	0.93	0.06
Jul	4531	218	3558	/55		1.01	0.99	0.96
Aug	6392	290	4768	1334		1.35	1.32	1.69
Sep	5123	248	3939	936		1.15	1.09	1.19
Oct	4046	194	3115	737		0.90	0.86	0.93
Nov	2492	107	1979	406		0.50	0.55	0.51
Dec	2830	130	2307	393		0.61	0.64	0.50
	3722	143	3119	460		0.67	0.86	0.58
T. (.1								
	55394	2578	43345	9471		1.00	1.00	1.00
"dry" period	25465	1176	20240	4049		1.09	1.12	1.03
"wet" period	29929	1402	23105	5422		0.93	0.91	0.98

Table V.1. Jepírachi monthly power generation³⁸

*

49. Table V.1 also shows the distribution of energy production during the NIS Peak Load, Medium Load and Low Load periods. During the Peak Load period, defined as the

³⁸ Note: The calculations assume that peak load corresponds to the generation during the 20th hour of the day, medium load corresponds to generation during the 6th to 19th and 21th to 23rd hours, and base load corresponds to the remaining hours of the day. This distribution is very important since the medium and peak load hours (when energy is more costly) have a larger plant factor than the base load hours.

hour of peak demand (8 PM), Jepírachi produces 17 percent more energy during the dry season in relation to production during the wet season. This could be interpreted as an indication of the ability of wind-based power plants to contribute to peak demand when it is most needed. The contribution of wind farms is also higher during the dry season for all load conditions. While the hydro-based system undergoes the dry season (low availability of water for generation), the wind farms in northern Colombia could produce well above their average output.

1.2. Wind data from reference stations

50. Figures V.1 to V.3 present a graphic representation ³⁹ of the temporal characteristics of the northern coast wind field in Colombia. Figure V.1 illustrates the distribution of the reference stations used to describe the wind potential on the northern coast of Colombia. Wind data is summarized from Almirante Padilla airport in La Guajira (Station 6 in Figure V.1), the closest climate station to Jepírachi reported in the Wind Atlas, and three other climate stations along the northern Caribbean coast of Colombia (Galerazamba, Bolívar; E. Cortizzos Airport, Atlántico; and S. Bolivar Airport, Magdalena).

51. The Almirante Padilla Airport station provides data that is representative of the wind field found in Northern Guajira.. Its graphic representation is shown in Figure V.2. The figure shows wind availability (speed above 4.0 m/s) from eight or nine a.m. until five to seven p.m. on a consistent basis. Lower speeds are measured from August to December. Higher speeds are measured from December to April and then again during June and July.

³⁹ The information was compiled and published as a joint effort by UPME (of the Ministry of Mines and Energy) and IDEAM (Institute of Hydrology, Meteorology and Environmental Studies of Colombia, part of the Ministry of Environment, Housing and Territorial Development).

Figure V.1. Stations used to characterize wind power in Colombia

Note: **Station 6**, Almirante Padilla Airport, Guajira; **Station 12**, Simón Bolivar Airport, Magdalena; **Station 11**, Soledad Airport, Atlántico; and **Station 1**, Galarezamba, Bolívar.

Figure V.2. Almirante Padilla Airport, Guajira

52. Data collected at other coastal sites along the Caribbean coast of Colombia were also analyzed (Figure V.3). The trade winds follow Colombia's north coast from the northeast to the west during most of the year. This general circulation pattern remains year around, with changes in intensity (wind speeds). In all cases, wind intensity peaks between February and March. This is indicated in Table V.2.

Tabi	e v.2.	vv mu	speeu	asaı	racuo		lean y	earry	winu	speeu	5	
Month	1	2	3	4	5	6	7	8	9	10	11	12
Load												
Peak	1.27	1.38	1.34	1.15	1.00	0.88	0.96	0.88	0.61	0.69	0.81	1.04
Med	1.32	1.36	1.34	1.17	0.94	0.87	0.93	0.85	0.67	0.69	0.81	1.04
Low	1.36	1.39	1.26	1.13	0.99	0.81	0.90	0.81	0.69	0.75	0.88	1.04
W speed avg	7.78	8.05	7.77	6.80	5.60	5.01	5.42	4.94	3.95	4.15	4.86	6.13
Ratio to annual avg	1.33	1.37	1.32	1.16	0.95	0.85	0.92	0.84	0.67	0.71	0.83	1.04

Table V.2. Wind speed as a fraction of mean yearly wind speeds

53. On average, wind speed at eight p.m. is above the annual average by eleven percent, and during the "dry" months of December to April the wind speeds are 37

percent above the annual average, a large increase given the fact that the power of wind energy is proportional to the cube of the wind speed. Wind power is available when its contribution to the national grid is most needed, that is, during the dry periods and to an extent during the afternoon when demand peaks. Figure V.3 presents the wind conditions in three wind measuring stations.

Figure V.3. Graphic representation of wind conditions in northern Colombia⁴⁰

⁴⁰ E. Cortizzos Airport, Atlántico, and S. Bolivar Airport, Magdalena stations are strongly affected by the Sierra Nevada de Santa Marta, which interrupts the wind flow to the stations (for which reason the winds blow predominantly from the north).

1.3 Complementarity during El Niño Southern Oscillation (ENSO) events

54. Colombia's interconnected hydro-based system is severely affected by large-scale droughts. Historically, critical drought conditions are linked to El Niño events, such as those of 1991–1992 and 2002–2003. Table IV.3 below shows the period of occurrence of El Niño events and their length. Thus, a key element for this analysis is whether there are complementarities between wind- and hydropower during dry periods. Based on existing power generation data from Jepírachi (for the period from February 2004 to March 2009) and wind velocity records data from Puerto Bolívar, wind and generation data were extended to cover the period from 1985 to 2008. For the El Niño periods, the wind data were normalized so that positive values indicate above-average conditions measured in standard deviations and negative values, below-average conditions.

55. A similar analysis was conducted for four rivers with hydropower development: Guavio, Nare, Cauca and Magdalena. Results show negative values for the four rivers during most El Niño occurrences, while the Jepírachi generation resulted mostly in positive values. The most severe basin response corresponds to El Niño from April 1991 to July 1992 when energy rationing occurred, and from April 1997 to May 1998 when pool prices reached very high spot prices, forcing regulatory changes in the market. During these periods of extreme drought, the hydrology of the country was severely affected, resulting in a reduction of mean reservoir capacities, and the system had to rely on alternative generation capacity provided through the use of thermal capacity.

56. During these periods the estimated generation from Jepírachi is well above the mean value. That is, **during periods of extreme drought associated with El Niño phenomena, wind energy from northern Colombia is above average, emphasizing the possible role of wind power during these critical periods.** This analysis is described in a separate report available upon request (Complementarity Analysis pp. 1–40).

Start	Jul-51	Mar-57	Jun-63	May-65	Oct-68	Aug-69	Apr-72	Aug-76	Aug-77
Finish	Jan-52	Jul-58	Feb-64	May-66	Jun-69	Feb-70	Feb-73	Mar-77	Feb-78
Months	6	14	8	13	8	6	10	7	6
Start	Apr-82	Jul-86	Apr-91	Feb-93	Mar-94	Apr-97	Apr-02	Jan-04	Aug-06
Finish	Jul-83	Mar-88	Jul-92	Aug-93	Apr-95	May-98	Apr-03	Mar-05	Feb-07
Months	15	20	15	6	13	13	12	8	6

Table V.3. El Niño periods

Source: IDEAM. The table above shows that El Niño periods have historically lasted between 6 and 20 months; on average in the 1951–2006 period they have lasted 10.5 months.

ANALYSIS OF "EL NIÑO" OCCURRENCES Departure from mean value expressed as number of standard deviations								
				"EL NIÑO" O	CCURRENCES			
	Jul. 86	Abr. 91	Fe b. 93	Mar. 94	Abr. 97	Abr. 02	Ju n. 04	Ago. 06
	Mar. 88	Jul. 92	Ago.93	Abr. 95	May. 98	Abr. 03	Mar. 05	Feb. 07
Guavio River	1.03	-0.53	0.64	1.50	-0.87	0.66	0.94	-1.02
Nare River	-0.73	-1.39	-0.71	-0.64	-1.86	-0.90	0.68	0.08
Cauca River	-1.48	-1.14	-0.17	-0.48	-1.53	-1.52	-0.07	-0.90
Magdalena River	-0.51	-1.07	0.00	0.80	-1.69	-1.08	-0.81	-0.52
Jepirach i Powerplant	1.23	1.20	0.20	1.23	0.56	1.19	-0.91	-0.80

Table V.4. Wind and hydro complementary during El Niño

1.4 Wind and hydro generation complementarity

57. Complementarity was also explored through an analysis of the joint operation of a simple system consisting of a wind farm that operates with a hydropower plant of similar size for each of the rivers studied and a range of reservoir sizes. The results for each of the rivers are described in Annex 13. Table V.5 below presents the results from the joint analysis of Jepírachi and the Nare River. These results are similar to those found when combining Jepírachi with the other rivers. The firm energy from the isolated operation of the hydropower plant and the wind farm is far below the firm energy resulting from their joint operation. This result holds for the wide range of possible reservoir sizes studied. It is therefore concluded that the joint operation of wind- and hydropower plants exhibits a strong complementarity, which is not rewarded in the current regulatory system adopted by Colombia.

Table V.5. Complementarity of joint operation of hydro plant and wind farm;the case of the Nare River

FIRM ENERGY FOR NARE AND JEPIRACHI IN ISOLATED AND JOINT OPERATION Firm Energy/Mean Energy									
	Reserv	oir volume exp	oressed as a fra	ction of mean	energy inflow	to Nare			
	0 0.2 0.4 0.6 0.8 1								
Nare River(isolated)	0.179	0.369	0.435	0.459	0.471	0.480			
Jepirachi (isolated)	0.089	0.089	0.089	0.089	0.089	0.089			
Nare River + Jepirachi in isolated operation	0.268 0.458 0.524 0.548 0.560 0.569								
Nare River + Jepirachi in joint operation	0.410	0.811	0.943	0.972	0.994	1.009			

2. FIRM ENERGY AND JOINT OPERATION OF WIND AND HYDROELECTRIC PROJECTS

58. An analysis was conducted to understand the firm energy obtained from hydroelectric plants (with and without reservoir) in conjunction with the Jepírachi power plant under scenarios of joint and isolated operation (Colombian regulation estimates the reliability of individual power plants and does not consider joint operation). Firm energy is defined as the maximum monthly energy that can be produced without deficits during the analysis period which would include El Niño occurrences. The same results were obtained for the total energy obtained from the joint operation of the hydropower plants and the Jepírachi plant.

59. The analysis was conducted using a simulation model that operates the plants and the reservoirs to provide a given energy target, adjusting this target until no deficits are generated. For this purpose, hypothetical hydroelectric plants with capacity similar to that of wind power plants were analyzed. Mean multiannual inflow to the hydroelectric power plants (expressed in energy) at the plant sites is equal to the same value for Jepírachi generation. This was done by multiplying river discharges by a factor to convert them to energy such that mean inflows are equal to mean Jepírachi generation. In order to avoid confusion with existing hydroelectric plants, the hypothetical plants analyzed will be named Guavio River, Nare River, Cauca River and Magdalena River.

60. Several reservoir sizes were analyzed; reservoir size (expressed as a fraction of mean annual inflow to the reservoir in energy) varies between 0 (run-of-river plant) to 1 (substantial regulation capacity). Results are shown below.

2.1 An example: The Guavio River

61. The following table and figure show results for the Guavio River. Firm energy has been normalized, with actual firm energy divided by the sum of mean energy for the Guavio River and Jepírachi.

FIRM ENERGY FOR GUAVIO AND JEPIRACHI IN ISOLATED AND JOINT OPERATION							
	Reservo	ir volume expr	essed as a frac	tion of mean e	energy inflow t	o Guavio	
	0	0.2	0.4	0.6	0.8	1	
Guavio River (isolated)	0.064	0.334	0.451	0.481	0.507	0.514	
Jepirachi (isolated)	0.089	0.089	0.089	0.089	0.089	0.089	
Guavio River + Jepirachi in isolated operation	0.153 0.423 0.540 0.570 0.596 0.602						
Guavio River + Jepirachi in joint operation	0.212	0.709	0.860	0.908	0.935	0.962	

Table V.6. Firm energy results for Guavio River analyzed in isolated and joint operation

62. In this case, the firm energy that results from the joint operation of the wind farm and the hypothetical hydropower plant is greater than the sum of the isolated operation of the two individual projects.

Figure V.4. Firm energy for Guavio River as a result of isolated and joint operation

62. The table and figure above indicate an increase in firm energy when joint operation is considered. This is because critical periods for the Guavio River do not coincide with Jepírachi generation during the same period. The following figures (V.5 and V.6), showing reservoir operation both in isolated and joint operation, illustrate this in greater detail. The first figure, corresponding to a reservoir size of .2, shows that in isolated operation the reservoir is emptied during the El Niño occurrence of April 1997–May 1998, while in joint operation the reservoir is emptied in April 2001. The El Niño occurrence of April 1997–April 1998 is balanced by large-scale generation in the Jepírachi power plant, showing the complementarity of river discharges in the Guavio River and Magdalena Rivers and the results are similar to those presented here for the Guavio River (i.e., in joint operation the firm energy is greater than in isolated operation). For purposes of simplification, only the Guavio River example, with a reservoir size of 0.2 and 0.5, is shown.

Figure V.5. Guavio River reservoir operation with a reservoir size of 0.2 in isolated and joint operation.

(0=run-of-river plant to 1=substantial regulation capacity) The green bars represent El Niño occurrences.

Figure V.6. Guavio River reservoir operation with a reservoir size of 0.5 in isolated and joint operation.

(0=run-of-river plant to 1=substantial regulation capacity) The green bars represent El Niño occurrences.

2.2 Impact of extreme events on hydropower capacity

63. Although there is still no consensus on how climate change may affect average precipitation in Colombia, there is a generally accepted notion that global warming will result not only in changes in mean conditions but also in increases in the extent and frequency of extreme precipitation events. Changes in extremes would have an impact on the country's hydrological regime. Annex 2 presents a summary of the results of an analysis conducted with the use of runoff data, derived from rainfall projections by the Earth Simulator to estimate the likelihood of extreme weather events around the end of the century (2090). This would result in an increase in stream flow during the high-flow season and a decrease in the low-flow season. The annual range of stream flow becomes larger, implying more floods in the wet season and droughts in the dry season. The anticipated changes in surface hydrology will affect hydropower potential by reducing the potential firm capacity of reservoirs.

VI. OPTIONS TO AID MARKET ENTRY OF WIND ENERGY IN THE COUNTRY'S POWER MIX

1. INTRODUCTION

64. Under current circumstances wind-based generation faces considerable obstacles to participate in the nation's power mix. Key obstacles, as described in the first-phase report, include the current relatively high capital intensity and the structure of the regulatory system which does not acknowledge wind power potential firm capacity.⁴¹ However, the wind resource along the northern coast appears to complement well the country's hydrological regime and could be part of a strategy to strengthen the climate resilience of the hydropower-based sector. To promote wind power generation, actions are required that would result in a positive impact on the financial performance of projects while minimizing distortions in the existing power market and the overall economy. This section reviews the typology of available options to address the higher capital cost of the wind option as well as an option to address the variable nature of wind energy.

65. This section follows a microeconomics approach. The analysis is focused on potential investors as the key economic agents sought by the GOC. These investors base their investment decisions on important regulatory and financial aspects. This section describes the tools available to guide the market, tools for government intervention in guiding the independent investors decisions, while section VII describes the financial analysis upon which the effectiveness of such tools are assessed. The interpretation of results provides guidance to decision makers on regulatory work.

2. **OPTIONS TO FACILITATE MARKET ENTRY OF WIND ENERGY**

66. A number of options could be used to facilitate the market entry of wind power in Colombia. This section describes a typology of policy instruments, out of which a selection is made for further use in the analysis. The options are categorized in four groupings namely: (i) price based policy instruments; (ii) policy options guiding renewable energy output (quantity based policy instruments); (iii) adjustments in the regulatory system; and, (iv) instruments that provide incentives other than price. In addition, a proposal is detailed providing a simple methodology to assess the contribution of wind powered plants to firm energy, opening through which windfarms could be recipients of reliability payment.

2.1 Price based policy instruments

67. Although many practitioners find these instruments very effective in promoting RET, their implementation may generate financial distortions. These instruments or

⁴¹ Note that the firm capacity of renewable energy is the capacity of conventional sources replaced, so that demands can be met with a specified reliability. The firm capacity of a renewable source depends on the correlated variations in demands and renewable supplies (Barrett 2007).

policy tools have so far not been considered in Colombia, nor are they favored by market players and policy decision makers, because the country's generation requirements are currently being met by independent power producers without the need for government financing or intervention.

68. **Feed-in tariff system or price-based instrument**. This approach forces utility companies to purchase all the electricity produced by renewable energy producers in their service area at a tariff determined by the authorities and guaranteed for a specific period of time (typically ten to 20 years). Feed-in tariffs offer a financial incentive for renewable project developers to exploit all available generating sites until the marginal cost of producing energy equals the proposed feed-in tariff. Costs are recovered through a levy on all electricity consumers who purchase power from utilities.

69. **Fixed premium system (environmental kWh-bonus).** This price-based mechanism adds a fixed premium to the basic wholesale electricity price making the total price received per kWh produced less predictable than in the feed-in tariff described above.

70. **Valuing carbon emissions.** Valuing carbon emissions could be achieved by taxing power plants emissions of pollutants in accordance with standard principles of tax policy, or imposing a discriminatory sales tax on electricity generated by polluting fossil fuels and using the revenue to pay a premium to generators that utilize nonpolluting renewable energy sources.

71. **Production tax credits.** A production tax credit provides the investor or owner of a qualifying generating facility an annual tax credit based on the amount of electricity generated by that facility to encourage improved operating performance.

2.2 Policy options guiding renewable energy output (quantity based policy instruments)

Renewable energy mix targets. This establishes a minimum percentage of 72. renewable energy as part of the national energy portfolio. Electric utilities are required to procure a certain quantity of their electricity from renewable technologies as a percentage of the total or to install a certain capacity of renewable power. The renewable-based generation increases with the overall increase in electricity demand. Producers could then decide either to implement the projects themselves or to put them out to tender from independent power producers. Suppliers may also choose competitive bidding from independent power producers and participate in green certificate systems. However, inadequate administrative capacity for verification mechanisms, record keeping for transactions, and compliance may complicate their implementation. Several countries have adopted or are proposing national renewable energy targets. The European Union has collectively adopted a target of 22 percent of total electricity generation from renewables by 2010, with individual member states selecting their own targets. Japan has adopted a target of 3 percent of total primary energy by 2010. Recent legislative proposals in the United States would require 10 percent of electricity generation from renewables by 2020.

73. **Competitively awarded subsidies.** Competitively awarded subsidies, i.e., through auctions, could be offered to promote certain technologies and attain predefined

output targets. In Poland, the World Bank's Global Environment Facility (GEF) helped to develop markets and reduce costs for products through subsidies given to technically qualified domestic manufacturers.

2.3 Adjustments in the regulatory system

74. **Exemption from systems charges.** Colombia has an unbundled electricity market. The concept of unbundling—separately pricing all of the services that comprise a utility service—could be a disadvantage for producers of nonconventional power when they have to pay transmission charges on a per-capacity basis. Some countries, such as Brazil, have experimented with reducing prices of transmission wheeling for producers of renewable energy. To this end, exemption from systems charges could be implemented, exempting renewables from generation surcharges and considering these alternatives as load-reduction technologies. For the Colombian system several policy instruments could be devised under this heading to encourage new renewable plants: waiving the charges paid for automatic generation control; elimination or reduction of environmental charges and/or contributions for the electrification of off-grid regions; and excluding new renewable power plants from CERE (real equivalent cost of capacity charge) payment obligations.

75. Adjusting the "reliability payment" regulation. Colombia has developed a financial mechanism to produce an economic signal to investors as a price premium on reliable installed power capacity. This instrument aims at increasing the resilience ("firmness) of the national interconnected system to extreme weather events, especially during unusually dry periods. The reliability payment (*cargo por confiabilidad*), or firm capacity charge, should promote an efficient mix of energy sources, without discriminating renewable sources. Unfortunately, the existing regulation does not count with clear rules to assess the potential contribution of wind energy to the overall reliability of the interconnected system and thus favors conventional power plants. In practice this discriminatory treatment has been identified as a major barrier to further investments in the wind sector⁴². Fortunately, however, it is straightforward to include all resources in a nondiscriminatory manner. All that is required is an objective method of estimating the firm energy capacity of the resource. The issue of reliability payment is analyzed in detail below.

2.4 Policy instruments that provide incentives other than price

76. These policy tools provide incentives for voluntary investments in renewable energy by waiving taxes and/or reducing the costs of investments through financial mechanisms. There are at least five broad categories of instruments that i) reduce capital costs after purchase (through tax relief) or offset costs through a stream of payments based on power production (through production tax credits), ii) reduce investment costs up front (through credits, subsidies and rebates), iii) provide public financing or public facilitation through concessionary loans, grants and other financial assistance, and iv)

⁴² For a thorough discussion of the effects, advantages and disadvantages of and barriers to distributed generation, see COLCIENCIAS, ISAGEN, Universidad Nacional and Universidad de los Andes 2006.

reduce capital and installation costs through economies of bulk procurement (Valencia 2008). The following policy instruments are applicable in the case of Colombia.

77. **Property tax incentives.** These incentives are generally implemented in one of three ways: i) renewable energy property is partially or fully excluded from property tax assessment, ii) renewable energy property value is capped at the value of an equivalent conventional energy system that provides the same service, or iii) tax credits are awarded to offset property taxes. Experts have long argued in favor of imposing corporate and sales taxes on electricity on the grounds that it is a fairly price-inelastic product.

78. **Reduction or elimination of import duties.** Much of the equipment for renewable generation must be imported to host countries. High capital import duties and tariffs distort the market, artificially raising the price of renewable technologies and discouraging their adoption. Temporary or permanent waivers may contribute to reduce the impact of high initial investment costs and allow renewable technologies to compete in the market. Such waivers may be justified either on the basis that renewables are a **pioneer** (or start-up) industry or on the basis that payment of such duties and tariffs by a generating company ultimately would have been passed on to the final consumer. Tax exemptions encourage investment.

79. **Financing of renewable energies.** These may include: imposing a surcharge on electricity consumption, to be collected in a special-purpose fund for renewable energy support (in which case larger consumers bear most of the burden); providing a tax credit to be assigned at the local and central levels on renewable energy produced; and taxing pollution, which raises the incremental cost of thermal generation and decreases the cost of competing renewable energy, as mentioned above. Other options could include a change in culture in which consumers would be willing to pay more for "green" electricity. Mexico has established a green fund to promote renewable energy. In this case a tax is collected from all power services and goes into a fund to support renewable energy projects.

80. **Grants and low-cost loans.** Many countries have offered grants for renewable energy purchases. In some developing countries, notably China, India and Sri Lanka, multilateral loans by lenders such as the World Bank have provided financing for renewable energy, usually in conjunction with commercial lending (Valencia 2008). The newly established Clean Technology Fund falls into this option.

3 PROPOSAL TO ADDRESS THE RELIABILITY ISSUE FOR WIND ENERGY

81. As explained briefly earlier, the Colombian electricity market includes a reliability payment for each resource based on its ability to generate energy during unusually dry periods, which is called firm energy. The product needed for reliability in Colombia's hydro-dominated electricity market, was introduced in Colombia to minimize the probability of brownouts and blackouts in the interconnected grid as a consequence of hydrological variability. This "firm energy" is expected to meet user demand under

critical conditions (when the wholesale market price is larger than the scarcity price⁴³). This is found in CREG Resolution 071 2006.

82. In 2008, Colombia introduced an innovative and effective market in which auctions⁴⁴ are held to commit enough firm energy to cover its needs (Cramton and Stoft 2007, 2008).⁴⁵ The firm energy market coordinates investment in new resources to assure that sufficient firm energy is available in dry periods. The firm energy product includes both a financial call option and the physical capability to supply firm energy. The physical capability assures that there would be sufficient energy during dry periods. The call option protects load from high spot prices and improves the performance of the spot market during scarcity.

62. To promote an efficient mix of resources and for the firm energy market to succeed in providing reliable electricity at least cost, **all resources, including** variable resources such as **wind power, should be eligible to receive the same reliability payment based upon the resource's ability to provide firm energy.** Including wind power and other variable resources in the firm energy market has three important benefits for Colombia. First, it leads to a more efficient mix of resources and thereby could eventually reduce electricity costs. Second, it reduces risk by establishing a more diversified portfolio of fuel types. And third, it reduces Colombia's reliance on coal and other fossil fuels to generate electricity during dry periods, thereby reducing Colombia's emissions from fossil fuels.

83. Currently the economic signal favors conventional power plants, but fortunately, it is straightforward to include all resources in a nondiscriminatory manner. The key input required in the firm energy auction is an estimate of the resource's ability to supply firm

⁴³ The scarcity price is determined by CREG and updated monthly, determining the wholesale market price from which firm energy obligations become mandatory and establishing the maximum price at which this energy is remunerated.

⁴⁴ The firm energy auction under the reliability payment (*cargo por confiabilidad*) is a scheme that establishes long-term commitments and is expected to be a component of the wholesale energy market indefinitely. The auctions are held during various years prior to firm energy obligations (time is provided between auctions and the start of firm energy obligations to allow new projects to be able to enter into operation). To this end, each year the Regulatory Commission (CREG) evaluates the balance of supply and demand of the firm energy projections and if necessary calls for an auction (XM 2009). Available online at:

http://www.xm.com.co/Promocin%20Primera%20Subasta%20de%20Energa%20Firme/abc2.pdf). The next firm energy auction has not been scheduled.

⁴⁵ It is worth noting that although the reliability payment has been successful in getting projects registered and assigned to provide firm energy, many of the projects that participated in the firm energy auction lacked an environmental assessment of alternative projects (Ministry of Mines and Energy and UPME 2009). This can lead to system, environmental and investor risks (e.g., if it is later found that the projects cannot be implemented due to more environmentally friendly alternatives). However, it is important to keep in perspective the lessons from similar cases in other countries where hydropower projects are waiting in the pipeline and are being replaced by coal power projects because it takes a long time to produce the environmental licenses of hydropower projects. This, of course, may lead to dire and unintended consequences. For this reason, to avoid the possible risk described above, it is recommended that there be high-level coordination among ministries and expedited action by the Ministry of Environment to review environmental licenses (including a review of possible alternatives).

energy. This is already done for all hydro and thermal resources. What is required is an analogous methodology to estimate firm energy for variable resources. For purposes of simplicity, the analysis focuses on wind power as a variable resource, but the same approach applies to all variable resources—all resources of any type. In many respects, wind power is actually simpler than hydro or thermal, since it is straightforward to estimate the energy output of the wind resource. This is a step already taken as part of the due diligence for any wind project.

84. For hydro resources, the regulator estimates the firm energy of a hydro project using a time series of hydrological data, ideally five or more decades. For thermal resources, the firm energy rating is based on the unit's nameplate capacity, which is then reduced based on sustainable utilization rates. Estimating the firm energy of a wind resource is similar to that of a hydro resource, although it is suggested that a much shorter time series (perhaps initially based on Jepírachi's five-year record of operation) should be sufficient to determine a good estimate of firm energy capability. Such a series would be produced as part of the standard due diligence of an investor in a wind-power project. No investor would build a wind project without first having a fairly good idea of the project's average energy output. Even if this initial estimate is biased, there is little economic harm, since as described below the rating would be adjusted so that it reflects the project's long-run performance, which is measured automatically by the system operator.

85. As with other resources, the firm energy rating should be updated based on actual performance. This is difficult for hydro resources given the low frequency of unusually dry periods, roughly once every ten years. Wind power does not face this problem. Wind resources generate meaningful data on firm energy capability each hour of every day. For this reason, it would make sense to have an automatic adjustment to the firm energy rating of wind resources based upon historical performance.

86. For purposes of simplicity, it is recommended that the firm energy rating of a wind resource be adjusted annually based on the following exponential smoothing formula:

firm energy rating in year $t+1 = \frac{1}{2}$ (firm energy rating in year t) + $\frac{1}{2}$ (energy produced in year t).

The initial period for locating wind plants along the northern coast could use the five-year period recorded by Jepírachi, to be updated annually thereafter. This simple approach assures that the firm energy rating of wind power closely tracks its actual performance. The key assumption in the formula is that wind power is not correlated with dry periods; that is, wind resources on average generate the same amount of energy in unusually dry periods as in normal periods. If the seasonality for wind power is correlated with dry seasons, then it would make sense to modify the formula above by replacing "energy produced in year t" with "energy produced in dry season of year t" and then scale up the level of output to an annual measure by multiplying by 12/(number of months in the dry season).

87. Under this simple approach, the firm energy rating and therefore the reliability payment will quickly converge to the long-run average firm energy capability, even if the firm energy rating in the initial year is poorly measured.

88. An exercise was conducted to calculate the results of the firm capacity factor for the Jepírachi wind farm in Colombia, using the method proposed above.

89. The analysis is based on observed wind data recorded at meteorological stations in northern Colombia. These data, together with generation data from Jepírachi, allowed the reconstruction of a 24-year data series on monthly wind data and generation. This database was then used to estimate the corresponding firm energy rating in Jepírachi. On average, the yearly firm energy rating was estimated at 0.38, with a range between 0.25 and 0.47. For the dry season, the average firm energy factor found was 0.4 (with an initial-year rating of 0.3^{46} and a found maximum firm energy factor of 0.47). When this firm energy rating is acknowledged for the entire year, the project owners could receive an annual average of US\$975,000 from the reliability payment, based on the auctiondefined value of US\$13.9 per MWh. This of course translates into very attractive earnings, especially when the lifetime of the project is taken into consideration. For the 24-year time series considered here, this could mean total project earnings of US\$23.4 million.

90. Importantly, for wind power the call option portion of the firm energy product is the same as the call option for thermal resources. During scarcity periods in which the spot price exceeds the scarcity price, the wind resource has an obligation to generate energy over the day consistent with the resource's firm energy rating. Deviations from this daily obligation are resolved at the spot energy price. As a variable resource, the energy output of the unit will surely differ from the obligation on any particular day, but over the course of many days the unit should produce an amount roughly equal to its firm energy rating. Thus, the resource should meet its obligation on average, and if it does so, then its net payment for deviations would be approximately zero.

⁴⁶ As stated previously, even if the firm energy rating in the initial year is poorly measured, the initial firm energy rating (and therefore the reliability payment) of 30 percent will quickly converge to the long-run average firm energy capability.

VII. ASSESSING THE EFFECTIVENESS OF POLICY INSTRUMENTS AND POLICY OPTIONS: IMPACT ON A 300 MW WIND-POWERED POWER PLANT OPERATING IN THE WHOLESALE ENERGY MARKET

91. This section aims at exploring the effectiveness of alternative policy instruments in facilitating market entry of the wind option. The consequences of the alternative instruments are measured in terms of the financial result expected by potential investors. A hypothetical 300 MW wind power project is used to estimate the impacts from the different alternatives. Wind resources were defined using historical records and data from Jepírachi. Performance and operational data are based on this pilot wind farm. (Details are available upon request.) Scenarios of the expected price-energy production response of the Colombian wholesale energy market (MEM) from 2008 to 2025 are used. This step is both a necessary input for assessing the financial sustainability of the wind project and a useful methodology to help evaluate other projects. These estimates rely on UPME's July 2008 forecasts for the national energy market, and include the analyses of demand forecasts, natural gas prices, and the expected optimal (minimum cost) generation expansion adjusted to include the characteristics of the Colombian transmission grid.

92. For the purpose of assessing the attractiveness of the windfarm investment, through its financial return, the study kept the value of the reliability payment for plant energy remuneration constant at US\$13.05/MWh up to November 2012, and then increased this to US\$14.00/MWh through the planning horizon.⁴⁷ The following sections summarize the analyses made, relegating the more detailed technical studies to technical annexes and supporting documentation. This section concludes with an examination of the options available to the government for the promotion of increased RET participation in the country's energy mix.

1. BASELINE INFORMATION

1.1 Domestic demand forecasts

93. As stated above, demand forecasts for the National Interconnected System (NIS) were obtained from UPME's latest forecasts dated July 2008 (Figure VII.1), before the global financial crisis ensued, and thus may be currently characterized as somewhat optimistic.

⁴⁷ As previously indicated, the reliability payment seeks to provide independent investors with an economic signal of the relative importance of reliable installed (firm) power capacity. The GOC conducted a public auction to allocate "reliability payments" for future power plants. A value of \$13.998 US dollars/MWh has resulted of the firm energy auction held in May 2008.

Figure VII.1. Colombia NIS demand forecasts, 2007–2028

1.2 Wind project generation

94. Based on the financial model and MEM projections, the analysis estimates monthly values for wind power generation, including average, low (P10) and high (P90) estimates.⁴⁸

Figure VII.2. Wind project generation estimates

1.3 Pool prices

95. Pool prices in the wholesale market are formed by adding other variable costs (Real Equivalent Cost of the Capacity Charge [CERE], Fund for the Electrification of Off-grid Regions [FAZNI], environmental and Automatic Generation Control [AGC]) to the pure marginal cost. This is presented for the mean case scenario in Figure VII.3 (the

⁴⁸ P10 indicates the energy generated with a 10 percent probability of values being lower, and P90 indicates the value with a 90 percent probability of values being lower. These probabilities refer to monthly values and cannot be assumed for longer periods.

other scenarios analyzed are included in Annex 3). Pool price comparisons of the mean, high and low scenarios are presented in Figure VII.4.

Figure VII.3. Pool prices, base scenario

Figure VII.4. Comparison of pool prices for base, high and low scenarios

1.4 Annual NIS balances

96. This analysis also projects annual energy balances for the NIS under the four scenarios considered. These projections show the magnitude of the effect of reduced hydrology generation versus official expected hydrology generation, with the corresponding increase in the gap to be met by alternative means, i.e., thermal generation. (These balances can be found in Annex 4, Tables A4.1–A4.4.)

2. BASELINE RESULTS

97. A threshold of 14 percent Internal Rate of Return (IRR) was used to indicate adequate return to potential investors based on experience with previous operations (Amoyá, Jepírachi) and on a comparison with international markets.

98. Three scenarios were used to define the overall energy demand and its relation to fuel prices. The outcomes of these scenarios determine for an "investment project" the set of prices that the investor might expect. The overall indicative prices range from US\$39.41/MWh for the base high hydro scenario (see Table VII.1) to US\$66.70/MWh for the high demand high fuel prices scenario. The baseline scenario has an indicative price of US\$50.60/MWh. Although all the cases were analyzed for all the basic scenarios, the presentation will focus on the baseline conditions.

SCENARIO	DEMAND	FUEL PRICES	HYDRO	INDICATIVE PRICE(*) (US\$/MWh)
Low	Low	Low	Revised	43.3
Baseline	Base	Base	Revised ⁴⁹	50.6
High	High	High	Revised	66.7

 Table VII.1. Demand scenarios for the interconnected grid and resulting indicative prices

(*) Indicative average energy price over the 2007 to 2028 simulation period.

99. Table VII.2 presents the results obtained for the baseline analysis. The expected returns on equity are shown for each of the general scenarios considered for Colombia's interconnected system. In addition, given the importance of the investment costs in the policy analysis and in the financial returns, Table VII.2 presents results for a wide range of unit investments (expressed in US\$/kW). These results indicate that returns are sensitive to the general growth scenario and the general economic environment. Because investments in the power sector are long term, average conditions should be expected to dominate. The selected baseline scenario provides a conservative picture of potential returns, although with a medium risk. As the unit investment costs decrease, the return increases as should be expected. Nevertheless, it should be emphasized that under the business-as-usual scenario—that is, without policy intervention—wind energy investments are not attractive to potential investors. Thus, if the GOC aims to increase the proportion of its electricity from renewable sources it is required to adopt policies to aid market entry of RET by creating the enabling environment for independent investors to develop non-conventional renewable source power projects.

⁴⁹ Energy production factor for hydropower plants estimated from historical generation records from the NEON database.

	Capital cost per kW installed						
National Base Scenarios	\$2,400	\$2,100	\$1,800				
Low	4.7%	6.2%	8.1%				
Medium/Baseline	5.8%	7.6%	9.9%				
High	9.2%	11.5%	14.8%				

Table VII.2. Expected returns on equity before taxes for a 300 MW wind farm in
Colombia. Business-as-usual results (no government intervention)

Note: The results assume access to Carbon Emission Reductions of US\$18/tCO2.

3. IMPACT OF SELECTED POLICY OPTIONS

100. Not all of the available policy instruments are applicable to the case of Colombia. A selection was therefore made considering those that would fit the regulatory framework and that focus on actions that would not distort the wholesale market.

101. In order to assess the effectiveness of theoptions, the financial results of their deployment are quantified. The assessment of financial results from different options assists in the selection of policy instruments and the adoption of a coherent set of alternatives that individually or jointly accomplish the desired results for the potential investors.

3.1 Selected policy options

102. The options were grouped under common policy themes:

Group I. Access international financial instruments to internalize *global* externalities in national and private decisions. The government can play a leading and active role in accessing bilateral and multilateral financial instruments aimed at reducing GHG emissions such as the **Clean Development Mechanism (CDM)** (this instrument is already mainstreamed into Colombia's environmental policy). This would be complemented through:

- a) The government acting as a bridge to attract multilateral soft loans earmarked for alternative energies; and
- b) The government facilitating access to clean technology concessionary financing.

Group II. Target subsidies and government fiscal mechanisms. Under this group of policy options the government uses fiscal measures for the benefit of potential investors. Specifically, the mechanisms identified include tax subsidies and waiving of dispatch control charges (AGC–Automatic Generation Control).

Group III. Reform the regulatory system. Under this policy package, the regulatory system is adjusted to be technologically neutral (creating a level playing field among technologies), and could be complemented to guide the country toward low carbon intensity development. The existing regulatory system has developed mechanisms to steer the market in order to provide a more resilient interconnected

system (expressed by its capacity to deliver the demand even during the most difficult hydrological conditions). In doing so, RETs have not received adequate compensation for their contribution. This situation needs to be adjusted and new tools could be included to give greater flexibility to the government in fostering RET. This includes:

- a) Complementing the scope of the reliability charge to include RET, and wind in particular;
- b) Waiving payment of CERE (Real Equivalent Cost of the Capacity Charge) to carbon-free power options, as an extension of the existing option for small-scale investments; and
- c) Creating an environmental sustainability charge (to internalize local environmental and social impacts) and support a low carbon development path.

103. Within the Colombian energy regulatory system the CERE plays a pivotal function in fostering a more resilient interconnected system. The CERE payment (contribution by the generators) is the revenue source used to pay for the Reliability payments. Each electricity generator contributes to a fund in proportion to the energy produced. At the same time each power plant receives payments from this fund, based on its contribution to the "firmness" of the system; to avert the possibility of brown and black outs.

104. If new policy options are developed, the approach followed could easily be replicated. This analysis would likely take place as the government further fine-tunes its decision on how to proceed.

105. Table VII.3 shows the institutional responsibilities associated with the selected options. For each the key implementation stakeholders are identified, their responsibility described and the general source of funding, or who bears the costs is described. Not all options have similar implementation characteristics. For example, access to concessionary funds might require the country to make targeted commitments as to GHG emission reductions to achieve by defined dates, as well as potential impacts in the national debt ceiling, with potential allocation conflicts with other sectors and national needs. Table VII.3 shows that in general the selected policy instruments are relative easy to implement, especially those related to adjusting the regulatory system.

Policy instrument	Stakeholders	Responsibility	Source of revenues
Group I. Access to soft loans	Min Energy Min Finances	Negotiations with MDB, donors; national debt	Pass through costs Might impact national debt ceiling Competes with other allocation needs
Group I. Access to concessionary funds (CTF)	Min Energy Min Finances Min Planning (DNP)	Negotiate with MDB/donors Targeted commitments Allocate national debt	Pass through costs Might impact national debt ceiling Competes with other allocation needs
Group II.Waiving system charges	Regulators (CREG)	Promote and enact regulation adjusting system charges	Other wholesale market participants Final consumer
Group III.Adjust the "reliability charge"	Regulators (CREG)	Promote and enact regulation adjusting methodology to assess the "reliability factor"	Cost neutral
Group III.Waiving CERE payment	Regulators (CREG)	Promote and enact regulation changes	Other wholesale market participants Final consumer
Group III. Income tax breaks	Min Energy Min Finances Min Planning (DNP)	Might require approval by Congress	Impact on fiscal resources Final consumer
Group III. Green charge Min Environment Min Finances Min Planning (DNP) Regulator (CREG)		Promote the internalization of environmental externalities Might require a new Law	Final consumer

Table VII.3 Policy options, allocation of responsibilities and associated costs

3.2 Results

106. Table VII.4 presents the calculated returns on investments resulting from the application of the policy instruments. The results are presented for a range of unit investments from US\$1,800/kW to US\$2,400/kW. The policy instruments used are classified in three types: financial instruments; government fees, including taxes; and regulatory instruments. The internal rate of return is calculated for the project and for equity, before and after taxes. The threshold to judge the policy effective is 14.0 percent. Each policy option, defined by the use of one or more policy instruments, is defined as a column. The upper part of the table describes the policy option; the lower part depicts the results for three firm capacity factors (and thus reliability payments): 20, 30 and 36% percent.⁵⁰ For purposes of simplicity, the results are summarized only for the mediumcase scenario. The analyses were also conducted for each market scenario, the results of which can be found in Annex 5. The term "base" in the table indicates the status quo.

107. Table VII.4 provides a summary as to a possible set of policy options open to the GOC. The selection of the set of policy instruments needed depend on the expected level of investment costs associated with wind power projects in Colombia. The industry outlook is for this costs to decrease with time, but this variable alone does not make the wind power sector financially feasible. If wind receives reliability payments as a function of its contribution to firm energy the need for complementary inducements is a function of the methodology adopted to assess such contribution. If the suggested methodology is adopted no further inducement is required. If a more risk averse estimate is used other policy instruments are required, at least until the investment costs catch up the difference.

108. The results indicate:

- All options considered improve the financial return on wind investments.
- Windfarms become attractive to the Colombian energy market when its unit investment costs (US\$ per kW installed) is such that independent investors reach the target IRR of 14%. Under existing market and regulatory conditions (wind plants are not recipient of reliability payment) the investment cost threshold is estimated to be \$1,250 / kW. If windfarms benefit from reliability payments the threshold unit investment cost increases, as follows: For reliability factors of 20%, 30% and 36% the corresponding threshold unit investment costs are \$1,660/kW; \$1,820 /kW, and \$1,880/kW respectively. In the last two cases investment in wind projects become financially viable for existing wind technologies.
- Adjusting the reliability payment (leveling the regulatory playing field for nonconventional renewable energy technologies) is a very effective incentive. A reliability factor greater than 30% by itself allows windfarms to be financially feasible for low investment costs, as those recently reported for Europe.

 $^{^{50}}$ As explained in previous sections, estimates using the available information from Jepírachi, complemented by observational records from nearby wind measuring stations from 1985 to 2008, produce a reliability factor of 0.415. A standard deviation of 0.055 results in the reliability factor of 0.36 used in this analysis.

- Eliminating income taxes does not seem to be an effective instrument to attract investments to RET, given the criteria utilized to judge financial feasibility. It does not lead to 14% IRR under the conditions considered. However, eliminating fees (AGC, FAZNI, CERE) makes wind power attractive at a US1,800/kW investment cost.
- Access to concessionary financing has a significant effect. This option requires clean technology concessionary funding for up to 40 percent of the total unit investment to reach 14% IRR.
- As expected, the reduction in unit investment (US\$2,400 versus US\$1,800) improves return on investment. However, a reduction in investment costs alone falls short of reaching the 14 percent IRR target.

109. In summary, under existing conditions windfarms are not financially attractive in Colombia even considering the drop in investment costs recorded during 2009. Wind investments however would become financially attractive if the benefits of reliability payments are extended to wind power, even under current investment costs. The government has other multiple policy instruments to steer independent investors towards RETs. Adopting several of these options, as detailed in the report seems relatively simple and will not distort the market. Improving the conditions for market entry of the wind option will serve to prepare the sector for the anticipated improvement of conditions as investment costs for wind decrease over time.

110. Finally, deployment of the wind option would help the sector to strengthen its climate resilience and be better prepared to face climate variability, without increasing its carbon footprint.

Table VII.4a. Financial results for a 300 MW wind farm in northern Colombia after use of financial instruments; reliability payment considered with a 20% firm energy factor⁵¹

If Reliability Payment Considered at %	Investment cost/kW (US\$)	Internal Rate of Return (Equity before/after taxes)	Base + carbon revenues (US\$18/tC O2)	+ Reliability Payment	+ Special Financing	+ *Tax reduction	Base + US\$18/tCO2 + Reduction in Fees	Base + US\$18/tCO2 + Reduction in Fees + Special Financing
		BEFORE TAXES	5.8%	8.0%	14.0%	14.0%	10.6%	14.0%
		AFTER TAXES	4.3%	6.1%	11.6%	13.0%	8.4%	11.5%
\$2,	\$2,400				(40% clean tech concessionary, 20% soft loans, 10% commercial credits)	(40% clean tech concessionary, 20% soft loans, 10% commercial credits)		(10% clean tech concessionary, 60% soft loans)
		BEFORE TAXES	7.6%	10.0%	13.9%	13.9%	13.0%	14.1%
20%		AFTER TAXES	5.8%	7.8%	11.4%	12.8%	10.6%	11.6%
\$2,100	\$2,100				(15% clean tech concessionary, 55% soft loans)	(15% clean tech concessionary, 55% soft loans)		(30% soft loans, 40% commercial credits)
		BEFORE TAXES	9.9%	12.7%	14.2%	14.2%	16.5%	16.5%
	\$1,800	AFTER TAXES	7.8%	10.3%	11.6% (40% soft loans, 30% commercial credits)	13.1% (40% soft loans, 30% commercial credits)	13.7%	13.7%

(a. with a 20% firm energy factor; b. with a 30% firm energy factor; c. with a 36% firm energy factor).

*Income tax reduction of 15% after 2017

⁵¹ Note that the last two columns do not consider income from the Reliability Payment. If no financing terms are mentioned, it is assumed that the investor gets 70% in commercial credits.

Table VII.4b. Financial results for a 300 MW wind farm in northern Colombia after use of financial instruments; reliability payment considered with a 30% firm energy factor⁵²

(a. with a 20% firm energy factor; b. with a 30% firm energy factor; c. with a 36% firm energy factor).

If Reliability Payment Considered at %	Investment cost/kW (US\$)	Internal Rate of Return (Equity before/after taxes)	Base + US\$18/tC O2	+ Reliability Payment	+ Special Financing	+ *Tax reduction	Base + US\$18/tCO 2 + Reduction in Fees	Base + US\$18/tCO2 + Reduction in Fees + Special Financing
		BEFORE TAXES	5.8%	9.0%	14.1%	14.1%	10.6%	14.0%
		AFTER TAXES	4.3%	7.0%	11.6%	13.0%	8.4%	11.5%
\$2,400				(30% clean tech concessionary, 30% soft loans, 10% commercial credits)	(30% clean tech concessionary, 30% soft loans, 10% commercial credits)		(10% clean tech concessionary, 60% soft loans)	
200/		BEFORE TAXES	7.6%	11.2%	14.1%	14.1%	13.0%	14.1%
30%		AFTER TAXES	5.8%	8.9%	11.6%	13.1%	10.6%	11.6%
	\$2,100				(5% clean techconcessionary,65% soft loans)	(5% clean techconcessionary,65% soft loans)		(30% soft loans, 40% commercial credits)
		BEFORE TAXES	9.9%	14.2%	14.2%	14.2%	16.5%	16.5%
\$1,800	\$1,800	AFTER TAXES	7.8%	11.6%	11.6%	13.1%	13.7%	13.7%

*Income tax reduction of 15% after 2017

⁵² Note that the last two columns do not consider income from the Reliability Payment. If no financing terms are mentioned, it is assumed that the investor gets 70% in commercial credits.

Table VII.4c. Financial results for a 300 MW wind farm in northern Colombia after use of financial instruments; reliability payment considered with a 36% firm energy factor⁵³.

If Reliability Payment Considered at %	Investment cost/kW (US\$)	Internal Rate of Return (Equity before/after taxes)	Base + US\$18/tC O2	+ Reliability Payment	+ Special Financing	+*Tax reduction	Base + US\$18/tCO 2 + Reduction in Fees	Base + US\$18/tCO2 + Reduction in Fees + Special Financing

9.6%

7.5%

14.0%

11.6%

(a. with a 20% firm energy factor; b. with a 30% firm energy factor; c. with a 36% firm energy factor)

5.8%

4.3%

BEFORE TAXES

AFTER TAXES

\$2,400 (20% clean tech (20% clean tech (10% clean tech concessionary, 50% concessionary, concessionary, soft loans) 50% soft loans) 60% soft loans) 11.9% **BEFORE TAXES** 7.6% 14.0% 14.0% 13.0% 14.1% 36% AFTER TAXES 5.8% 9.5% 11.5% 12.9% 10.6% 11.6% (60% soft loans, \$2,100 (60% soft loans, 10% (30% soft loans, 10% commercial commercial 40% commercial credits) credits) credits) **BEFORE TAXES** 9.9% 15.1% 15.1% 15.1% 16.5% 16.5% \$1,800 AFTER TAXES 7.8% 12.4% 12.4% 13.9% 13.7% 13.7%

*Income tax reduction of 15% after 2017

10.6%

8.4%

14.0%

13.0%

14.0%

11.5%

⁵³ Note that the last two columns do not consider income from the Reliability Payment. If no financing terms are mentioned, it is assumed that the investor gets 70% in commercial credits.

111. To complement the incentive structure, the government has various instruments at its disposal. If it uses the capacity to partially waive CERE payments, the attractiveness to potential investors is increased and wind power projects could be implemented at a faster pace and for a wider set of international investment costs.⁵⁴ The results for each set of policy instruments integrated into a policy option illustrate the advantages and limitations of such an approach. The GOC would do better by **mixing policy options** to obtain the desired results. This is the analysis introduced in the next section.

4. KEY FINDINGS: OPTIONS TO FOSTER INVESTMENT IN WIND POWER

112. The analysis of the information generated in the previous section illustrates the alternatives available to the GOC for promotion of wind power. The higher the investment cost, the greater government intervention is needed to promote investment in RET. Moreover, for investors not paying for CERE it is the same as having a reliability factor of 0.4. This should be obvious: CERE is the fund used to remunerate the guaranteed firm energy. Recognizing the contribution of wind power to firm energy allows it to benefit from reliability payments, offsetting the expenditure incurred in paying CERE. At the conceptual level, **policy makers have the option of either waiving CERE payment from wind-power producers, or recognizing their project's firm capacity**. In this case, **it may be simpler to recognize the firm capacity of each project**.

113. Table VII.5 summarizes alternative enabling environments conducive to investments in the wind-power sector under the three cases of reliability payments.

⁵⁴ It should be noted that simultaneously allowing for reliability charges and waiving CERE payments is not recommended. It would imply a logical contradiction because funds for the reliability charge come from CERE.

Table VII.5. Key findings: Combination of policy instruments to reach a financial threshold

Investment cost/kW (US\$)	If reliability payment considered at	Required actionsto reach a 14% Internal Rate of Return (IRR)					
	20%	Need 40% clean tech concessionary financing + 20% soft loans ⁵⁵ + 10% commercial credits					
\$2,400	30%	Need 30% of clean tech concessionary financing + 30% soft loans + 10% commercial credits					
	36%	Need 20% clean tech concessionary financing + 50% soft loans					
20%		Need 15% clean tech concessionary financing + 55% soft loans; or 20% of clean tech concessionary financing + 40% soft loans + 10% commercial credits					
\$2,100	30%	Need 5% clean tech concessionary financing + 65% soft loans; or 20% of clean tech concessionary financing + 10% soft loans + 40% commercial credits					
	36%	Need 60% soft loans + 10% commercial credits					
	20%	Need 40% soft loans + 30% commercial credits					
\$1,800	30%	No concessionary financing is needed					
	36%	No concessionary financing is needed					

114. If the GOC decides to promote wind power under a pessimistic investment cost outlook, high reliability factors, reduction in fees, and concessionary financing are required (individually or in conjunction). On the other hand, if investment costs are US\$1,800/kW, then less concessionary financing and fewer policy instruments would be required. The results summarized in Table VII.5 provide a guideline for the GOC in the selection of a long-term policy option for various wind technology investment costs. A potential transition strategy would be to develop and apply long-term policy options –to capture all the complementarity benefits to the interconnected system- while creating

⁵⁵ CTF conditions are those defined for the CTF (typically, 0.65% interest rate with 20 year repayment period and 10 years of grace. Soft loans are those with conditions typical of IBRD lending products.

conditions for some early entrants to give the energy market players and operators the opportunity to learn and gain experience in the operation and system maintenance of large-scale wind projects.

5. CONCLUSIONS OF THE ESTIMATED IMPACT OF ALTERNATIVE POLICY OPTIONS FOR A 300 MW WIND ENERGY POWER PLANT IN THE MEM

115. The analysis conducted and the results summarized in previous sections allow for the following general conclusions and results:

- a) In conclusion, the analysis from the viewpoint of potential investors provides a good foundation for understanding the relative strength of different options.
- b) **Under current policy**, regulatory and market conditions, **wind-power projects are not attractive** for private investment.
- c) The starting point to promote wind power should be to **review the existing regulatory system** in detail and **remove any biases** against renewable energy technologies.
- d) Of all the options available to the GOC to improve the financial performance of wind-power plants, the **reliability payment has the greatest influence** on returns. If the reliability charge is applied at levels reflecting the historical contribution of Jepírachi's energy generation during the dry period, financial performance for wind power improves significantly.
- e) If investment costs for wind power continue decreasing from the high values observed in late 2008, as expected in the near future, the returns improve considerably. Therefore, some options could be seen as a bridge mechanism to be ready for future conditions under which wind power would be more competitive.
- f) Access to concessionary resources, such as those associated with clean technology multilateral funds and soft loans, could be very useful to promote early investments; and exempting some charges and payments used in the regulatory system is shown to be very effective in increasing the IRR. Internalizing costs of global externalities through clean technology concessionary loans would be enough to provide returns on equity over the selected threshold, for basically all investment costs (in the analysis the maximum US\$2,400/kW is used). This holds true even if the generators have to pay all MEM charges.
- g) The results also indicate that the GOC has the possibility to target future expectations regarding the investment costs associated with wind energy technology. At one extreme the regulators might study the possibility of fostering RETs even at investment prices above US\$2,200/kW for example. Or they might consider a more conservative approach targeting wind projects only if investment costs fall below US\$1,900/kW or a similar value. As previously indicated, the higher the investment costs, the greater the government intervention required.

- h) Waiving the payment of CERE by RET generators is equivalent to remunerating the contribution of wind-power projects (for the conditions of the easterly wind fields in northern Colombia) at a reliability factor of around 0.4. That is, from the potential investor's viewpoint (expected financial returns on investment), waiving a project's obligation to make CERE contributions is financially equivalent to remunerating the project with a reliability factor of 0.4. It should be noted, however, that policy makers have the option of either waiving CERE payment from wind-power producers, or recognizing their project's firm capacity. In this case, it may be simpler to recognize the firm capacity of each project.
- i) The GOC could also consider temporary incentives for RET initiatives. That is, the energy sector could benefit from the early implementation of wind projects as a mechanism to gain experience in operating the interconnected system for the possible case of when wind energy becomes a more significant contributor to the grid. Similarly, the energy sector would also benefit from having a well-functioning regulatory system for this power technology. After a well-defined "promotion and experimentation period," sufficient to give the technology time to further reduce its investment needs, the incentives could be eliminated or adjusted.

VIII. CONCLUSIONS

116. Colombia has a power sector that is quickly maturing, with relative stability in its regulations, an unbundled system, and a dispatch mechanism that closely resembles a well-functioning competitive market. Competition is promoted and tools have been designed to attract cost-effective capacity expansions that would promote reliability of service (a fuller description of the system and its dispatch mechanism was included in first stage of this project's report).

117. The Colombian energy sector is characterized by low carbon intensity, below the world average. For the foreseeable future, hydropower will likely continue to provide the backbone of the power sector. A highly hydro-dependent power system, however, makes the system intrinsically vulnerable to severe droughts. This vulnerability could be addressed by diversification of the power mix.

Wind energy resources could become an important energy option in Colombia

118. Colombia has considerable wind resources, estimated to exceed 14 GW, mostly on its northern coast. However, the potential development of this resource is limited by the high initial investment costs and provisions in the regulatory system that discriminate against this energy source.

119. Wind technology costs reached a historical low of US\$1,600/kW in 2002 and since then costs soared to a high of US\$2,400/kW by September 2008. This trend has been reversed in 2009, with recent figures reporting average values around US\$1,800/kW.⁵⁶ This decreasing cost trend is expected to continue. Like the research in this study showed **costs of US\$1,800 or below make wind a viable option even with less heavy intervention from the government**. However, under current policy, regulatory and market conditions, wind power projects are still not attractive for private investment. Some reforms and changes in the market conditions could therefore also be seen as a bridge mechanism to be ready when the wind power becomes a more competitive option with the decreasing investment costs in the future.

120. The report highlights ways to assess the **complementarity between wind and water resources** and the potential contribution to firm energy production during "critical" dry periods. For the Colombian case, the results indicate that during the dry season (when water resources availability becomes a concern and electricity prices rise) the wind resources could produce above average, at least in the northern part of Colombia. More importantly for Colombia, during critical El Nino events wind contribution exceeds non-El Nino years. This contribution should be recognized and remunerated as well as rewarded in the current regulatory system adopted by Colombia.

⁵⁶ As of March 2009, the European Wind Energy Association (EWEA) reports that the average of recent projects fluctuates around €1,225/kW. This translates to approximately US\$1,800 (see explanation of turbine cost reductions in Section IV).

Policy instruments

121. There is a wide range of instruments through which governments could guide the functioning of selected markets. All of these instruments could be applicable to the energy sector in Colombia. However, only a reduced subset was explored (those that are relatively easy to incorporate into the existing regulatory system in Colombia and have the effect of changing the financial results for a potential investor). The instruments have been classified as: i) financial instruments; ii) payments to government, fees and charges; and iii) adjustment to the existing regulatory system.

Policy options

122. The existing **regulatory system needs to be assessed** and any biases against renewable energy technologies need to be removed in order to create a level playing field for all technologies. In addition, **changes in financial and fiscal conditions** could also make wind power competitive in Colombia. There is a wide range of instruments through which governments could guide the functioning of the sector. All of these instruments could be applicable to the energy sector in Colombia. However, only a reduced subset was explored (those that are relatively easy to incorporate into the existing regulatory system in Colombia and have the effect of changing the financial results for a potential investor). The instruments have been classified as: i) price and quantity based instruments; ii) adjustment in the regulatory system; and iii) financial incentives other than price.

123. From assessing the effectiveness of the instruments, it was found that the single **most effective policy instrument** to promote wind power in Colombia is the granting of **access to reliability payments**, recognizing the firm energy and complementarity offered by wind. The implementation of this policy option is relatively easy to incorporate into the existing regulatory system.

124. For new wind-power plants with costs in the range of \$1,800/kW installed, the adoption of the reliability payments is enough to attract independent investors, operating in wind fields with similar characteristics to that found in Northern Guajira.

125. **Higher capital costs require** access to **concessionary financial conditions**, such as those provided under the Clean Technology Fund or fiscal incentives. Likewise, internalizing costs of global externalities through certified emission reductions, which is already used to some extent, would help to make the projects more viable. Also exempting some charges and payments used in the regulatory system is shown to be very effective way in increasing the returns on investments. This is true in particular if CERE charges are exempted. However, it should be noted that CERE payments and reliability charges are two sides of the same coin, since the funds for reliability charges come from CERE. Also temporary incentives for wind and other renewable energy could be considered in order the sector to benefit and gain experience from the early implementation of wind projects before the wind energy becomes a more significant contributor to the grid.

126. Lack of access to the benefit of "reliability (firm energy) payments" for windpowered plants is a serious limitation to their development. A simple method for calculating the firm energy rating of wind-powered plants was introduced. It is recommended that the firm energy rating of a wind resource be adjusted annually based on the following exponential smoothing formula:

firm energy rating in year $t+1 = \frac{1}{2}$ (firm energy rating in year t) + $\frac{1}{2}$ (energy produced in year t).

127. Under this approach, **the firm energy rating**, and therefore the reliability payment, will quickly **converge to the long-run average firm energy capability**, even if the firm energy rating in the initial year is poorly measured.

Other findings

128. **Reliable data** is needed to assess the specific potential of wind throughout Colombia. Without this data, promoters and investors confront high uncertainties, which translate into an additional barrier to future investments. For this reason, the governments of Colombia and of other countries in the region are encouraged to assign resources to the proper mapping of their wind resource endowment and to make this information available to the public.

129. Other actions required to improve access to the market include: **open access to research and technology developments**; promotion of medium-scale developments (at 100 MW or more installed capacity), allowing the grid operator to be prepared for necessary system adjustments and plan strategically for greater transmission requirements when investments in wind power are increased.

130. **Applicability of the analysis conducted.** Although the analysis has centered on Colombia, the **approach is applicable to other countries**, which could further explore their nonconventional renewable resources. Other countries could benefit from performing a similar analysis to understand possible complementarities and how renewable energy technologies can also play a larger role in energy provision.

REFERENCES

Barrett, Mark. 2007. A Renewable Electricity System for the UK. In, Renewable Electricity and the Grid, The Challenge of Variability. Ch. 9. Ed. Godfrey Boyle.

LBNL. 2008. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007. US. Department of Energy. May

Ministry of Mines and Energy & Unidad de Planeación Minero Energética–UPME. 2009. Plan de Expansión de Referencia – Generación – Transmisión 2009-2023.

URS. 2008. Study of Equipment Prices in the Energy Sector. Study prepared for the World Bank. June.

UWIG. 2007. Integrating Wind into the Grid Presented to NRC Panel on Electricity from Renewables. Washington, DC; December 6.

Valencia, Adriana. 2008. Missing Links: Demystifying Alternative Energy Use and Improving Decision Making for Increased Off-grid Electrification in Colombia.

Vergara W. 2009 (ed.). Assessing the Consequences of Climate Destabilization in Latin America. SDWP 32. The World Bank.

World Wind Energy Association. 2009. World Wind Energy Report 2008. February.
ANNEX 1: TECHNOLOGY COST COMPARISON

In relation to Section 3 of the report, the following tables provide a cost ranking of various technologies according to capacity factors.

	without the cost of CO ₂ childsholds									
	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
1	SC 500 MW Rehabili tation	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion	Large Hydro 1200 MW	Large Hydro 1200 MW	Large Hydro 1200 MW	Large Hydro 1200 MW	Large Hydro 1200 MW	Large Hydro 1200 MW
2	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion
3	Simple Cycle GT 150 MW	SC Nat Gas Steam to Coal 300 MW	Large Hydro 1200 MW	Large Hydro 1200 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW
4	SC Nat Gas Steam 300 MW	Large Hydro 1200 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW
5	CCGT 560 MW	CCGT 560 MW	CCGT 560 MW	China SC 550 MW	China SPC 550 MW+ China SC 550 MW	China SPC 550 MW	China SPC 550 MW	China SPC 550 MW	China SPC 550 MW	China SPC 550 MW
6	CCGT 140 MW	CCGT 140 MW	China SC 550 MW+ CCGT 140 MW	China SPC 550 MW	China SC 550 MW+ China USPC 550 MW	China SC 550 MW	China SC 550 MW	China SC 550 MW	China SC 550 MW	Small to Med Hydro 400 MW
7	Large Hydro 1200 MW	Simple Cycle GT 150 MW	China SPC 5 50 MW	CCGT 560 MW	CCGT 560 MW	China USPC 550 MW	China USPC 550 MW	China USPC 550 MW	China USPC 550 MW	China SC 550 MW+ China USPC 550 MW
8	Diesel 5 MW	China SC 550 MW	China SC 300 MW	China SC 300 MW	CCGT 140 MW	China SC 300 MW	China SC 300 MW	China SC 300 MW	Small to Med Hydro 400 MW	China SC 300 MW
9	China SC 550 MW	China SPC 550 MW	China USPC 550 MW	China USPC 550 MW+ CCGT 140 MW	Small to Med Hydro 400 MW	CCGT 560 MW	Small to Med Hydro 400 MW	Small to Med Hydro 400 MW	China SC 300 MW	CCGT 560 MW
10	China SPC 550 MW	China SC 300 MW	Simple Cycle GT 150 MW	Simple Cycle GT 150 MW	China SC 300 MW CCS	CCGT 140 MW	CCGT 560 MW	CCGT 560 MW	CCGT 560 MW	CCGT 140 MW
11	China SC 300 MW	China USPC 550 MW	Diesel 5 MW	Small to Med Hydro 400 MW	SC 550 MW	Small to Med Hydro 400 MW	CCGT 140 MW	CCGT 140 MW	CCGT 140 MW	SC 550 MW+ SPC 550 MW

Table A1.1. Least levelized cost ranking of electricity generation plant by capacity factor (%) without the cost of CO₂ emissions

12	China	Diesel	China SC	Diesel	SPC	China SC	China SC	SC	SC	USPC
	USPC	5 MW	300 MW	5 MW	550 MW	300 MW	300 MW	550 MW	550 MW	550 MW+
	550 MW		CCS			CCS	CCS			China SC
										300 MW
										CCS
13	China	China SC	SC	China SC	SC	SC	SC	China SC	SPC 5	SC CFB
	SC	300 MW	550 MW	300 MW	300 MW	550 MW	550 MW	300 MW	50 MW	500 MW
	300 MW	CCS	+ China	CCS				CCS		
	CCS		SC							
			550 MW							
			CCS							

	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
1	SC Oil Steam to Coal 300 MW	SC 500 MW Rehabilit ation	Large Hydro 1200 MW+	Large Hydro 1200 MW+	Large Hydro 1200 MW+	Large Hydro 1200 MW+	Large Hydro 1200 MW+	Large Hydro 1200 MW	Large Hydro 1200 MW	Large Hydro 1200 MW
2	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC 500 MW Rehabilit ation	SC 500 MW Rehabilit ation	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion	Small to Med Hydro 400 MW+ SC 500 MW Rehabilita tion	Small to Med Hydro 400 MW	Small to Med Hydro 400 MW	Small to Med Hydro 400 MW
3	Simple Cycle GT 150 MW	CCGT 560 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion	SC 500 MW Rehabilita tion
4	CCGT 560 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	Small to Med Hydro 400 MW+ SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	SC Oil Steam to Coal 300 MW	China USPC 550 MW
5	SC Nat Gas Steam to Coal 300 MW	CCGT 140 MW	CCGT 560 MW	CCGT 560 MW	CCGT 560 MW	CCGT 560 MW	CCGT 560 MW	SC Nat Gas Steam to Coal 300 MW	SC Nat Gas Steam to Coal 300 MW	China SPC 550 MW
6	CCGT 140 MW	Simple Cycle GT 150 MW	CCGT 140 MW	CCGT 140 MW	CCGT 140 MW	CCGT 140 MW	CCGT 140 MW	China USPC 550 MW	China USPC 550 MW	CCGT 560 MW
7	Large Hydro 1200 MW+	China SC 550 MW	China SC 550 MW	China SPC 550 MW	China SPC 550 MW	China SPC 550 MW	China SPC 550 MW	China SPC 550 MW	China SPC 550 MW	China SC 300 MW CCS
8	Diesel 5 MW	China SPC 550 MW	China SPC 550 MW	China SC 550 MW	Small to Med Hydro 400 MW+ SC Nat Gas Steam to Coal 300 MW	China USPC 550 MW	China USPC 550 MW	CCGT 560 MW+ China USPC 550 MW	CCGT 560 MW	China SC 300 MW
9	China SC 550 MW	China SC 300 MW	China SC 300 MW	China USPC 550 MW	China SC 550 MW	China SC 550 MW	CCGT 140 MW	China SPC 550 MW	China SC 550 MW	SC 300MW CCS
10	China SPC 550 MW	China USPC 550 MW	China USPC 550 MW	China SC 300 MW	China USPC 550 MW	China SC 300 MW	China SC 550 MW	China SC 550 MW+ CCGT 140 MW	CCGT 140 MW	CCGT 140 MW
11	China SC 300 MW	Diesel 5 MW	China SC 300 MW	Small to Med Hydro 400 MW	China SC 300 MW	China SC 300 MW CCS	China SC 300 MW	China SC 300 MW CCS	China SC 300 MW CCS	China SC 550 MW CCS

Table A1.2. Least levelized cost ranking of electricity generation plant by capacity factor (%) with US\$18/ ton CO2 emissions

12	China USPC 550 MW	Small to Med Hydro 400 MW+ China SC 550 MW CCS	Simple Cycle GT 150 MW	China SC 300 MW CCS	China SC 300 MW CCS	China SC 550 MW CCS	China SC 300 MW CCS	China SC 550 MW CCS	China SC 300 MW	China USPC 550 MW CCS
13	China SPC 550 MW CCS	CCGT CCS 50 MW	Diesel 5 MW	Simple Cycle GT 150 MW	China SC 550 MW CCS	SC 300 MW CCS	China SC 550 MW CCS	China USPC 550 MW CCS	SC 300 MW CCS	China SPC 550 MW CCS
14	China USPC 550 MW CCS	China SPC 550 MW CCS	Small to Med Hydro 400 MW	Diesel 5 MW	China SPC 550 MW CCS + CCGT CCS 482 MW	China SPC 550 MW CCS	China SPC 550 MW CCS		China USPC 550 MW CCS	SPC 550 MW + USPC 550 MW

ANNEX 2. USE OF EARTH SIMULATOR TO ESTIMATE THE LIKELIHOOD OF EXTREME WEATHER EVENTS

Earth Simulator AGCM (atmospheric general circulation model) developed by the Meteorological Research Institute (MRI) of the Japan Meteorological Agency (JMA) runs were used to estimate the likelihood of extreme weather events to the end of the century. The the Earth Simulator is a super-high resolution atmospheric general circulation model with a horizontal grid size of about 20 km (Mizuta et al. 2006), offering an unequaled high resolution capability. The use of the Earth Simulator made this super-high resolution model's long-term simulation possible⁵⁷.

Although the global 20-km model is unique in terms of its horizontal resolution for global change studies with an integration period up to 25 years, available computer power is still insufficient to enable ensemble simulation experiments and this limits its application to a single member experiment. To address this caveat, parallel experiments with lower resolution versions of the same model (60-km, 120-km and 180-km mesh) were performed. In particular, ensemble simulations with the 60-km resolution have been performed and compared with the 20-km version for this study.

Two extreme indices for precipitation are used to illustrate changes in precipitation extremes over Colombia, one for heavy precipitation and one for dryness. All over the country, RX5D is projected to increase in the future. Largest RX5D increases (rainfall intensification) are found over south eastern Colombia. At a higher resolution (20-km) the model projects even larger increases in RX5D.

⁵⁷ This model is an operational short-term numerical weather prediction model of JMA and part of the next generation climate models for long-term climate simulation at MRI.

Figure A2.1. Changes in maximum 5-day precipitation total (mm) between the present and the end of the 21st century for (a) 60-km and (b) 20-km respectively.

For 60-km model, areas with the highest projected consistency in sign are hatched. Zero lines are contoured.

Likewise, Figure A2.2 shows the changes in maximum number of consecutive dry days (CDD). A "dry day" is defined as a day with precipitation less than 1 mm d^{-1} . CDD periods are projected to increase, in particular over the northern coast.

Figure A2.2. The same as in Fig. A.2.1 except for consecutive dry days (day).

2. Impact on river stream flow

Using the runoff data, derived from rainfall projections under the Earth Simulator, stream-flow in large rivers can be calculated. The analysis used a "GRive T", river model⁵⁸. In the present day simulation, large rivers are well represented by this model. While the analysis has yet to be made for basins in Colombia with a large hydropower potential, a similar assessment made for rivers in the Amazon basin, indicate that the changes in extremes and in particular the concentration of rainfall and the lengthening of dry periods will increase the amplitude of stream flows, which in turn would affect the mean firm capacity of hydropower installations.

 $^{^{58}}$ (GRiveT: Global Discharge model using TRIP, the 0.5 x 0.5 version with global data for discharge channels; Nohara et al. (2006). The river runoff assessed in the land surface model is horizontally interpolated as external input data into the TRIP grid so that the flow volume is saved.

ANNEX 3. POOL PRICES UNDER VARIOUS SCENARIOS

Pool prices in the wholesale market are formed by adding other variable costs (Real Equivalent Cost of the Capacity Charge [CERE], Fund for the Electrification of Off-grid Regions [FAZNI], environmental and Automatic Generation Control [AGC]) to the pure marginal cost. The report presents this for the mean case scenario.

Other scenarios are defined in the Table A3.1:

SCENARIO	DEMAND	FUEL PRICES	HYDRO
MEAN	BASE	BASE	REVISED
MEAN HIGH HYDRO	BASE	BASE	XM FACTORS
LOW	LOW	LOW	REVISED
HIGH	HIGH	HIGH	REVISED

 Table A3.1 MEM Scenarios

The following Figures (A3.1 and A3.2) present this for the mean high hydro and high scenario. Figure A3.3 compares the pool prices for base and base high hydro scenarios.

Figure A3.3. Comparison of Pool Prices for Base and Base High Hydro Scenarios

As it can be observed from Figure A3.3, the average pool prices for the mean scenario are regularly higher than the mean high hydro scenario.

ANNEX 4. RESULTS OF THE EXPECTED RETURNS ON INVESTMENTS WITH THE INDIVIDUAL APPLICATION OF THE POLICY INSTRUMENTS FOR DIFFERENT MARKET SCENARIOS.

Tables A4.1- A4.5 depict the expected returns on investments with the individual application of the selected policy instruments discussed in section VII of the report.

The analysis of the information contained in Table A4.1 indicates:

- All policy instruments improve the financial outcome of the potential investment under consideration, as compared with the baseline condition. Individually none attains the selected threshold of a return on equity of 14% before taxes.
- A generous access to concessional financing (policy instrument C2) provides the greater inducement. This option requires clean technology concessional funding for up to 50% of the total unitary investment.
- Eliminating CERE payments (column F) is a very effective instrument.
- Adjusting the access to the reliability charge (or leveling the playing field for nonconventional renewable energy technologies) is also a very effective incentive as indicated in column H, depending on the methodology used for selecting the reliability factor.
- Eliminating income taxes do not seem to be an effective instrument to attract investments to RET, given the criteria utilized to judge financial feasibility.
- As should be expected, the comparison of results presented in Table A4.1 indicate that a reduction in unitary investment moves the expected returns closer to the defined threshold of 14% before taxes, but falls short of reaching this target. The use of individual policy instruments is not enough incentive for potential investors. The following tables summarize the analysis conducted when assessing the likely impact on potential investors of the selected Policy Group options.
- This policy group option does not provide adequate incentives to potential investors if the investment costs were to remain high at or above US\$2,100/kW.
- But this policy group offers interesting flexibility for low unitary investment costs. In particular if the reliability factor is estimated through the methodology indicated in section VII.3, that would be the only government intervention required to open the market to wind powered energy investments⁵⁹.

⁵⁹ As explained in the document, estimates using the available information from Jepirachi, complemented observational records from nearby wind measuring stations from 1985 to 2008, produce a reliability factor of 0.415. A standard deviation of 0.055 results in the reliability factor of 0.36, used in this analysis.

Table A4.1. Effectiveness analysis of individual policy instruments

Results expressed as financial returns on capital for a 300 MW wind farm in northern Colombia

POLICY										
OPTIONS	Α	B1	B2	C1	C2	D	Ε	\mathbf{F}	G	Η
TYPE I Financial I		ents	0	0	0	0	0	0	0	0
Carbon CERs	18	0	0	0	0	0	0	0	0	0
Access CTCF loans	0	0	0	0.3	0.5	0	0	0	0	0
Access to soft loans	0	0.4	0.7	0	0	0	0	0	0	0
TYPE III Governn	nent Fe	es	0.00		0.00	0	0.00	0.00		0.00
Income Taxes	0.33	0.33	0.33	0.33	0.33	0	0.33	0.33	0.33	0.33
Generator charges	1	1	1	1	1	1	0	1	1	1
TYPE V Regulator	·у									
Instruments										
Sustainability										
charge	0	0	0	0	0	0	0	0	5	0
CERE payments	1	1	1	1	1	1	1	0	1	1
Reliability charge	0	0	0	0	0	0	0	0	0	0.36
Investments Costs	1800	\$/kW								
Project before taxes	7.5%	5.8%	5.8%	5.8%	5.8%	5.8%	6.2%	9.4%	7.1%	9.5%
Project after taxes	6.1%	4.6%	4.6%	4.6%	4.6%	5.8%	5.0%	7.8%	5.8%	7.9%
Equity before taxes	7.3%	5.4%	5.9%	7.4%	10.2%	4.9%	5.6%	10.0%	6.8%	10.1%
Equity after taxes	5.6%	4.0%	4.4%	5.7%	8.3%	4.9%	4.1%	7.9%	5.1%	8.0%
Investments Costs	2100	\$/kW								
Project before taxes	6.1%	4.4%	4.4%	4.4%	4.4%	4.4%	4.9%	7.8%	5.7%	7.9%
Project after taxes	4.9%	3.5%	3.5%	3.5%	3.5%	4.4%	3.9%	6.4%	4.6%	6.4%
Equity before taxes	5.4%	3.6%	3.9%	5.2%	7.3%	3.3%	3.8%	7.7%	4.9%	7.8%
Equity after taxes	3.9%	2.5%	2.8%	3.8%	5.7%	3.3%	2.6%	5.9%	3.5%	6.0%
Investments Costs	2400	\$/kW								
Project before taxes	4.9%	3.4%	3.4%	3.4%	3.4%	3.4%	3.8%	6.5%	4.6%	6.6%
Project after taxes	3.9%	2.6%	2.6%	2.6%	2.6%	3.4%	3.0%	5.3%	3.6%	5.3%
Equity before taxes	3.9%	2.2%	2.4%	3.4%	5.2%	1.9%	2.5%	6.0%	3.5%	6.1%
Equity after taxes	2.7%	1.3%	1.5%	2.4%	3.9%	1.9%	1.5%	4.4%	2.3%	4.5%

Note: The policy instruments used are read in the upper half of the table, while the lower indicates the expected financial returns. For example, Policy instrument A correspond to access to payments for the reduction of GHG at a price of \$18/ton CO2. Policy instrument D shows that income taxes are waived.

Policy Groups

Tables A4.2, A4.3, and A4.4 present the results obtained from the analysis of the three policy groups under consideration. In each case the analysis seeks to find a combination of instruments that jointly create the conditions for potential investors to move their capital towards RET initiatives. The tables retain the same general design used to describe the results of individual policy instruments. Reading the table from left to right the columns aggregate the instruments used to create the policy group of interest. For example, as shown in Table A4.2the Group Policy Options is built as follows: Baseline + Carbon CERs + Soft Loans (20%, 40% and 70%) + access to clean technology concessional financing (30% and 50%).

The use of financial instruments to build a policy option provides great flexibility. In the particular case under study the threshold, or target financial rate of return (FRR), is not achieve if the investment costs approach US\$2,400/kW. For the low investment cost scenario potential investors require access to clean technology concessional resources for nearly 30% of the expected cost.

POLICY OPTIONS	Α	В	С	D	Ε	F
TYPE I Financial Instru	ments					
Carbon CERs	0	18	18	18	18	18
Access CTCF loans	0	0	0	0	0.3	0.7
Access to soft loans	0	0	0.3	0.7	0.4	0
TYPE III Government						
Fees						
Income Taxes	0.33	0.33	0.33	0.33	0.33	0.33
Generator charges	1	1	1	1	1	1
TYPE V Regulatory						
Instruments						
Sustainability charge	0	0	0	0	0	0
CERE payments	1	1	1	1	1	1
Reliability charge	0	0	0	0	0	0
Investments Costs	1800	\$/kW				
Project before taxes	5.8%	7.5%	7.5%	7.5%	7.5%	7.5%
Project after taxes	4.6%	6.1%	6.1%	6.1%	6.1%	6.1%
Equity before taxes	4.9%	7.3%	7.9%	8.7%	12.1%	20.3%
Equity after taxes	3.5%	5.6%	6.0%	6.8%	9.9%	18.0%
Investments Costs	2100	\$/kW				
Project before taxes	4.4%	6.1%	6.1%	6.1%	6.1%	6.1%
Project after taxes	3.5%	4.9%	4.9%	4.9%	4.9%	4.9%
Equity before taxes	3.3%	5.4%	5.8%	6.4%	9.0%	15.9%
Equity after taxes	2.2%	3.9%	4.2%	4.8%	7.1%	13.7%
Investments Costs	2400	\$/kW				
Project before taxes	3.4%	4.9%	4.9%	4.9%	4.9%	4.9%
Project after taxes	2.6%	3.9%	3.9%	3.9%	3.9%	3.9%
Equity before taxes	1.9%	3.9%	4.2%	4.6%	6.7%	12.5%
Equity after taxes	1.1%	2.7%	2.9%	3.3%	5.2%	10.4%

Table A4.2. Effectiveness analysis of policy options: Use of financial instruments.Financial results for a 300 MW wind farm in northern Colombia

The use of government fiscal mechanisms is explored in Table A4.3, below. As indicated in the Table, the group encompasses a wide range of fees and payments to the government. The following sequence was used, as indicated by reading the table from left to right: baseline + Carbon CERs + Tax shelter + waiver of generator charges + elimination of the obligation to contribute to CERE. The results indicate that this policy group option along cannot create the required incentives to attract potential investors to wind power projects.

POLICY OPTIONS	Α	В	С	D	E	F
TVDE I Financial						
I I FE I Fillalicial Instruments						
Carbon CEPs	0	19	19	19	19	19
Access CTCE loops	0	10	10	10	10	10
Access to soft loops	0	0	0	0	0	0
	0	0	0	0	0	0
Covernment Foos						
Income Taxes	33%	33%	0%	0%	0%	0%
Generator charges	3370 1	5570 1	0 /0	0/0	070	0/0
TVPE V Regulatory	1	1	1	0	1	0
Instruments						
Sustainability charge	0	0	0	0	0	0
CFRF payments	1	1	1	1	0	0
Reliability charge	0	0	0	0	0	0
Rendonity enarge	U	U	U	U	U	U
Investments Costs	1800	\$/kW				
Project before taxes	5.8%	7.5%	7.5%	8.0%	10.9%	11.3%
Project after taxes	4.6%	6.1%	7.5%	8.0%	10.9%	11.3%
Equity before taxes	4.9%	7.3%	7.3%	8.0%	12.3%	12.9%
Equity after taxes	3.5%	5.6%	7.3%	8.0%	12.3%	12.9%
Investments Costs	2100	\$/kW				
Project before taxes	4.4%	6.1%	6.1%	6.5%	9.1%	9.5%
Project after taxes	3.5%	4.9%	6.1%	6.5%	9.1%	9.5%
Equity before taxes	3.3%	5.4%	5.4%	5.9%	9.6%	10.2%
Equity after taxes	2.2%	3.9%	5.4%	5.9%	9.6%	10.2%
Investments Costs	2400	\$/kW				
Project before taxes	3.4%	4.9%	4.9%	5.3%	7.8%	8.1%
Project after taxes	2.6%	3.9%	4.9%	5.3%	7.8%	8.1%
Equity before taxes	1.9%	3.9%	3.9%	4.4%	7.7%	8.1%
Equity after taxes	1.1%	2.7%	3.9%	4.4%	7.7%	8.1%

Table A4.3. Effectiveness analysis of policy options: Use of government fees and payments

The use of regulatory instruments comprises the last group of policy options. Under this group the following sequence of instruments is used, as depicted in Table A4.3, below: Baseline and Carbon CERs + reliability charge (reliability factors of 0.20, 0.30 and 0.36) +CERE waiver (50%, 100%). The results summarized in Table A4.3 indicate:

D1	D2	D3
18	18	18
0	0	0
0	0	0
33%	33%	33%
1	1	1
0	0	0
1	0.5	0
0.36	0.36	0.36
10.9%	12.5%	13.9%
9.2%	10.6%	12.0%
12.4%	14.9%	17.5%
10.0%	12.3%	14.7%
9.2%	10.6%	11.9%
7.6%	8.9%	10.1%
9.7%	11.8%	13.9%
7.6%	9.5%	11.4%
7 8%	Q 10⁄2	10 3%
6 / 0%	7.170 7.5%	8 6%
0.470 7 8%	9.6%	11 4%
5.9%	7.5%	9.1%
	D1 18 0 0 33% 1 0 10.9% 9.2% 10.9% 9.2% 12.4% 10.0% 9.2% 7.6% 9.7% 7.6% 9.7% 7.6% 9.7% 7.8% 6.4% 7.8% 5.9%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table A4.4. Effectiveness analysis of policy options: use of regulatory instruments

ANNEX 5. EXEMPTING CERE PAYMENTS BY 50 OR 100 PERCENT

In addition, the analysis also considered the option of exempting 100 percent or 50 percent of the CERE payment. The results show that clean technology concessional financing is still required if CERE is considered only at 50% and above a unit price of US\$2,100. Alternatively, this type of financing is not necessary if the unitary investment is US\$1,800 and CERE payment is exempted, even at 50 percent. In short, eliminating the CERE payment alone is also an effective instrument. If CERE payment is eliminated, a unit investment cost of US\$1,800/kW allows the IRR to reach the 14 percent target. The results are summarized in the table A6.1, below.

Investment cost/kW (US\$)	% Returned CERE	In all cases it is assumed that there's 30% equity.					
\$	100%	Need 15% clean tech concessional financing + 55% sot loans					
2,400	50%	Need 40% clean tech concessional financing + 20% soft loans + 10% commercial credits					
<u>,</u>	100%	Need 45% soft loans + 25% commercial credits					
\$ 2,100	50%	Need 15% clean tech concessional financing + 55% soft loans					
\$	100%	No additional financing required					
1,800	50%	Need 35% soft loans + 35% commercial credits					

Table A5.1. Financing necessary if CERE is returned 50 or 100%, depending on investment costs.

The results of analyzing the possibility of excluding the hypothetical 300 MW wind power project from paying CERE charges indicates that not paying for CERE charges results on a return of investment that is the same as if the reliability payment is recognized at 40%. Therefore, the policy maker has an option of either not charging the CERE payment to wind power producers, or recognizing their project's firm capacity. In this case, it might be simpler and to the country's interest to recognize the firm capacity of each project.

ANNEX 6. COMPLEMENTARITY BETWEEN WIND POWER AND HYDROELECTRIC RESOURCES

(Please note that the numbering of this Annex is different than the previous ones since this annex comprises a full self-contained report)

TABLE OF CONTENTS

CHAPTE	R 1: INTRODUCTION	91
CHAPTE	R 2: METHODOLOGY	92
CHAPTE	R 3: DATABASE	93
3.1	WIND VELOCITY INFORMATION	93
3.2	River discharges	96
3.3	TECHNICAL INFORMATION FOR JEPIRACHI POWER PLANT	97
3.4	JEPIRACHI GENERATION	98
CHAPTE	R 4: EXTENSION OF JEPIRACHI INFORMATION	
CHAPTE	R 5: COMPLEMENTARITY BETWEEN WIND AT JEPIRACHI AND HYDROLOGY	105
5.1	MEAN MONTHLY DISCHARGES AND JEPIRACHI GENERATION	105
5.2	"EL NIÑO" OCCURRENCES	107
5.3	Firm energy	119
5.3.1	GUAVIO RIVER	119
5.3.2	Nare River	121
5.3.3	Cauca River	
5.3.4	Magdalena River	125

CHAPTER 1: INTRODUCTION

This report presents the results of the studies made to analyze the complementarities existing between the hydroelectric resource and the wind power in Colombia, including synergies that can occur during El Niño occurrences.

Colombia is a country with abundant natural resources for the production of renewable energy. Historically power sector development has been based on hydroelectric energy (approximately 80% of energy consumption). The country also has abundant coal resources, which are largely exported and which represent a considerable energy reserve of strategic interest for the country. At the moment there is only one wind power farm in the country (Jepirachi), located in the Caribbean Coast, in the Guajira Department, with 19.5 MW installed capacity.

Several wind power advantages in the Colombia power system have been mentioned. Among them the complementarities with hydroelectric resources are investigated in this study. Specifically, preliminary analyses indicate that during the dry hydrologic period (December to April), wind velocities in the Caribbean are above the annual. Likewise, it has also been argued that wind velocities are above the mean when El Niño occurs.

• This study aims to find an answer to the following questions: Does complementarity exist between water resources and wind power resources in Colombia (e.g. in La Guajira)? Which could be the contribution of wind resources to the reliability of the national electric system? Which is the natural variability of the wind resource (monthly and summer potential contribution)? Which is wind power contribution during the period of 'extreme' summer, associated to the El Niño phenomenon?

CHAPTER 2: METHODOLOGY

Main aspects of the methodology are:

- 1. Use the Puerto Bolívar meteorological station as the basis of the analysis. There is information starting in 1986.
- 2. Fill abundant missing hourly data.
- 3. Statistical analysis of hourly wind velocity characteristics.
- 4. Conversion of hourly wind velocity data in hourly power generation using conversion factors corresponding to a particular wind turbine and a given capacity installation.
- 5. Estimation of monthly generation information.
- 6. Selection of 4 discharge measurement stations of the national interconnected system for analysis of synergies of joint hydroelectric power and wind turbines operation.
- 7. Analysis of river discharges and Jepirachi generation during "El Niño" occurrences,
- 8. Estimation of firm energy obtained from individual operation of the hydroelectric plants (with and without reservoir) and wind power plants as well as the joint operation of them. Firm energy will be defined as the maximum energy that can be produced without deficits during the analysis period which will include El Niño occurrences. The analysis will be done using a simulation model that will operate the plants to provide a given energy target, adjusting this target until no deficits are generated. The analysis will be done for each one of the hydroelectric plants selected.
- 9. Synergetic gains due to the complementarity between hydroelectricity and wind power will be measured as the difference between firm energy in a joint operation and the sum of firm energies in isolated operation.

CHAPTER 3: DATA BASE

3.1 WIND VELOCITY INFORMATION

Hourly data for two stations in the Colombia Caribbean were obtained from IDEAM by the World Bank.

First station is located in Puerto Bolívar, in the vicinity of Jepirachi power plant. It covers the period between October 1986 and December 2008, with several missing records (There are 162124 hourly records out of a total of 195072 representing 83% of them.

There is not a clear behavior of the distribution of hourly velocities in the day for the different months of the year. The distribution of wind velocities in the different hours of the day is shown next.

Figure A6.1. Hourly wind velocity – Puerto Bolivar

The Figure A6.1 shows the tendency of larger wind velocities during peak electric load hours while smaller wind velocities tend to be concentrated during early morning hours which are the minimum load hours. Therefore, there is a complementarity of wind velocities with electric load, which is a clear advantage for wind power.

Figure A6.2. Seasonal behavior of mean wind velocity.

As seen from the Figure A6.2, large wind velocities occur during December to April which are the months with lower river discharges. This represents a positive complementarity between wind power and hydroelectric power.

The Figures A6.3 and A6.4 show similar results for the Barranquilla Airport where the second station is located. The results are similar in Puerto Bolívar and Barranquilla airport, although the difference between the minimum and maximum values is more accentuated in Barranquilla Airport.

Figure A6.4. Mean wind velocity: Barranquilla airport

Mean velocities at Barranquila Airport are substantially lower than those at Puerto Bolívar and does not have a good correlation with the Puerto Bolívar station, due to the fact of the shading effect of Sierra Nevada de Santa Marta. Therefore, this station was not used.

3.2 RIVER DISCHARGES

Monthly data for four rivers associated to hydroelectric power plants were used in this study. The information was obtained from data bases for simulation of the interconnected hydrothermal power system.

Rivers considered were Nare River in Santa Rita Dam (1955-2009), Guavio River in Guavio Dam (1963-2009), Cauca River in Salvajina Dam (1946-2009) and Magdalena River in Betania Dam (1972-2009), representing a sample of geographical regions of the country. The Table A6.1 shows mean monthly values for these rivers.

Table A6.1.Mean monthly values of Guavio, Nare, Cauca and Magdalena Rivers

	Guavio	Nare	Cauca	Magdalena
Jan	18.4	36.2	166.3	145.4
Feb	19.9	32.3	145.8	154.6
Mar	29.9	34.5	139.7	183.4
Apr	65.6	46.4	152.2	225.2
May	106.3	62.1	153.1	240.4
Jun	139.2	58.2	127.9	240.5
Jul	144.4	47.9	103.2	240.3
Aug	110.0	48.8	74.6	179.1
Sep	76.0	59.3	63.2	138.6
Oct	64.9	67.6	109.6	177.4
Nov	52.7	67.6	197.2	218.0
Dec	31.3	49.6	215.5	199.2

MEAN MONTHLY VALUES - m3/seg

The next Figure illustrates the diversity of meteorological condition shown by the rivers chosen.

Figure A6.5. Normalized monthly discharges of the four rivers

NORMALIZED MONTHLY DISCHARGES

3.3 TECHNICAL INFORMATION FOR JEPIRACHI POWER PLANT

Jepirachi wind farm power plant is located in the northern part of Colombia, in the Guajira peninsula on the Caribbean Sea. It has been equipped with 15 Nordex N60

aerogenetors (1300 kW each one) for a total installed capacity of 19.5 MW. Power curve (relating wind velocity with power delivered by the generator) for each unit is shown in the the Figure A6.6.

Figure A6.6. Power curve for each unit

The power curve is valid for standard air density (1.225 kg/m3). For a different air density a correction has to be made. Air density at Jepirachi is 1.165 kg/m3).

Velocity is at tower altitude (60 m.). Therefore a correction has to be made taking into account a roughness factor since velocity measurements are made at a 10 m. altitude.

3.4 JEPIRACHI GENERATION

Hourly Jepirachi generation was obtained from Neon Data Base operated by Xm, the system operator. The information was available between February 2004 and March 2009.

The next Tables summarize the information at monthly hour level.

JEPIRACHI MONTHLY HOUR GENERATION KWH (1 to 12)												
	Нога											
5 1 04	1	2	3	4	5	6	7	8	9	10	11	12
Feb-04	46409	44317	39107	35323	30761	31072	29592	30234	39381	45079	54153	39381
Apr 04	140930	125710	110109	108005	105044	105672	104041	121021	133416	157050	100674	133410
Api-04	221006	121303	220222	225541	200674	103672	102550	200064	211206	206042	222462	211206
lun-04	231990	233304	304223	223341	203074	300260	193330	203004	340632	377004	377463	340632
Jul-04	242488	227097	221345	203293	183794	170140	176278	190410	187934	202619	246582	187934
Aug-04	240662	220931	213009	213823	220730	197890	191253	229974	252703	263633	276345	252703
Sep-04	46563	37095	36999	36673	35451	21177	21253	24676	22056	27475	50192	22056
Oct-04	61729	55937	48722	49209	46999	38244	34866	53119	66744	77137	89306	66744
Nov-04	60176	50989	42348	57550	69987	64443	59364	64631	100781	108311	127689	100781
Dec-04	83709	82030	66083	66415	61500	60122	61066	73683	120077	141600	155051	120077
Jan-05	117439	112019	113308	107172	100759	93807	74290	90023	134068	173343	197178	134068
Feb-05	130617	121767	100697	88478	80324	79221	68862	91027	138653	171403	214050	138653
Mar-05	190359	162779	151840	131416	118121	108643	99305	123272	163227	182891	224965	163227
Apr-05	154972	150516	145551	132760	114786	114394	122887	146267	163255	173237	184477	163255
May-05	134648	127325	118908	107702	107549	107578	111381	134308	133262	135237	146744	133262
Jun-05	116432	93899	92139	90527	75461	77493	74215	94447	114563	130210	150332	114563
Jul-05	179538	181386	172213	143606	124863	122338	128007	137707	154542	162466	188642	154542
Aug-05	172650	150581	147546	135425	126542	119151	122975	133853	132222	146884	182514	132222
Sep-05	125927	128747	134390	127963	117870	103245	102499	122933	117671	119877	137928	117671
Oct-05	125927	128747	134390	127963	117870	103245	102499	122933	117671	119877	137928	117671
Nov-05	58513	46187	46865	45333	45406	50663	45348	58816	/665/	83044	92404	/665/
Dec-05	83773	69392	58543	56719	61611	59192	54709	61794	101314	147022	168341	101314
Jail-06	142550	145505	155094	13/303	121596	124420	95525	174044	145210	195212	233640	145210
Mar-06	194406	103387	130102	140437	141071	154459	158345	196017	230149	200030	279571	230149
Apr-06	134752	125313	118589	117559	112926	107591	91856	127226	162933	178068	191372	162933
May-06	146913	152761	150091	134786	129561	127175	137489	160875	150092	168364	202209	150092
Jun-06	188191	181644	165323	153041	145705	142623	149388	158433	193370	216576	245133	193370
Jul-06	273952	264547	247057	231815	220277	225774	245223	277116	303914	328205	345305	303914
Aug-06	175006	161350	151769	162598	163303	152824	159408	190130	187454	212316	226024	187454
Sep-06	121836	112256	113384	115297	101732	93420	97781	122323	114837	110926	150603	114837
Oct-06	33764	33913	30844	28615	26543	36114	41069	72346	73642	72866	85308	73642
Nov-06	55494	46044	48843	44619	44781	42900	43367	59042	70262	78197	90236	70262
Dec-06	59470	51653	51913	44500	46813	39869	46792	66155	110377	157627	223358	110377
Jan-07	80766	76745	69222	62755	54673	59807	66482	103797	192493	264594	283181	192493
Feb-07	88263	83999	72931	65508	66247	66469	74406	108545	157399	193461	218661	157399
Mar-07	136785	117686	122976	113518	102743	94738	106547	177327	197942	207676	238591	197942
Apr-07	142636	13/103	136/86	130534	126182	125110	132306	144649	123012	119740	147654	123012
May-07	111543	10/354	105961	106932	94222	90915	83770	91401	89206	/5341	94698	89206
Jun-07	84322	64/16	49950	44181	34957	36981	68150	105818	130863	169942	203073	130863
Jui-07	106610	101659	82770	78702	64441	58055	58080	67070	64588	73801	233728	64588
Sep-07	86064	76093	76628	77241	69730	58474	52812	66407	62516	56065	76632	62516
Oct-07	24349	17836	14402	12186	12462	13039	13080	21766	21746	20414	26371	21746
Nov-07	73889	66966	60180	55416	56802	62436	64525	92063	130866	135115	145750	130866
Dec-07	90271	78076	68034	69976	69645	71624	66075	77080	105941	136080	173809	105941
Jan-08	150988	139050	130543	137005	126762	108916	101454	118931	173812	220046	245562	173812
Feb-08	186657	185811	163518	148699	134753	134196	128160	160803	210344	232433	252266	210344
Mar-08	194511	183501	168074	160775	152081	139823	126657	158281	198509	207617	241720	198509
Apr-08	192195	174564	152676	149851	135665	127285	127594	147007	160517	152390	174664	160517
May-08	163070	154352	140156	139326	141993	135519	154812	179539	169203	163547	194966	169203
Jun-08	226274	200330	185411	178294	164696	166520	170894	196275	199596	207061	246916	199596
Jul-08	187039	172327	171895	160658	145228	135780	135324	165633	190247	219829	257446	190247
Aug-08	105591	89614	80009	76364	70617	65652	67979	82000	88168	94028	106812	88168
Sep-08	31755	27904	31262	29408	23547	23649	24996	30282	36672	43186	49006	36672
Oct-08	53756	53432	44587	50841	38415	38779	33396	38066	49877	60150	64042	49877
Nov-08	34799	34755	34418	32401	31708	38107	34486	38293	45255	60389	56459	45255
Dec-08	64346	62404	53736	54629	46539	53755	49296	56524	78246	116582	128353	78246

Table A6.2. Jepirachi monthly hour generation kWh (1 to 12)

Hora Hora Hora Job 20 Z1 Z2 Z3 Z4 Veb.04 9853 11023 11023 11023 11024 10020 88466 7512 71260 6628 54485 Amr-04 287941 208533 319244 322853 112303 20039 257944 217061 199895 2180377 168099 14440 May, 40 276744 40753 407764 44104 418444 27283 309444 38537 31138 34444 38537 31138 34444 38537 31138 34444 32255 322819 322339 214884 38537 31138 31138 314821 318255 322339 21488 31139 311	JEPIRACHI MONTHLY HOUR GENERATION KWH (13 to 24)												
13 14 15 16 17 18 19 20 21 712 722 23 24 Mar-04 207015 222800 228082 228082 228082 228081 22842 20815 17171 184001 175480 157685 144035 Mur-04 207015 222804 228082 201044 22842 201557 11201 15748 157685 144031 Mur-4 40552 42714 44748 477255 46418 848164 412335 400411 393448		Hora											
Hethel 1862/1 1162/2 1111/2 1112/40 1104/60 1004/2 884/80 ()112 ()20/2 1005/2 Mmy-M 2787/4 20657 201621 201515 201516 201516 201516 201516 201515 201516 201517 201511 201517		13	14	15	16	17	18	19	20	21	22	23	24
up no 1.0533 4.0530 4.0530 4.0530 4.0533 </th <th>Feb-04</th> <th>98832</th> <th>116252</th> <th>121112</th> <th>116121</th> <th>115746</th> <th>109831</th> <th>102702</th> <th>88486</th> <th>75112</th> <th>/1280</th> <th>157655</th> <th>54858</th>	Feb-04	98832	116252	121112	116121	115746	109831	102702	88486	75112	/1280	157655	54858
Hum, M 20957 300957 30021 342712 31713 24462 27218 25511 242812 35511 24881 Jul-04 355699 42784 44796 47717 42380 380081 323514 29969 22608 269376 25458 Spe-04 97805 13798 16906 400154 43563 380081 323514 29989 26698 269392 24989 26968 17058 14844 17469 8971 6646 Nor-04 20158 203387 208971 22119 322097 266651 17098 13680 9360 9760 46422 6632 Nor-04 20158 203387 208971 23187 208981 11508 11525 11527 Marco 23452 301063 32448 37998 22391 25281 21167 14229 Marco 34527 23474 45531 45732 23871 23884 239171 23818 115	Apr 04	209915	222300	220980	220900	230204	225462	204557	217061	100205	1/5460	169050	144905
mbm Loss2 200321	Apr-04	207041	306551	319024	322955	312303	290319	257954	217001	199695	160377	106039	145401
μμμθ 356699 42292 45707 45130 44717 42390 38001 323514 29685 22693 25022 25483 Sup04 97805 13798 14977 40514 43554 332031 332511 20683 26690 25927 23006 240340 No-04 203158 203387 209371 22113 221219 221219 221219 22129 21129 21169 211693 211698 131229 MoreO 375594 427460 45243 469330 450999 141848 37998 229361 21157 229384 21157 MurdO 15629 32371 25674 220169 210109 14141 14299 12171 12171 12171 12171 12172	lun-04	278974	309557 425714	320782	339221 471203	342712	317194 464108	294042	412355	205014	207321	239311	240020
Aug 95570 49570 409574 45627 77058 339611 20085 26600 25022 20090 Gr.04 147251 194101 22132 226578 23310 206310 17288 144341 142251 13346 9242 66633 Dr.0-04 207581 205878 209971 220578 20197 27084 16600 98301 76064 4234 64363 Dr.0-04 207581 208971 20997 24302 28304 224005 211697 28484 153287 Feb-05 315201 33162 31480 314930 329261 22157 22648 22988 21167 28497 150405 14327 157005 14437 155202 Jun-05 376571 209676 24252 25247 254471 228802 19315 14347 15717 12599 12717 12599 Jun-05 376571 36468 339774 399458 31073 25791	Jul-04	355600	423714	447540	451330	4/3/30	404100	380081	323514	200560	282603	269326	25/858
Sep-04 97805 137993 189272 20410 213888 138271 138255 132355 98224 89071 97214 0c-04 10751 205187 20678 231010 205101 205187 206184 15650 170584 15650 77084 15650 77084 15650 77084 15650 77084 15650 77084 15650 77084 15650 77084 15650 77084 15650 77084 15650 77084 15650 77084 15650 77084 25826 211600 25888 229856 211607 25888 229856 21167 25888 229856 21167 25879 7739 15609 11167 77111 72573 25976 220757 220747 254471 228855 21160 27586 23999 162739 151609 110-05 157573 20767 220767 220774 254774 254774 254771 152724 221560 193997 15739 <	Δug-04	354570	422582	456167	471056	460154	439583	382403	339621	235505	262033	263923	249949
Oct-0 107251 194101 22123 226578 231101 204510 172588 144304 114409 89071 60242 64330 Dec-04 231460 276812 298312 321944 310739 26653 179348 12650 95801 161468 153155 153271 Feb-05 335201 331622 314877 365011 34272 23470 220808 167878 161468 15315 153271 Mar-05 375564 427460 453243 40330 40999 13348 17999 15273 155732 15773 164371 157722 Apr-05 215291 237576 24622 23478 237402 271402 23589 199115 17999 15273 Ju-05 26571 306865 361866 35283 35825 35848 31071 25340 140641 13761 38227 Ju-05 25340 239240 300505 321373 299517 25534 <td< th=""><th>Sep-04</th><th>97805</th><th>137998</th><th>189027</th><th>204910</th><th>213888</th><th>183621</th><th>148821</th><th>138255</th><th>123365</th><th>98224</th><th>89071</th><th>70124</th></td<>	Sep-04	97805	137998	189027	204910	213888	183621	148821	138255	123365	98224	89071	70124
Nor-od 205188 205387 20817 22109 21665 17054 13650 98017 7004 6432 Jan-OG 28325 81063 21480 13943 137938 15340 97803 16408 15315 135287 FebOG 315211 31622 341827 281304 221607 25888 220836 211600 16473 16477 15372 Mar-OS 27579 23751 25797 223751 25797 223751 25797 223751 25797 223751 25797 223751 25797 223751 25797 223751 25797 223751 25797 223751 25797 223854 221359 223581 12171 125529 Jul-OS 15553 328643 310433 25791 25334 121341 140611 137612 138227 Jul-OS 12430 144071 126841 131743 256314 213341 171449 152143 140611 137512 1	Oct-04	147251	194101	223123	226578	231010	204510	172888	144304	117469	85971	69242	64860
Dec.od 231460 276812 29921 312039 26563 17038 12640 97680 90641 87406 84358 iano6 25825 30108 31482 31501 342725 23470 23870 234870 24081 224051 25150 239861 23160 220861 21167 Am-05 37529 22579 23771 25282 220120 13847 16437 15579 151609 Jun-65 176273 206676 24220 25424 22082 22082 22082 221569 221569 220391 12711 12632 Jun-65 176273 25076 24222 25424 22055 21020 1381 14749 12711 12632 Jun-65 35944 28940 30204 303465 31733 299517 26334 213941 17449 152144 140641 137612 138227 Or-65 23540 372940 312443 312941 213944	Nov-04	205158	205387	209871	229119	232997	216665	170954	136850	98301	76084	64232	66332
Jan-Go 258825 301063 321480 318790 294302 228700 200805 1167733 1167733 116773 117405 143229 Mar-Go 376594 427460 452434 469330 450099 113448 379988 223421 193847 169477 153722 Mar-Go 215729 232751 229744 224240 27114 25820 20082 201201 11340 173999 162739 15160 Jun-Go 176773 20676 200576 201376 220854 220804 211217 120592 Jun-Go 205501 30665 353237 37317 52964 310473 257302 223757 212566 20339 197615 Sep-Go 23844 28904 310373 27917 25864 10737 12666 13772 13847 136481 137621 138277 7391 165312 Sep-Go 23844 289040 302050 313132 373793 35122 <th>Dec-04</th> <th>231460</th> <th>276812</th> <th>299321</th> <th>321964</th> <th>310293</th> <th>266583</th> <th>179038</th> <th>126340</th> <th>97680</th> <th>90461</th> <th>87406</th> <th>84458</th>	Dec-04	231460	276812	299321	321964	310293	266583	179038	126340	97680	90461	87406	84458
Feb-06 315/201 315/22 316/22 316/22 324/32 234/32 224/30 224/30 21160 21198 1704/05 143/22 Mar-05 375/94 274/84 455/34 469330 469330 420310 201862 221342 259865 21167 155/20 Mar-05 2125/29 23771 257/340 220827 212169 167/37 162/37 151/60 Mar-05 215/501 306/65 364/36 355/52 336/98 10/017 255/55 21209 123/17 126/37 Mar-05 304/65 304/65 304/56 301/37 299/17 253/84 11/44 152/14 140/61 13/612 138/27 Mor-05 124/80 144/07 1768/84 13/371 299/17 253/94 14/341 152/14 140/61 13/612 138/27 Nor-06 124/80 301/25 332/77 250/31 14/42 157/31 14/617 10/66/2 13/67/2 14/64/2	Jan-05	258325	301063	321480	319443	318790	294302	238770	209083	186783	161498	153155	135287
Marcol 376594 427460 45243 469030 450999 41848 379968 22342 19157 258868 220857 153722 Mayrob 215529 232571 259749 27440 252820 220882 20109 18140 173939 163779 151609 Julrob 265501 308665 346186 355825 55668 211377 205874 223844 223974 225467 22478 25478 25478 25478 25478 25478 25478 25478 25478 25478 25478 25478 25478 25478 25478 25474 25806 24314 152344 10641 137612 138227 Sep60 23844 289204 30050 32137 299517 25513 220751 25631 14057 114667 107466 100216 138227 Nor60 27951 312213 33522 33064 25513 20074 20844 209511 15784 146607 <	Feb-05	315201	331622	341827	365001	342725	324492	281304	224905	211600	201198	170405	143229
Apr-60 271492 28559 319247 319247 319247 15477 15572 May-05 21552 22577 270104 225202 201209 18140 17399 167739 15509 Jun-05 176273 209676 226776 26222 252478 254471 228805 199115 170318 144279 127117 12659 Jun-06 25501 30666 36166 35523 58668 310473 25536 24120 21156 203394 13721 138227 Oct-05 23844 289204 300200 321373 299517 255344 113847 107466 100216 933121 Jan-06 297591 312321 30807 351212 339304 114057 118467 107466 100216 93312 Jan-06 40054 48260 48642 477543 44051 31527 25031 220457 120440 11854 20521 107781 166593 10772	Mar-05	376594	427460	455243	469330	450999	418348	379968	329361	291567	258868	229836	211167
May-G 215529 222751 259749 217400 277104 252820 202082 20109 181400 173999 167793 15609 Jul-G 265501 308665 346186 355825 558688 316074 221342 25856 241290 221569 203991 194914 Aug-G5 306665 322204 300205 321373 299517 265394 213934 171449 152194 140641 137612 138227 Ox-G5 239844 289204 300205 321373 299517 265394 213934 171449 152194 140641 137612 138227 Ox-G5 23540 274407 28848 317643 308212 38125 33277 250418 10746 100216 93312 Jar-G6 406954 46624 477754 41109 315193 33041 292442 210442 210442 20511 17772 146502 Apr-G6 279775 329916 377467<	Apr-05	271492	285599	319247	329261	321717	306514	261862	223342	193847	169473	164377	153722
Jun-05 176273 200576 24222 25478 254471 228805 170318 144279 127117 125592 Jul-05 305655 365688 355825 356984 130674 2281556 223927 12566 199387 187763 Sep-05 239844 289204 302050 321373 299517 25394 213344 171449 15214 140641 137612 138227 Nov-05 121430 144074 176884 18149 176243 126529 126753 99778 86610 85577 75391 66619 Jan-06 297591 312213 33522 350897 361225 339362 266458 257249 23042 20511 13772 166502 Apr-06 297591 31263 339730 36103 27472 29144 17385 149006 14385 149074 14385 149052 14385 149052 14385 143024 143432 144481 143242 144411<	May-05	215529	232751	259749	274240	277104	252820	220982	201209	181340	173999	162739	151609
Jul-05 265501 308665 346186 35825 358698 316074 28142 25856 24120 221569 203399 194914 Aug-05 30855 352948 382070 410458 939774 559488 120334 171449 152194 140641 137612 133227 Oct-05 233840 278407 29844 289204 302050 321373 299517 265334 213343 171449 152194 140641 137612 133227 Nor-05 223340 277844 317624 308204 25556 184531 140527 119467 107466 100216 93312 Jan-06 260554 45214 41284 405441 311223 339041 29122 261479 20951 31772 16500 Apr-06 279775 329161 37767 40183 393743 35292 3193041 292494 17185 149249 240642 193930 157212 171305 1393749	Jun-05	176273	209676	220576	246222	252478	254471	228805	199115	170318	144279	127117	126592
Aug-65 304565 35228 385470 410458 39974 359458 310473 2273572 223567 212566 199387 187263 Sep-05 23844 289044 302050 321373 299517 265344 213934 171449 152144 140641 137612 138227 Nov-05 12140 144074 176848 131624 308204 251596 184531 140527 118467 107466 100216 93312 Jan-06 297591 312213 335222 350897 361125 33227 250813 224422 195749 186607 173772 166602 Mar-06 460954 482631 482820 475743 441109 381590 39041 291242 264119 239649 209951 Jun-06 316050 357422 384891 409886 405644 37244 302142 25583 221219 211385 147322 14931 14335 143835 14383 14067	Jul-05	265501	308665	346186	355825	358698	316074	281342	258556	241290	221569	203399	194914
Sep-05 239844 289204 300200 321373 29517 265394 213934 171449 152194 140641 137612 138227 Nov-05 121430 144074 176844 181349 176428 15629 126755 9778 86610 85577 75391 66819 Dec-05 235240 278407 258484 317244 308204 251596 184531 140527 118467 107466 100216 93312 Jan-06 297591 312213 335222 350897 362125 339936 220421 29514 230442 20511 13772 166502 Apr-06 60554 482614 401893 33763 35292 310431 2244752 129494 171829 147432 Jur-06 310895 332181 400866 431605 431080 32444 20524 129391 12134 142431 120391 147432 Jur-06 310895 332181 400086 431605	Aug-05	304565	352928	385470	410458	393774	359458	310473	257302	229357	212566	199387	187263
Oct-0s 2398.44 289204 20205 21373 29517 26534 213934 17449 152149 140641 137612 138227 Dar-0s 235340 278407 298848 317634 306204 25556 184531 140527 118467 107466 100216 93312 Jan-06 297591 312213 335227 335087 362125 335277 265013 220422 12854 237449 205121 178794 Mar-06 460954 486261 486242 477543 441109 381590 224752 129444 1285 149502 143355 Mar-06 319630 357492 384891 40886 406644 373414 302349 240512 121937 116502 143355 Jun-06 319630 422321 457354 464218 469127 426919 369362 329370 27522 27312 271802 26162 Jun-06 313630 423231 457345 46	Sep-05	239844	289204	302050	321373	299517	265394	213934	171449	152194	140641	137612	138227
No-05 121430 144074 176884 181349 17628 12675 99778 86610 85577 75331 66819 Jan-06 237591 312213 335222 350897 362125 332977 26013 220422 195749 186607 17372 166502 Feb-06 353252 3379326 391124 411281 405411 391252 339936 286488 257249 230442 205121 197894 Mar-06 460954 482631 488260 486242 477543 441109 381590 339041 298122 264119 239649 209651 May-06 310895 337242 340180 420480 36032 229770 275022 27312 271562 271802 264170 Aug-06 333779 366160 409564 45352 470785 416233 360361 29371 27562 273212 271802 264170 Aug-06 333779 366160 409564 453	Oct-05	239844	289204	302050	321373	299517	265394	213934	171449	152194	140641	137612	138227
Dec.05 235340 278407 29848 317624 308204 25156 18451 14057 118467 107466 100216 93312 Jan-06 297591 312123 335227 335277 265013 220422 197794 28648 257249 230442 205112 197694 Mar-06 460954 482631 4882642 477533 41109 381930 239041 298122 264119 239649 209511 Mar-06 310835 337492 384891 409886 406684 373414 302349 246642 199393 167322 151309 147432 Jun-06 310835 337693 66160 409864 45224 47068 363088 329370 275202 27312 271802 264170 Jun-06 130805 330048 207687 397428 378110 351788 293816 240502 191294 156274 144871 130574 Jun-06 191568 23537	Nov-05	121430	144074	176884	181349	176428	156629	126755	99778	86610	85577	75391	66819
Jan-0c 297591 312213 335222 350897 352125 33927 265013 220422 195749 186607 173772 165502 Feb-06 353252 379966 391412 41124 401841 391503 339041 298122 264119 239649 209951 Apr-06 279775 329916 377467 401883 393763 359292 301963 224752 151309 174352 151309 147432 Jun-06 310895 32181 400086 431605 430180 424080 360322 235588 237219 211937 21052 299711 Jun-06 40330 42231 457354 46412 42619 38692 32370 27502 273212 271100 201652 299711 Jun-06 40330 43058 379667 32785 35178 232816 203281 201481 13079 94403 83464 75348 Dec-06 327977 737385 403263 </th <th>Dec-05</th> <th>235340</th> <th>278407</th> <th>298848</th> <th>317624</th> <th>308204</th> <th>251596</th> <th>184531</th> <th>140527</th> <th>118467</th> <th>107466</th> <th>100216</th> <th>93312</th>	Dec-05	235340	278407	298848	317624	308204	251596	184531	140527	118467	107466	100216	93312
Feb-06 335252 373926 391412 411281 405491 391225 33996 286458 257249 230442 205121 197894 Mar-06 279775 32916 377467 401883 333763 359292 301963 224752 19244 171885 149502 143365 Mar-06 310895 332181 400086 431060 420180 620542 239370 167322 151309 147432 Jun-06 310895 332783 36160 400564 45322 457085 16253 239370 27502 273212 271802 264170 Aug-06 333779 36160 40564 437377 363068 303311 25457 201284 135138 8604 48168 35937 34886 7548 37487 35048 20441 10575 103574 84527 7342 57449 38747 350348 20481 130575 103574 8452 14303 146073 341284 148993 <th>Jan-06</th> <th>297591</th> <th>312213</th> <th>335222</th> <th>350897</th> <th>362125</th> <th>335277</th> <th>265013</th> <th>220422</th> <th>195749</th> <th>186607</th> <th>173772</th> <th>166502</th>	Jan-06	297591	312213	335222	350897	362125	335277	265013	220422	195749	186607	173772	166502
Mar-06 460954 482631 488260 48743 441109 3339041 298122 264119 239649 209951 May-06 319630 357492 384891 409866 406684 37414 302349 204621 19930 167322 151309 147432 Jun-06 310895 332181 400086 43608 424080 36632 285688 237219 211337 201652 147432 Jun-06 310895 332181 400086 43522 457085 416253 363086 302381 25522 271802 264170 Aug-06 333779 366160 409564 453522 457085 416253 36308 302381 25572 271802 264170 Aug-06 19505 209381 207884 33373 270363 285183 23787 23383 113079 94403 83464 75348 Nov-06 191568 23337 27383 40233 23534 22054 23124 35045 34644 35143 160072 144743 135047 34822	Feb-06	353252	373926	391412	411281	405491	391225	339936	286458	257249	230442	205121	197894
Apr-06 279775 329916 377467 401883 393763 359292 301630 224752 192494 171885 149502 143365 Jun-06 310695 332181 400086 430160 42080 302349 240622 193930 167322 151309 147432 Jun-06 310895 332181 400264 431605 430180 424080 360362 285688 237219 211937 201652 199751 Jun-06 401830 422321 457354 464218 469127 426919 389310 205452 273121 271802 264170 Augo 6 33379 366160 409564 45522 45786 203258 135133 86640 48166 36688 35897 34888 Nov-06 191568 235337 27063 286152 259531 200626 194329 148383 113079 94403 38464 75342 Jan-07 455144 467110 46672 451	Mar-06	460954	482631	488260	486242	477543	441109	381590	339041	298122	264119	239649	209951
May-06 316630 357492 384891 409886 406684 373414 302249 240642 193301 167322 151309 147432 Jun-06 310895 332181 400086 451057 426919 366932 229370 275202 27212 271802 264170 Aug-06 333779 366160 409564 453522 457085 416253 363068 302381 254522 221891 211144 200374 Sep-06 293854 33058 37967 379483 237867 203258 153133 86640 4166 36688 35897 34898 Nov-06 195568 232337 277363 286155 259511 260626 19429 143333 130679 94403 83464 75348 Dec-06 327977 373835 403263 413182 394487 350348 202481 130575 103574 84822 75342 57249 Jan-07 242504 414973 45399	Apr-06	279775	329916	377467	401883	393763	359292	301963	224752	192494	171885	149502	143365
Jun-06 310895 332181 400086 431605 42080 36052 28688 23719 211937 201652 199751 Jun-06 31379 366160 409564 45352 457085 416253 293816 203231 25422 221891 211144 200374 Sep-06 293854 338058 379687 397428 378110 35178 293816 240502 191294 156274 144871 135047 Oct-06 1951568 235337 270363 286155 255931 260626 194229 148383 113079 9403 83644 75342 Dec-06 327977 373835 403263 41182 394487 350348 202481 130575 103574 84822 75342 57249 Jan-07 240510 455144 46110 466372 451484 416899 353725 252184 173892 143479 120428 146233 140425 147342 147320 120428 106426 Mar-07 341224 390556 421898 327273 269	May-06	319630	357492	384891	409886	406684	373414	302349	240642	193930	167322	151309	147432
Jul-ub 401830 42231 45/334 464218 46912/ 426919 386932 3293/0 27/302	Jun-06	310895	332181	400086	431605	430180	424080	360362	285688	237219	211937	201652	199751
Aug.vob 3337/9 366100 409594 45322 457085 41623 330281 222814 221891 211144 200374 Oct-06 175005 293814 207484 225583 237867 203258 135133 86640 48166 36688 35897 34898 Nov-06 191568 233337 270363 286155 295931 260626 194329 148383 113079 94403 83464 75348 Dec-06 327977 373835 403263 245144 41689 353725 252184 173892 134679 94213 83766 Jan-07 420510 45144 467110 466372 414144 269382 203153 168954 160223 143045 Mar-07 236405 414973 45266 349246 312744 269336 241341 201140 178680 166082 153390 Jun-07 230406 230773 324978 346464 336987 274039 169109 138581 134795 116039 102221 1448045 Jun	Jul-06	401830	422321	457354	464218	469127	426919	386932	329370	275202	2/3212	2/1802	264170
Septo 233834 330835 379687 39748 37810 331788 233816 240502 191294 15027 144871 135047 Oct-06 175005 209381 207484 225583 223286 15313 86640 48166 36688 35897 34898 Nov-06 191568 235337 270363 286155 259311 260626 194329 148383 113079 94403 8444 75348 Dec-06 327977 373835 403263 411812 394487 350348 202481 130575 103574 84822 75342 157249 Jan-07 340655 41973 453991 470945 44771 408009 35624 269582 203153 168954 160023 143045 Mar-07 230448 283151 310982 340678 327283 300680 239819 202271 168300 148287 144181 123500 Juh07 230300 257474 290373 324978 366189 32812 28245 247139 23142 107046 <th>Aug-06</th> <th>333779</th> <th>366160</th> <th>409564</th> <th>453522</th> <th>457085</th> <th>416253</th> <th>363068</th> <th>302381</th> <th>254522</th> <th>221891</th> <th>211144</th> <th>200374</th>	Aug-06	333779	366160	409564	453522	457085	416253	363068	302381	254522	221891	211144	200374
Ottob 17303 20331 20404 22333 22460 20333 22602 153133 60640 46160 30686 33697 34695 Dec-06 327977 373835 403263 413182 39487 350348 202481 130575 103574 84822 75342 57249 Jan-07 420510 455144 467110 466372 451444 41689 353725 252184 173892 134679 94213 83766 Feb-07 356405 414973 453991 470945 447771 40809 356324 269582 203153 168954 162023 143045 Apr-07 282406 310788 340778 327283 306680 239819 202271 168300 148287 144181 123500 Jun-07 348952 33832 407687 401533 391359 368189 328122 28425 247133 229141 210450 121779 112397 Juh-07 348952	Sep-06	293854	338058	3/968/	397428	378110	351/88	293816	240502	191294	156274	144871	135047
Norvol 151308 25331 200313 25331 200481 130575 143533 113075 54433 65404 75342 Jan-07 420510 455144 467110 466372 451484 416899 353725 252184 173892 134679 94213 83736 Feb-07 341224 390256 421898 428223 425323 391610 329281 261810 194782 147320 120428 106426 Mar-07 282406 310738 334771 350266 349246 312744 269336 241341 201140 178680 166082 153390 May-07 238448 283151 310982 340678 327283 300680 238819 202271 168300 148287 144181 123500 Jun-07 238702 257474 203373 324978 366678 305269 240026 182901 154951 140690 127179 112397 Jul-07 47037 63818 86835 100704 101463 95600 78947 62255 44651 3	Nov 06	101569	209361	207464	220000	23/60/	203238	104220	149292	46100	20000	55697	34696
Jan-07 Jan-03 Jan-04 Jan-04<	Dec-06	327077	233337	403263	413182	293931	250348	202481	130575	103574	84822	753404	57240
AutorAutorAutorAutorAutorAutorAutorAutorAutorAutorFeb-0734122439025642189428223425323391610329281261810194782147320120428106426Mar-07356405414973453991470945447771408009356324269582203153168954162023143045Apr-07282406310738334771350266349246312744269336241341201140178680166082153390May-07230448283151310982340678327283300680239819202271168300148287144181123500Jun-07248952383832407687401533391359368189328132282425247193223914210796190559Aug-07230393290796334389325578326678305269249026182901154951140690127179112397Sep-0717436820398124012028915028295725972921988317118014065011712710625993724Oct-074703763818868351007041016395600789476225544651348912725322220Nov-072085292304992410632467682405352204571777991406151182351146259598486350Dec-07230459241534264572	lan-07	420510	455144	467110	415182	451484	416899	353725	252184	173892	134679	94213	83736
Mar-O7 356405 414973 453991 470945 447771 408009 356324 269582 203153 168954 162023 143045 Apr-O7 282406 310738 334771 350266 349246 312744 269336 241341 201140 178680 166082 153390 May-O7 233700 257474 290373 324978 346644 336987 274039 169109 138581 134795 116039 102221 Jul-O7 348952 383832 407687 401533 391359 368189 328132 282425 247193 223914 210796 190559 Aug-O7 230393 290796 334389 325578 326678 305269 249026 182901 154951 140650 17177 10259 93724 Oct-O7 270391 68103 71779 140615 118235 114625 95984 86350 Dec-O7 230459 2411534 264572 278771	Feb-07	341224	390256	407110	428223	425323	391610	329281	261810	194782	147320	120428	106426
Apr-07282406310738334771350266349246312744269336241341201140178680166082153390May-07230448283151310982340678327283300680239819202271168300148287144181123500Jun-07233700257474290373324978346464336987274039169109138581134795116039102221Jul-07348952383832407687401533391359368189328132282425247193223914210796190559Sep-0717436820398124012028915028295725972921988317118014065011712710625993724Oct-0747037638188683510070410146395600789476225544651348912725322520Nov-072805292304992410632467682405352204571777991406151182351146259594486350Dec-0723045924153426457227877126394523451319606815699913067211817610391098726Jan-08340054378326406077406508391329333922276244249677232306209806188271154815Feb-08326300363704380896396105393385368342314384277194241242217727206113205375Mar-	Mar-07	356405	414973	453991	470945	447771	408009	356324	269582	203153	168954	162023	143045
May-07230448283151310982340678327283300680239819202271168300148287144181123500Jun-07233700257474290373324978346644336987274039169109138581134795116039102221Jul-07348952383832407687401533391359368189328132282425247193223914210796190559Aug-0723039329079633438932557832667830526924902618290115451140690127179112397Sep-0717436820398124012028915028295725972921988317118014065011712710625993724Oct-0747037638188683510070410146395600789476225544651348912725322520Nov-072085292304992410632467682405352204571777991406151182351146259598486350Dec-0723045924153426457227877126394523451319606815699913067211817610391098726Jan-08340054378326406077406508391829333922276244244967232306209806188271154815Feb-08326300363704380896396105393385368342314384277194241242217727206113205375Mar-0	Apr-07	282406	310738	334771	350266	349246	312744	269336	241341	201140	178680	166082	153390
Jun-07233700257474290373324978346464336987274039169109138581134795116039102221Jul-07348952383832407687401533391359368189328132282425247193223914210796190559Aug-07230393290796334389325578326678305269249026182901154951140690127179112397Sep-0717436820398124012028915028295725972921988317118014065011712710625993724Oct-0747037638188683510070410146395600789476225544651348912725322520Nov-072085292304992410632467682405352204571777991406151182351146259598486350Dec-0723045924153426457227877126394523451319606815699913067211817610391098726Jan-08340054378326406077406508391829333922276244244967232306209806188271154815Feb-08326300363704380896396105393385368342314384277194241242217727206113205375Mar-0838943543741646487247340545450840984134788229438827653251649227481208901Jun-0	May-07	230448	283151	310982	340678	327283	300680	239819	202271	168300	148287	144181	123500
Jul-07348952383832407687401533391359368189328132282425247193223914210796190559Aug-07230393290796334389325578326678305269249026182901154951140690127179112397Sep-0717436820398124012028915028295725972921988317118014065011712710625993724Oct-0747037638188683510070410146395600789476225544651348912725322520Nov-0720852923049924106324676824053522045717779140615118235114625958486350Dec-0723045924153426457227877126394523451319606815699913067211817610391098726Jan-08340054378326406077406508391829333922276244244967232306209806188271154815Feb-08326300363704380896396105393385368342314384277194241242217727206113205375Mar-083894354374646487247340545450840984134788229438827654821648208901Jun-08319964367183399320433539419788388254320916276542243471216244203152180406Jun-08313496 </th <th>Jun-07</th> <th>233700</th> <th>257474</th> <th>290373</th> <th>324978</th> <th>346464</th> <th>336987</th> <th>274039</th> <th>169109</th> <th>138581</th> <th>134795</th> <th>116039</th> <th>102221</th>	Jun-07	233700	257474	290373	324978	346464	336987	274039	169109	138581	134795	116039	102221
Aug-07230393290796334389325578326678305269249026182901154951140690127179112397Sep-0717436820398124012028915028295725972921988317118014065011712710625993724Oct-0747037638188683510070410146395600789476225544651348912725322520Dec-072085292304992410632467682405352204571777991406151182351146259598486350Dec-0723045924153426457227877126394523451319606815699913067211817610391098726Jan-08340054378326406077406508391829333922276244244967232306209806188271154815Feb-08326300363704380896396105393385368342314384277194241242217727206113205375Mar-08389435437416464872473405454508409841347882294388270853251649227481208901Jun-083199643671833993204335394197883825432091627654224371216244203152180406Jun-08313496357607431142443789430007392750343404313940287019262303250843246133Jul-08	Jul-07	348952	383832	407687	401533	391359	368189	328132	282425	247193	223914	210796	190559
Sep-0717436820398124012028915028295725972921988317118014065011712710625993724Oct-0747037638188683510070410146395600789476225544651348912725322520Nov-0720852924153426472278771263945224571777991406151182351146259598486350Dec-0723045924153426472278771263945224571777991406151182351146259598486350Jan-08340054378326406077406508391829333922276244244967232306209806188271154815Feb-08326300363704380896396105393385368342314384277194241242217727206113205375Mar-08389435437416464872473405454508409841347882294388270853251649227481208901Apr-08340106390412421859440491430585390649337703301237264715236788218018205065Jun-08313964357607431142443789430007392750343404313940287019262303250843246133Jul-0837000639493417817435181430535375194314522269597250177239403229782204162Aug-8	Aug-07	230393	290796	334389	325578	326678	305269	249026	182901	154951	140690	127179	112397
Oct-0747037638188683510070410146395600789476225544651348912725322520Nov-072085292304992410632467682405352204571777991406151182351146259598486350Dec-0723045924153426457227877126394523451319606815699913067211817610391098726Jan-08340054378326406077406508391829333922276244244967232306209806188271154815Feb-08326300663704380896396105393385368342314384277194241242217727206113205375Mar-08389435437416464872473405454508409841347882294388270853251649227481208901Apr-08340106390412421859440491430585390649337703301237264715236788218018205065May-08319964367183399320433539419788388254320916276542243471216244203152180406Jun-08313496357607431142443789430007392750343404313940287019262303250843246133Jul-081747720950323385125289252856237003181824159600145402117937107903109202Aug-0	Sep-07	174368	203981	240120	289150	282957	259729	219883	171180	140650	117127	106259	93724
Nov-072085292304992410632467682405352204571777991406151182351146259598486350Dec-072304592415342645722787712639452345131960681569913067211817610391098726Jan-08340054378326406077406508391829333922276244244967232306209806188271154815Feb-0832630036370438089639610539338536842314384277194241242217727206113205375Mar-08389435437416464872473405454508409841347882294388270853251649227481208901Apr-08340106390412421859440491430585390649337703301237264715236788218018205065May-08319964367183399320433539419788388254320916276542243471216244203152180406Jun-08313496357607431142443789430007392750343404313940287019262303250843246133Jun-08313496357607431142443789430007392750343404313940287019262303250843246133Jun-08114964357607431142443789430007392750343404313940287019262303250843246133 <tr< th=""><th>Oct-07</th><th>47037</th><th>63818</th><th>86835</th><th>100704</th><th>101463</th><th>95600</th><th>78947</th><th>62255</th><th>44651</th><th>34891</th><th>27253</th><th>22520</th></tr<>	Oct-07	47037	63818	86835	100704	101463	95600	78947	62255	44651	34891	27253	22520
Dec-0723045924153426457227877126394523451319606815699913067211817610391098726Jan-08340054378326406077406508391829333922276244244967232306209806188271154815Feb-08326300363704380896396105393385368342314384277194241242217727206113205375Mar-08389435437416464872473405454508409841347882294388270853251649227481208901Apr-0834010639041242185944049143058539064933770330123726471523678821801820565May-08319964367183399320433539419788388254320916276542243471216244203152180406Jun-08313496357607431142443789430007392750343404313940287019262303250843246133Jul-0837000639493417817435181430555375194314522269597250177239403229782204162Aug-081747772095032335125289252856237003181824159600145402117937107903109202Sep-08941181313191492491638961446011189249180071418587855226144988Oct-081	Nov-07	208529	230499	241063	246768	240535	220457	177799	140615	118235	114625	95984	86350
Jan-08340054378326406077406508391829333922276244244967232306209806188271154815Feb-08326300363704380896396105393385368342314384277194241242217727206113205375Mar-08389435437416464872473405454508409841347882294388270853251649227481208901Apr-08340106390412421859440491430585390649337703301237264715236788218018205065May-08319964367183399320433539419788388254320916276542243471216244203152180406Jun-08313496357607431142443789430007392750343404313940287019262303250843246133Jul-08370006394993417817435181430535375194314522269597250177239403229782204162Aug-08174777209503233851252589252856237003181824159600145402117937107903109202Sep-08941181313191492491638961589041446011189249180071418587855226144988Oct-0810011811782615102315158215540614152112638911117196806846186917364148	Dec-07	230459	241534	264572	278771	263945	234513	196068	156999	130672	118176	103910	98726
Feb-08326300363704380896396105393385368342314384277194241242217727206113205375Mar-083894354374164648724734054550840984134782294388270853251649227481208901Apr-08340106390412421859440491430585390649337703301237264715236788218018205065May-08319964367183399320433539419788388254320916276542243471216244203152180006Jun-08313496357607431142443789430007392750343404313940287019262303250843246133Jul-08370006394993417817435181430535375194314522269597250177239403229782204162Aug-08174777209503233851252589252856237003181824159600145402117937107903109202Sep-08941181313191492491638961589041446011189249180071418587555226144988Oct-0810011811782615102315158215540614152112638911117196806846186917364148Nov-081164451430081505681677721670801464071158979414576043631865274543469 <th>Jan-08</th> <th>340054</th> <th>378326</th> <th>406077</th> <th>406508</th> <th>391829</th> <th>333922</th> <th>276244</th> <th>244967</th> <th>232306</th> <th>209806</th> <th>188271</th> <th>154815</th>	Jan-08	340054	378326	406077	406508	391829	333922	276244	244967	232306	209806	188271	154815
Mar-08389435437416464872473405454508409841347882294388270853251649227481208901Apr-08340106390412421859440491430585390649337703301237264715236788218018205065May-08319964367183399320433539419788388254320916276542243471216244203152180406Jun-08313496357607431142443789430007392750343404313940287019262303250843246133Jul-08370006394993417817435181430535375194314522269597250177239403229782204162Aug-08174777209503233851252886237003181824159600145402117937107903109202Sep-08941181331191492491638961589041446011189249180071418587855226144988Oct-0810011811782615102315158215540614152112638911117196806846186917364148Nov-081164451430081505681677721670801464071158979414576043631865274543469	Feb-08	326300	363704	380896	396105	393385	368342	314384	277194	241242	217727	206113	205375
Apr-08340106390412421859440491430585390649337703301237264715236788218018205065May-08319964367183399320433539419788388254320916276542243471216244203152180406Jun-08313496357607431142443789430007392750343404313940287019262303250843246133Jul-08370006394993417817435181430535375194314522269597250177239403229782204162Aug-08174777209503233851252856237003181824159600145402117937107903109202Sep-08941181331191492491638961589041446011189249180071418587855226144988Oct-0810011811782615102315158215540614152112638911117196806846186917364148Nov-081164451430081505681677721670801464071158979414576043631865274543469	Mar-08	389435	437416	464872	473405	454508	409841	347882	294388	270853	251649	227481	208901
May-08 319964 367183 399320 433539 419788 388254 320916 276542 243471 216244 203152 180406 Jun-08 313496 357607 431142 443789 430007 392750 343404 313940 287019 262303 250843 246133 Jul-08 370006 394993 417817 435181 430535 375194 314522 269597 250177 239403 229782 204162 Aug-08 174777 209503 233851 252856 237003 181824 159600 145402 117937 107903 109202 Sep-08 94118 133119 149249 163896 145401 118924 91800 71418 58785 52261 44988 Oct-08 100118 117826 151023 151582 155406 141521 126389 111171 96806 84618 69173 64148 Nov-08 116445 143008 150568 <td< th=""><th>Apr-08</th><th>340106</th><th>390412</th><th>421859</th><th>440491</th><th>430585</th><th>390649</th><th>337703</th><th>301237</th><th>264715</th><th>236788</th><th>218018</th><th>205065</th></td<>	Apr-08	340106	390412	421859	440491	430585	390649	337703	301237	264715	236788	218018	205065
Jun-0831349635760743114244378943007392750343404313940287019262303250843246133Jul-08370006394993417817435181430535375194314522269597250177239403229782204162Aug-0817477720950323385125289252856237003181824159600145402117937107903109202Sep-08941181331191492491638961589041446011189249180071418587855226144988Oct-081001181178261510231515215540614152112638911117196806846186917364148Nov-08116445143008150568167772167080144071158979414576043631865274543469	May-08	319964	367183	399320	433539	419788	388254	320916	276542	243471	216244	203152	180406
Jul-08 3/000b 394993 417817 435181 430535 375194 314522 269597 250177 239403 229782 204162 Aug-08 174777 209503 233851 252589 252856 237003 181824 159600 145402 117937 107903 109202 Sep-08 94118 133119 149249 163896 158904 144601 118924 91800 71418 58785 52261 44988 Oct-08 100118 117826 151023 151540 155406 141521 126389 111171 96806 84618 69173 64148 Nov-08 116445 143008 150568 167772 167080 146407 115897 94145 76043 63186 52745 43469	Jun-08	313496	357607	431142	443789	430007	392750	343404	313940	287019	262303	250843	246133
Aug-us 1/4/// 209503 233851 252859 25200 181824 159600 145402 117937 107903 109202 Sep-08 94118 133119 149249 163896 158904 144601 118924 91800 71418 58785 52261 44988 Oct-08 100118 117826 151023 151582 155406 141521 126389 111171 96806 84618 69173 64148 Nov-08 116445 143008 150568 167772 167080 146407 115897 94145 76043 63186 52745 43469	Jul-08	370006	394993	417817	435181	430535	375194	314522	269597	250177	239403	229782	204162
Sep-vs 94118 135119 149249 153896 158904 144601 118924 91800 /1418 58/85 52261 44988 Oct-08 100118 117826 151023 151582 155406 141521 126389 111171 96806 84618 69173 64148 Nov-08 116445 143008 150568 167772 167080 146407 115897 94145 76043 63186 52745 43469	Aug-08	1/4///	209503	233851	252589	252856	23/003	181824	159600	145402	11/93/	10/903	109202
Oct-to 100110 117020 151025 151582 155406 141521 125389 111171 98806 84618 69173 64148 Nov-08 116445 143008 150568 167772 167080 146407 115897 94145 76043 63186 52745 43469	Sep-08	94118	133119	149249	163896	158904	144601	118924	91800	/1418	58/85	52261	44988
100400 110440 140000 100000 107772 107000 140407 110697 94140 70040 00180 52745 43469	Nov 08	116445	142008	121023	167772	167090	141521	115907	0/1/5	76042	04018 62196	091/3 E274E	04148
Dec-08 188203 211681 234862 234010 218937 197061 157795 124273 103599 96777 76449 73344	Dec-08	188203	211681	234862	234010	218937	197061	157795	124273	103599	96777	76449	73344

Table A6.3. Jepirachi monthly hour generation kWh (13 to 24)

The distribution of wind velocities in the different hours of the day is shown in the Figure A6.7.

Figure A6.7. Hourly Jepirachi generation

A favorable complementarity with electricity load daily fluctuations is observed. Differences between this curve and the corresponding curve for wind velocity are due to the nonlinear character of the relation between wind velocity and power.

Figure A6.8. Monthly mean Jepirachi generation

A favorable complementarity with river discharges is observed. Differences between this curve and the corresponding curve for wind velocity are due to the nonlinear character of the relation between wind velocity and power.

CHAPTER 4: EXTENSION OF JEPIRACHI INFORMATION

Limited generation information at Jepirachi power plant due to its short operation period is an obstacle for analysis on the contribution of such plant to the firmness of the power system in a joint operation. Therefore, generation information was extended using the longer wind velocity records available in Puerto Bolívar. The procedure followed is described next:

a. Power calculations using wind velocities data at Puerto Bolívar.

For each one of the hours of existing data in Puerto Bolívar power generation in a Nordex N60 turbine was calculated.

The calculation adjusted wind velocity to an altitude of 60 ms using an assumed roughness factor (ar).

Power corresponding to the adjusted velocity was calculated based on the power curve of the aerogenerator. It was adjusted to take into account differences between air densities at Jepirachi and the standard value.

b. Regression between hourly estimated power at Puerto Bolívar and Jepirachi generation.

Common hourly data between Jepirachi generation reported by XM and Jepirachi generation computed using the methodology described in literal a. were used to perform a regression analysis. This analysis was repeated using different values of the roughness coefficient, choosing the value giving best fit.

c. Missing hourly velocity information at Puerto Bolívar was filled.

Initially, the correlation between wind velocities at Puerto Bolívar and Barranquilla Airport was studied, finding no significance. Therefore, missing data were filled based on daily mean velocity if available. Otherwise, monthly mean velocity was used and, finally, multiannual monthly mean velocity was used. All these results were adjusted to consider hourly seasonality observed in the data.

d. Extension of Jepirachi generation.

Jepirachi generation information was extended (!985-2008) using the regression equation found applied to the filled Puerto Bolívar velocity records. The n Tables A6.4 and A6.5 show extended monthly generation values for Jepirachi.

EXTENDED MONTHLY GENERATION FOR JEPIRACHI (KWH)							
	Jan	Feb	Mar	Abr	May	Jun	
1985	5834634	5682658	6515124	5886177	5767205	6914523	
1986	5834634	5682658	6515124	5886177	5767205	6914523	
1987	5834634	7887850	6889132	6483911	5767205	7236743	
1988	7268860	7500189	8912351	6991765	7381501	6608671	
1989	5834634	5682658	6515124	5930856	6758656	7576098	
1990	9451220	5305019	4739058	6958182	6607606	7778632	
1991	6888466	6044854	6438107	6649830	7122249	7487965	
1992	6151827	6929893	8137434	7015526	6335503	7483811	
1993	6475069	5620726	7363741	6390443	4092576	7248022	
1994	6418401	7009124	7217540	7328519	7059915	8586733	
1995	6697520	5836699	6443392	6231644	6491717	6627188	
1996	5370648	6182659	6476131	5931191	5767205	6914523	
1997	4676298	7837674	7564978	6823904	5922530	7007094	
1998	5774991	5591419	7138039	6586111	5526878	7276299	
1999	5773035	5364206	6468408	7050548	6026792	6759032	
2000	5834634	5885611	6515124	5886177	6363170	7978651	
2001	6235307	1399111	1603269	1734096	2497808	8361813	
2002	6742444	6307064	7893469	6571283	7252543	7122733	
2003	6213564	7372513	6822730	6040200	8540665	7014330	
2004	4417189	1630762	3947270	4669053	6122227	9037782	
2005	4431175	4802542	6244397	4828971	4138032	3619306	
2006	5030369	6179175	7233905	5023244	5386714	6027382	
2007	5426555	5031539	5762332	4826728	4020576	3947717	
2008	5502418	5912375	6480628	5917684	5767061	6500230	

Table A6.4. Extended monthly generation for Jepirachi (Jan – Jun)

EXTENDED MONTHLY GENERATION FOR JEPIRACHI (KWH)							
	Jul	Aug	Sep	Oct	Nov	Dec	
1985	7734911	6152792	3710858	2721909	3403509	4825251	
1986	7734911	6152792	3710858	4571029	5907804	7209327	
1987	9115923	8104222	5159465	2721909	4541764	6151577	
1988	9115498	4376842	5177179	3453668	3353160	4825251	
1989	7940524	6146705	4396355	6007866	5039010	5520377	
1990	7449251	7981166	5372166	1751368	3965017	5536141	
1991	8293163	7556200	6611484	4786059	3860408	4825251	
1992	8855269	7881288	5345987	5580324	4515810	4825251	
1993	8031142	7856364	3710858	6098720	4384973	6404446	
1994	9710702	8014871	6137318	3802563	3901304	5442340	
1995	6927623	3109042	3523425	2325658	4327140	4696092	
1996	7207639	5736949	4090081	2721909	3403509	5121455	
1997	8740789	8016731	5505666	2770995	3656170	6710743	
1998	7066678	6175066	3769276	4174693	3401869	4825251	
1999	7604889	5483666	2420295	2147343	2330244	4750685	
2000	7497365	7177243	3394830	4059808	3775646	5349653	
2001	7717748	8186006	5364343	4789924	4050187	4968515	
2002	8186261	7731705	4112645	4967635	5747633	6888561	
2003	8378413	6973755	4221191	2511494	3088666	4628588	
2004	6911378	7201819	2131765	2623595	2895604	3527309	
2005	5263834	5401123	4179454	4179454	2251921	3560560	
2006	7761522	6197955	4783490	2289704	2992357	4075575	
2007	6150271	3770902	3173954	1005641	3245168	3529592	
2008	6204898	3252952	1699921	1974458	1863222	2842356	

 Table A6.5. Extended monthly generation for Jepirachi (Jul – Dec)

CHAPTER 5: CASE STUDIES FOR COMPLEMENTARITYANALYSIS

Complementarity between hydroelectric generation and wind generation at Jepirachi is due to two factors: non coincidence in seasonal mean values of both variables and synergy obtained of the lack of coincidence of extreme events for them.

5.1 MEAN MONTHLY DISCHARGES AND JEPIRACHI GENERATION

The next Figures show normalized values (monthly mean divided by the annual mean) for wind velocities and river discharges for the four rivers where complementarity with wind power was analyzed.

Figure A6.9. Mean monthly values at the Guavio River Dam site

The Figure A6.9 shows the complementarity between these resources since low water discharges during the dryer months (January to April) correspond to high wind power.

Figure A6.10. Mean monthly values at the Santa Rita Dam site of the Nare River

graph shows very good complementarity between the Nare River and wind power at Jepirachi. Low discharges during the two dry seasons (Dec to March and July and August) correspond to high wind power; the opposite is also true.

Figure A6.11. Mean monthly values at the Salvajina Dam site of the Cauca River

The Cauca River at Salvajina Dam site presents a dry period from June to September which is complemented by high wind power at Jepirachi site.

The

Figure A6.12. Mean monthly values at the Salvajina Dam site of the Magdalena River.

Discharges of Magdalena River at Betania follow a similar pattern to wind power at Jepirachi, although some complementarity is observed during the first dry season occurring at the beginning of the year.

5.2 "EL NIÑO" OCCURRENCES

Colombia power interconnected system is severely affected by severe droughts due to its very large hydroelectric component; historically, during such periods electricity prices rise due to the supply shortage and, in extreme cases, electricity rationing may occur. An example is the rationing of year 1992 with severe economic and political consequences in the country. Droughts in Colombia occur due to a global climatological event known as "El Niño" affecting practically the whole country. Next Table identifies the "El Niño" periods which have occurred since 1950, according to the Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia (IDEAM).

"EL NIÑO" PERIODS							
Source: IDEAM							
Start Finish Months							
Jul-51	Jan-52	6					
Mar-57	Jul-58	14					
Jun-63	Feb-64	8					
May-65	May-66	13					
Oct-68	Jun-69	8					
Aug-69	Feb-70	6					
Apr-72	Feb-73	10					
Aug-76	Mar-77	7					
Aug-77	Feb-78	6					
Apr-82	Jul-83	15					
Jul-86	Mar-88	20					
Apr-91	Jul-92	15					
Feb-93	Aug-93	6					
Mar-94	Apr-95	13					
Apr-97	May-98	13					
Apr-02	Apr-03	12					
Jun-04	Mar-05	8					
Aug-06	Feb-07	6					

Table A6.6. El Niño periods since 1950

An analysis of the severity of "El Niño" occurrences in the four rivers chosen (Nare, Guavio, Cauca and Magdalena) compared with energy delivered by Jepirachi power plant was done. Initially, average historical values for river discharges and Jepirachi generation during "El Niño" periods were examined, as shown in next Tables. An example will illustrate better the analysis done. First column of first table analyzes the severity of "El Niño" occurrence between July 1986 and March 1988. The series of mean discharge occurrences in all historical periods starting in July and finishing in March of the following year was analyzed (as shown in the table). Mean and standard deviation of such series were obtained (end of the Table) and the departure of the mean value, expressed in terms of standard deviations, was obtain for the value corresponding to "El Niño" (July 1986-March 1988) is shown at the end of the Table. The Tables present the information for all "El Niño" occurrences from 1985 until December 2008 for the four rivers already mentioned as well as historical and reconstructed generation at Jepirachi power plant. "El Niño" occurrences are shown in yellow in the tables.
		TABLE 1	L. <i>F</i>	ANALYSIS C	OF "EL NI	NO" OCCL GUA\	/IC	RENCES - R) RIVER	IVER DISCI	HARGES IN	M3/SEG		
	Jul. 86 Mar. 88				Abr. 91 Jul. 92				Feb. 93 Ago. 93			Mar. 94 Abr. 95	
Start	Finish	Average		Start	Finish	Average		Start	Finish	Average	Start	Finish	Average
Jul-63	Mar-65	60.06		Apr-63	Jul-64	69.92		Feb-63	Aug-63	75.70	Mar-63	Apr-64	56.94
Jul-64	Mar-66	67.40		Apr-64	Jul-65	79.97		Feb-64	Aug-64	75.27	Mar-64	Apr-65	64.99
Jul-65	Mar-67	57.03		Apr-65	Jul-66	68.81		Feb-65	Aug-65	85.40	Mar-65	Apr-66	67.11
Jul-66	Mar-68	63.08		Apr-66	Jul-67	65.89		Feb-66	Aug-66	52.44	Mar-66	Apr-67	51.86
Jul-67	Mar-69	67.73		Apr-67	Jul-68	84.14		Feb-67	Aug-67	87.93	Mar-67	Apr-68	67.57
Jul-68	Mar-70	65.23		Apr-68	Jul-69	77.97		Feb-68	Aug-68	94.44	Mar-68	Apr-69	70.26
Jul-69	Mar-71	75.13		Apr-69	Jul-70	80.53		Feb-69	Aug-69	69.10	Mar-69	Apr-70	64.65
Jul-70	Mar-72	80.60		Apr-70	Jul-71	97.58		Feb-70	Aug-70	99.61	Mar-70	Apr-71	82.70
Jul-71	Mar-73	77.06		Apr-71	Jul-72	100.64		Feb-71	Aug-71	107.96	Mar-71	Apr-72	84.30
Jul-72	Mar-74	67.00		Apr-72	Jul-73	83.92		Feb-72	Aug-72	109.86	Mar-72	Apr-73	72.37
Jul-73	Mar-75	67.47		Apr-73	Jul-74	82.51		Feb-73	Aug-73	75.46	Mar-73	Apr-74	68.41
Jul-74	Mar-76	66.10		Apr-74	Jul-75	78.49		Feb-74	Aug-74	90.61	Mar-74	Apr-75	64.09
Jul-75	Mar-77	74.10		Apr-75	Jul-76	95.67		Feb-75	Aug-75	85.99	Mar-75	Apr-76	70.86
Jul-76	Mar-78	62.94		Apr-76	Jul-77	88.67		Feb-76	Aug-76	117.47	Mar-76	Apr-77	78.69
Jul-77	Mar-79	60.09		Apr-77	Jul-78	72.44		Feb-77	Aug-77	75.00	Mar-77	Apr-78	58.91
Jul-78	Mar-80	59.04		Apr-78	Jul-79	69.74		Feb-78	Aug-78	/6.63	Mar-78	Apr-79	59.27
Jul-79	Mar-81	60.88		Apr-79	Jul-80	75.49		Feb-79	Aug-79	69.96	Mar-79	Apr-80	63.13
Jul-80	Mar-82	59.11		Apr-80	Jul-81	72.39		Feb-80	Aug-80	75.44	Mar-80	Apr-81	59.43
Jul-81	Mar-83	70.60		Apr-81	Jul-82	79.08		Feb-81	Aug-81	74.60	Mar-81	Apr-82	66./1
JUI-82	Iviar-84	78.63		Apr-82	JUI-83	91.63		Feb-82	Aug-82	90.24	Iviar-82	Apr-83	79.66
JUI-83	Iviar-85	/3.62		Apr-83	JUI-84	92.31		Feb-83	Aug-83	102.13	Iviar-83	Apr-84	//./1
JUI-84	Mar 87	67.12 75.90		Apr-84	JUI-85	82.16		Feb-84	Aug-84	106.16	Iviar-84	Apr-85	69.06
Jul 0C	Ividi-67	75.69		Apr-85	Jul 07	09.00		Feb-65	Aug-65	110.79	Nar 96	Apr-00	70 70
	Iviar-88	73.00		Apr-86		89.03		Feb-86	Aug-86	01.07	Nar 97	Apr-87	/8./8
Jul 00	Mar 90	70.80		Apr-87	Jul 80	75.55 01 72		Feb-87	Aug-67	91.97	Mar 99	Apr-00	04.50 65 19
Jul 90	Mar 91	66.01		Apr-80	Jul 00	04.75		Feb-88	Aug-00	00.87	Mar 80	Apr 00	72 62
Jul-00	Mar-91	65 10		Apr-89	Jul-90	85.34		Feb-89	Aug-09	104 51	Mar-90	Apr-90	75.02
Jul-91	Mar-93	65.02		Apr-91	Jul-92	77 9/		Feb-91	Διισ-91	100.01	Mar-91	Δnr-92	69.94
Jul-92	Mar-94	69.79		Apr-92	Jul-93	77.95		Feb-92	Aug-92	69 31	Mar-92	Apr 92	59 21
Jul-93	Mar-95	77.55		Apr-93	Jul-94	94.88		Feb-93		97.86	Mar-93	Apr-94	73.01
Jul-94	Mar-96	60.63		Apr-94	Jul-95	85.68		Feb-94	Aug-94	111.73	Mar-94	Apr-95	80.13
Jul-95	Mar-97	57.14		Apr-95	Jul-96	67.70		Feb-95	Aug-95	60.00	Mar-95	Apr-96	50.44
Jul-96	Mar-98	60.42		Apr-96	Jul-97	81.59		Feb-96	Aug-96	89.71	Mar-96	Apr-97	64.29
Jul-97	Mar-99	68.01		Apr-97	Jul-98	83.38		Feb-97	Aug-97	91.19	Mar-97	Apr-98	58.79
Jul-98	Mar-00	70.75		Apr-98	Jul-99	89.81		Feb-98	Aug-98	102.20	Mar-98	Apr-99	78.68
Jul-99	Mar-01	66.49		Apr-99	Jul-00	84.11		Feb-99	Aug-99	89.73	Mar-99	Apr-00	69.36
Jul-00	Mar-02	67.04		Apr-00	Jul-01	80.88		Feb-00	Aug-00	89.37	Mar-00	Apr-01	68.45
Jul-01	Mar-03	70.74		Apr-01	Jul-02	86.79		Feb-01	Aug-01	80.96	Mar-01	Apr-02	68.21
Jul-02	Mar-04	64.52		Apr-02	Jul-03	82.16		Feb-02	Aug-02	106.01	Mar-02	Apr-03	73.84
Jul-03	Mar-05	73.75		Apr-03	Jul-04	89.32		Feb-03	Aug-03	76.74	Mar-03	Apr-04	65.69
Jul-04	Mar-06	64.77		Apr-04	Jul-05	87.01		Feb-04	Aug-04	116.03	Mar-04	Apr-05	81.73
Jul-05	Mar-07	63.68		Apr-05	Jul-06	82.15		Feb-05	Aug-05	74.21	Mar-05	Apr-06	68.79
Jul-06	Mar-08	56.29		Apr-06	Jul-07	75.35		Feb-06	Aug-06	91.33	Mar-06	Apr-07	67.05
Jul-07	Mar-09	59.08		Apr-07	Jul-08	72.14		Feb-07	Aug-07	72.53	Mar-07	Apr-08	56.25
Jul-08	Mar-10			Apr-08	Jul-09			Feb-08	Aug-08	75.53	Mar-08	Apr-09	64.01
Average		67.13		Average		82.30		Average		87.89	Average		68.18
St, Dev.		6.29		St, Dev.		8.25		St, Dev.		15.63	St, Dev.		7.99
Deviation fr	om mean	1.03		Deviation fro	m mean	-0.53		Deviation fro	om mean	0.64	Deviation from	m mean	1.50

Table A6.7. Analysis of "El Niño" occurrences in Guavio River discharges (1986-95)

_

		TAI	BLE 2. ANALY	SIS OF "EL I	NIÑO" OCCI GUA	JR VIC	RENCES - R D RIVER	IVER DISCH	ARGES IN N	13,	/SEG		
	Abr. 97 May. 98			Abr. 02 Abr. 03				Jun. 04 Mar. 05				Ago. 06 Feb. 07	
Start	Finish	Average	Start	Finish	Average		Start	Finish	Average		Start	Finish	Average
Apr-63	May-64	63.31	Apr-63	Apr-64	60.12		Jun-63	Mar-64	55.07		Aug-63	Feb-64	44.83
Apr-64	May-65	72.89	Apr-64	Apr-65	68.37		Jun-64	Mar-65	65.95		Aug-64	Feb-65	26.30
Apr-65	May-66	68.76	Apr-65	Apr-66	71.16		Jun-65	Mar-66	68.78		Aug-65	Feb-66	17.20
Apr-66	May-67	55.79	Apr-66	Apr-67	52.96		Jun-66	Mar-67	54.88		Aug-66	Feb-67	30.40
Apr-67	May-68	71.22	Apr-67	Apr-68	71.11		Jun-67	Mar-68	66.63		Aug-67	Feb-68	13.75
Apr-68	May-69	74.78	Apr-68	Apr-69	73.92		Jun-68	Mar-69	72.64		Aug-68	Feb-69	17.00
Apr-69	May-70	70.75	Apr-69	Apr-70	68.19		Jun-69	Mar-70	63.99		Aug-69	Feb-70	27.25
Apr-70	May-71	88.02	Apr-70	Apr-71	85.55		Jun-70	Mar-71	82.06		Aug-70	Feb-71	27.10
Apr-71	May-72	91.50	Apr-71	Apr-72	86.42		Jun-71	Mar-72	82.82		Aug-71	Feb-72	41.45
Apr-72	May-73	76.71	Apr-72	Apr-73	75.02		Jun-72	Mar-73	69.98		Aug-72	Feb-73	12.25
Apr-73	May-74	76.01	Apr-73	Apr-74	/2./2		Jun-73	Mar-74	/3.5/		Aug-73	Feb-74	18.95
Apr-74	Iviay-75	68.72	Apr-74	Apr-75	66.57		Jun-74	Mar-75	61.98		Aug-74	Feb-75	10.55
Apr-75	Iviay-76	79.50	Apr-75	Apr-76	/3.1/		Jun-75	Iviar-76	73.55		Aug-75	Feb-76	18.90
Apr-76	Iviay-77	80.13	Apr-76	Apr-77	81.25		Jun-76	Iviar-77	78.28		Aug-76	Feb-77	13.60
Apr-77	Iviay-78	63.75	Apr-77	Apr-78	61.97		Jun-77	Iviar-78	03.85 E0.70		Aug-77	Feb-78	12.15
Apr-70	Nav 80	65.44	Apr-76	Apr-79	66.22		Jun 79	Mar 90	59.79		Aug-78	Feb-79	9.75
Apr-79	Ividy-60 May 91	65 72	Apr-79	Apr-80	62.51		Jun 80	Nor 91	61.19		Aug-79	Feb-80	12.65
Apr-80	Ividy-01	72.60	Apr-80	Apr-81	70.11		Jun 81	Ividi-61	62.00		Aug-80	Feb-61	13.45
Apr-81	May-82	72.03 85.02	Apr-81	Apr-82	83.65		Jun-82	Mar-83	76.36		Aug-81	Feb-82	38 75
Apr-82	May-80	79.00	Apr-82	Apr-83	78.18		Jun-83	Mar-84	76.96		Aug-02	Feb-84	46.05
Apr-83	May-85	75.00	Δpr-84	Apr-85	71.91		Jun-84	Mar-85	76.24		Aug-05 Διισ-84	Feb-85	11.05
Apr-85	May-86	72 19	Apr-85	Apr-86	71.51		Jun-85	Mar-86	72.91		Aug-85	Feb-86	21 30
Apr-86	May-87	81.07	Apr-86	Apr-87	81.78		Jun-86	Mar-87	89.00		Aug-86	Feb-87	22.45
Apr-87	May-88	67.74	Apr-87	Apr-88	67 54		lun-87	Mar-88	72 91		Aug-87	Feb-88	13.05
Apr-88	May-89	74.24	Apr-88	Apr-89	69.38		Jun-88	Mar-89	73.11		Aug-88	Feb-89	26.65
Apr-89	May-90	81.60	Apr-89	Apr-90	74.98		Jun-89	Mar-90	69.63		Aug-89	Feb-90	22.10
Apr-90	May-91	72.36	Apr-90	Apr-91	70.81		Jun-90	Mar-91	62.57		Aug-90	Feb-91	16.25
Apr-91	May-92	71.50	Apr-91	Apr-92	73.25		Jun-91	Mar-92	76.71		Aug-91	Feb-92	12.90
Apr-92	May-93	65.30	Apr-92	Apr-93	62.74		Jun-92	Mar-93	63.53		Aug-92	Feb-93	14.95
Apr-93	, May-94	81.11	Apr-93	Apr-94	75.67		Jun-93	Mar-94	72.74		Aug-93	Feb-94	14.15
Apr-94	May-95	84.00	Apr-94	Apr-95	83.85		Jun-94	Mar-95	83.13		Aug-94	Feb-95	13.55
Apr-95	May-96	57.55	Apr-95	Apr-96	52.17		Jun-95	Mar-96	49.24		Aug-95	Feb-96	25.75
Apr-96	May-97	71.45	Apr-96	Apr-97	66.82		Jun-96	Mar-97	62.65		Aug-96	Feb-97	23.90
Apr-97	May-98	66.70	Apr-97	Apr-98	61.93		Jun-97	Mar-98	56.73		Aug-97	Feb-98	11.35
Apr-98	May-99	85.03	Apr-98	Apr-99	83.49		Jun-98	Mar-99	77.69		Aug-98	Feb-99	28.25
Apr-99	May-00	77.70	Apr-99	Apr-00	72.42		Jun-99	Mar-00	66.67		Aug-99	Feb-00	23.75
Apr-00	May-01	74.14	Apr-00	Apr-01	71.73		Jun-00	Mar-01	70.02		Aug-00	Feb-01	15.95
Apr-01	May-02	76.74	Apr-01	Apr-02	71.95		Jun-01	Mar-02	69.77		Aug-01	Feb-02	16.20
Apr-02	May-03	80.08	Apr-02	Apr-03	76.43		Jun-02	Mar-03	70.08		Aug-02	Feb-03	10.20
Apr-03	May-04	75.61	Apr-03	Apr-04	68.75		Jun-03	Mar-04	62.41		Aug-03	Feb-04	16.10
Apr-04	May-05	86.50	Apr-04	Apr-05	84.02		Jun-04	Mar-05	76.66		Aug-04	Feb-05	20.45
Apr-05	May-06	76.09	Apr-05	Apr-06	72.65	1	Jun-05	Mar-06	62.54		Aug-05	Feb-06	16.35
Apr-06	May-07	69.01	Apr-06	Apr-07	67.68		Jun-06	Mar-07	57.59		Aug-06	Feb-07	10.80
Apr-07	May-08	60.02	Apr-07	Apr-08	58.74	1	Jun-07	Mar-08	58.73		Aug-07	Feb-08	17.30
Apr-08	May-09		Apr-08	Apr-09	67.76		Jun-08	Mar-09	71.00		Aug-08	Feb-09	19.95
Average		73.70	Average		71.13	1	Average		68.71		Average		19.95
St, Dev.		8.07	St, Dev.		8.06		St, Dev.		8.45		St, Dev.		9.00
Deviation fr	om mean	-0.87	Deviation from	n mean	0.66	1	Deviation fro	m mean	0.94		Deviation from	n mean	-1.02

Table A6.8. Analysis of "El Niño" occurrences in Guavio River discharges (1997-2007)

		TABLE	1. /	ANALYSIS (OF "EL NI	ÑO" OCCI	JR	RENCES - R	IVER DISCH	HARGES IN	11	M3/SEG		
						NAF	RE	RIVER						
	Jul. 86				Abr. 91				Feb. 93				Mar. 94	
	Mar. 88				Jul. 92				Ago. 93				Abr. 95	
Start	Finish	Average		Start	Finish	Average		Start	Finish	Average		Start	Finish	Average
Jul-55	Mar-57			Apr-55	Jul-56			Feb-55	Aug-55			Mar-55	Apr-56	
Jul-56	Mar-58	46.34		Apr-56	Jul-57	56.21		Feb-56	Aug-56	61.69		Mar-56	Apr-57	57.79
Jul-57	Mar-59	32.95		Apr-57	Jul-58	37.60		Feb-57	Aug-57	40.71		Mar-57	Apr-58	37.63
Jul-58	Mar-60	33.64		Apr-58	Jul-59	31.68		Feb-58	Aug-58	31.56		Mar-58	Apr-59	30.28
Jul-59	Mar-61	40.42		Apr-59	Jul-60	38.61		Feb-59	Aug-59	30.00		Mar-59	Apr-60	35.31
Jul-60	Mar-62	42.88		Apr-60	Jul-61	41.01		Feb-60	Aug-60	37.51		Mar-60	Apr-61	40.84
Jul-61	Mar-63	52.44		Apr-61	Jul-62	48.93		Feb-61	Aug-61	33.60		Mar-61	Apr-62	41.99
Jul-62	Mar-65	49.32		Apr-62	Jul-64	50.09 46.52		Feb-62	Aug-62	55.69 40.24		Mar-62	Apr-63	50.05 45.02
Jul-64	Mar-66	44.05		Apr-64	Jul-65	40.55		Feb-64	Aug-05	49.24		Mar-64	Apr-65	43.92
Jul-65	Mar-67	45.08		Apr-65	Jul-66	43.83		Feb-65	Aug-65	35 59		Mar-65	Apr-66	43.20
Jul-66	Mar-68	47.91		Apr-66	Jul-67	50.76		Feb-66	Aug-66	39.31		Mar-66	Apr-67	46.55
Jul-67	Mar-69	46.77		Apr-67	Jul-68	48.89		Feb-67	Aug-67	50.07		Mar-67	Apr-68	45.64
Jul-68	Mar-70	48.86		Apr-68	Jul-69	49.41		Feb-68	Aug-68	46.21		Mar-68	Apr-69	49.92
Jul-69	Mar-71	54.32		Apr-69	Jul-70	48.59		Feb-69	Aug-69	38.64		Mar-69	Apr-70	44.57
Jul-70	Mar-72	66.16		Apr-70	Jul-71	65.99		Feb-70	Aug-70	43.51		Mar-70	Apr-71	58.11
Jul-71	Mar-73	55.01		Apr-71	Jul-72	67.64		Feb-71	Aug-71	76.86		Mar-71	Apr-72	66.13
Jul-72	Mar-74	48.54		Apr-72	Jul-73	45.06		Feb-72	Aug-72	52.69		Mar-72	Apr-73	45.02
Jul-73	Mar-75	60.69		Apr-73	Jul-74	56.09		Feb-73	Aug-73	36.21		Mar-73	Apr-74	52.97
Jul-74	Mar-76	61.30		Apr-74	Jul-75	59.13		Feb-74	Aug-74	55.84		Mar-74	Apr-75	57.80
Jul-75	Mar-77	53.27		Apr-75	Jul-76	61.31		Feb-75	Aug-75	50.69		Mar-75	Apr-76	60.09
Jul-76	Mar-78	39.04		Apr-76	Jul-77	41.66		Feb-76	Aug-76	49.01		Mar-76	Apr-77	41.51
Jul-77	Mar-79	49.93		Apr-77	Jul-78	50.83		Feb-77	Aug-77	35.10		Mar-77	Apr-78	44.46
Jul-78	Mar-80	48.50		Apr-78	Jul-79	53.37		Feb-78	Aug-78	60.59		Mar-78	Apr-79	52.84
Jul-79	Mar-81	42.76		Apr-79	JUI-80	46.91		Feb-79	Aug-79	44.39		Mar 90	Apr-80	48.06
Jul-80	Nor 92	51.01 40.E0		Apr-80	Jul 02	40.15		Feb-80	Aug-80	55.00		Mar 81	Apr-81	57.21
Jul-82	Mar-8/	39.39		Apr-82	Jul-82	44 58		Feb-82	Aug-01	52.50		Mar-82	Apr-83	38.90 AA AA
Jul-82	Mar-85	49 38		Apr-82 Apr-83	Jul-83	44.58		Feb-83	Aug-82	38.23		Mar-83	Apr-83 Apr-84	40.25
Jul-84	Mar-86	53.20		Apr-84	Jul-85	54.26		Feb-84	Aug-84	51.06		Mar-84	Apr-85	52.94
Jul-85	Mar-87	46.37		Apr-85	Jul-86	50.79		Feb-85	Aug-85	48.39		Mar-85	Apr-86	50.66
Jul-86	Mar-88	43.10		Apr-86	Jul-87	42.14		Feb-86	Aug-86	44.23		Mar-86	Apr-87	42.37
Jul-87	Mar-89	57.32		Apr-87	Jul-88	46.19		Feb-87	Aug-87	36.36		Mar-87	Apr-88	42.99
Jul-88	Mar-90	61.80		Apr-88	Jul-89	62.64		Feb-88	Aug-88	48.97		Mar-88	Apr-89	61.71
Jul-89	Mar-91	48.79		Apr-89	Jul-90	52.78		Feb-89	Aug-89	50.71		Mar-89	Apr-90	52.76
Jul-90	Mar-92	41.68		Apr-90	Jul-91	46.19		Feb-90	Aug-90	41.71		Mar-90	Apr-91	44.55
Jul-91	Mar-93	35.89		Apr-91	Jul-92	37.53		Feb-91	Aug-91	40.36		Mar-91	Apr-92	37.89
Jul-92	Mar-94	42.95		Apr-92	Jul-93	37.80		Feb-92	Aug-92	30.19		Mar-92	Apr-93	35.01
Jul-93	Mar-95	46.40		Apr-93	Jul-94	48.09		Feb-93	Aug-93	38.97		Mar-93	Apr-94	46.84
Jul-94	Mar-96	49.49		Apr-94	Jul-95	46.95		Feb-94	Aug-94	41.31		Mar-94	Apr-95	42.69
Jul-95	Mar-97	57.65		Apr-95	Jul-96	60.15		Feb-95	Aug-95	52.27		Mar-95	Apr-96	53.49
Jul-96	Mar-98	41.42		Apr-96	Jul-97	55.28		Feb-96	Aug-96	64.27		Mar-96	Apr-97	57.90
Jul-97	Mar 00	43.01		Apr-97	Jul-98	34.03		Feb-97	Aug-97	40.31		Mar 08	Apr-98	31.94
Jul-98	Mar-00	70.02		Apr-98	1nf-00	75.00		Feb-98	Aug-98	55.40 67.27		Mar-90	Apr-00	55.04 71.24
Jul-00	Mar-02	/0.02		Apr-00	Jul-00	62.89		Feb-00	Aug-00	7/ 29		Mar-00	Apr-00	66 10
Jul-01	Mar-03	38.28		Apr-01	Jul-02	41 34		Feb-01	Aug-01	37.43		Mar-01	Δnr-02	38.95
Jul-02	Mar-04	40.88		Apr-02	Jul-03	43.82	1	Feb-02	Aug-02	42 76		Mar-02	Apr-02	40.02
Jul-03	Mar-05	51.20		Apr-03	Jul-04	48.73	1	Feb-03	Aug-03	43.21		Mar-03	Apr-04	45.25
Jul-04	Mar-06	57.63		Apr-04	Jul-05	60.48	1	Feb-04	Aug-04	47.91		Mar-04	Apr-05	55.87
Jul-05	Mar-07	54.55		Apr-05	Jul-06	60.24	1	Feb-05	Aug-05	53.67		Mar-05	Apr-06	56.35
Jul-06	Mar-08	61.07		Apr-06	Jul-07	59.86	1	Feb-06	Aug-06	57.03		Mar-06	Apr-07	55.89
Jul-07	Mar-09	73.96		Apr-07	Jul-08	73.12	1	Feb-07	Aug-07	56.59		Mar-07	Apr-08	67.00
Jul-08	Mar-10			Apr-08	Jul-09]	Feb-08	Aug-08	76.61		Mar-08	Apr-09	75.74
Average		49.64	1	Average		50.94	1	Average		47.07	1	Average		49.19
St, Dev.		9.01	1	St, Dev.		9.68	1	St, Dev.		11.42	1	St, Dev.		10.14
Deviation fr	om mean	-0.73		Deviation fro	m mean	-1.39		Deviation fro	om mean	-0.71		Deviation fro	m mean	-0.64

Table A6.9. Analysis of "El Niño" occurrences in Nare River discharges (1986-95)

		TAE	BLE 2. ANALY	SIS OF "EL I	NIÑO" OCCI NA	JR RE	RENCES - R RIVER	IVER DISCH	ARGES IN N	13,	/SEG		
	Abr. 97 May. 98			Abr. 02 Abr. 03				Jun. 04 Mar. 05				Ago. 06 Feb. 07	
Start	Finish	Average	Start	Finish	Average		Start	Finish	Average		Start	Finish	Average
Apr-55	May-56		Apr-55	Apr-56			Jun-55	Mar-56			Aug-55	Feb-56	66.50
Apr-56	, May-57	58.19	Apr-56	Apr-57	58.20		Jun-56	Mar-57	57.47		Aug-56	Feb-57	60.37
Apr-57	May-58	39.24	Apr-57	Apr-58	38.62		Jun-57	Mar-58	36.82		Aug-57	Feb-58	36.59
Apr-58	May-59	31.06	Apr-58	Apr-59	30.50		Jun-58	Mar-59	29.33		Aug-58	Feb-59	31.67
Apr-59	May-60	37.24	Apr-59	Apr-60	36.53		Jun-59	Mar-60	37.77		Aug-59	Feb-60	39.74
Apr-60	May-61	41.25	Apr-60	Apr-61	41.87		Jun-60	Mar-61	43.10		Aug-60	Feb-61	43.//
Apr-61	May-62	46.09	Apr-61	Apr-62	43.05		Jun-62	Mar-63	44.0Z		Aug-61	Feb-62	47.13 54.54
Apr-62 Apr-63	May-64	45 33	Apr-63	Apr-64	45.98		Jun-63	Mar-64	43 47		Aug-62	Feb-64	46 24
Apr-64	May-65	45.34	Apr-64	Apr-65	44.93		Jun-64	Mar-65	47.14		Aug-64	Feb-65	48.01
Apr-65	May-66	42.59	Apr-65	Apr-66	43.08		Jun-65	Mar-66	44.48		Aug-65	Feb-66	50.44
Apr-66	May-67	49.43	Apr-66	Apr-67	48.19		Jun-66	Mar-67	50.35		Aug-66	Feb-67	52.87
Apr-67	May-68	46.44	Apr-67	Apr-68	46.63		Jun-67	Mar-68	43.60		Aug-67	Feb-68	41.09
Apr-68	May-69	51.84	Apr-68	Apr-69	51.59		Jun-68	Mar-69	52.47		Aug-68	Feb-69	52.79
Apr-69	May-70	48.34	Apr-69	Apr-70	46.22		Jun-69	Mar-70	45.80		Aug-69	Feb-70	52.41
Apr-70	May-71	63.16	Apr-70	Apr-/1	60.55 66.05		Jun-70	Mar-71	61.57		Aug-70	Feb-/1	65.66
Δpr-71	May-72	45.12	Δpr-71	Δnr-73	45.88		Jun-72	Mar-73	42.84		Aug-71	Feb-72 Feb-73	41 16
Apr-72 Apr-73	May-74	55.62	Apr-72	Apr-73 Apr-74	55.19		Jun-73	Mar-74	59.64		Aug-72 Aug-73	Feb-74	66.56
Apr-74	May-75	58.40	Apr-74	Apr-75	59.08		Jun-74	Mar-75	61.15		Aug-74	Feb-75	65.34
Apr-75	May-76	62.91	Apr-75	Apr-76	61.99		Jun-75	Mar-76	65.32		Aug-75	Feb-76	70.23
Apr-76	May-77	41.68	Apr-76	Apr-77	42.15		Jun-76	Mar-77	37.97		Aug-76	Feb-77	36.80
Apr-77	May-78	48.39	Apr-77	Apr-78	46.21		Jun-77	Mar-78	44.24		Aug-77	Feb-78	45.09
Apr-78	May-79	53.94	Apr-78	Apr-79	53.53		Jun-78	Mar-79	47.93		Aug-78	Feb-79	44.30
Apr-79	May-80	48.26	Apr-79	Apr-80	49.18		Jun-79	Mar-80	50.44		Aug-79	Feb-80	54.31
Apr-80	May-81	41.59	Apr-80	Apr-81	38.12		Jun-80	Mar-81	38.67		Aug-80	Feb-81	40.77
Apr-81	May-82	63.91	Apr-81	Apr-82	61.46		Jun-81	Mar-82	59.95		Aug-81	Feb-82	57.50
Apr-82	May-83	45.21	Apr-82	Apr-83	44.71		Jun-82	Mar-83	36.47		Aug-82	Feb-83	36.90
Apr-83	IVIAy-84	42.62	Apr-83	Apr-84	41.35		Jun-83	Mar 85	40.70		Aug-83	Feb-84	42.60
Apr-85	May-86	50.50	Apr-85	Apr-85 Apr-86	54.62		Jun-85	Mar-86	50.02		Aug-84	Feb-86	54.55
Apr-86	May-80	43 39	Apr-85	Apr-87	42.43		Jun-86	Mar-87	41 73		Aug-85	Feb-87	43.03
Apr-87	May-88	44.26	Apr-87	Apr-88	44.40		Jun-87	Mar-88	45.13		Aug-87	Feb-88	50.60
Apr-88	May-89	63.98	Apr-88	Apr-89	64.13		Jun-88	Mar-89	70.50		Aug-88	Feb-89	77.30
Apr-89	May-90	53.56	Apr-89	Apr-90	53.39		Jun-89	Mar-90	53.93		Aug-89	Feb-90	57.53
Apr-90	May-91	46.35	Apr-90	Apr-91	45.66		Jun-90	Mar-91	45.21		Aug-90	Feb-91	46.77
Apr-91	May-92	38.59	Apr-91	Apr-92	38.48		Jun-91	Mar-92	37.52		Aug-91	Feb-92	37.30
Apr-92	May-93	37.71	Apr-92	Apr-93	35.86		Jun-92	Mar-93	36.12		Aug-92	Feb-93	38.96
Apr-93	May-94	48.81	Apr-93	Apr-94	48.27		Jun-93	Mar-94	47.68		Aug-93	Feb-94	52.66
Apr-94	May-95	44.73	Apr-94	Apr-95	43.57		Jun-94	Mar-95	42.36		Aug-94	Feb-95	43.43
Apr-95	May-96	57.36	Apr-95	Apr-96	55.02		Jun-95	Mar-96	56.77		Aug-95	Feb-96	55.47
Apr-96	May 97	22.26	Apr-96	Apr-97	21 20		Jun 97	Mar 97	20.75		Aug-96	Feb-97	52.54 26.61
Apr-97	May-99	59.91	Apr-97	Apr-98 Anr-99	51.50		Jun-97	Mar-99	29.70		Aug-97	Feb-98	62.01
Apr-99	May-00	71 74	Apr-99	Apr-00	70.42		Jun-99	Mar-00	70.61		Aug-98	Feb-00	75.60
Apr-00	May-01	65.63	Apr-00	Apr-01	67.12		Jun-00	Mar-01	69.88		Aug-00	Feb-01	66.61
Apr-01	May-02	40.43	Apr-01	Apr-02	39.11		Jun-01	Mar-02	36.28		Aug-01	Feb-02	35.47
Apr-02	May-03	41.56	Apr-02	Apr-03	41.02	1	Jun-02	Mar-03	36.45		Aug-02	Feb-03	33.94
Apr-03	May-04	47.94	Apr-03	Apr-04	46.32	1	Jun-03	Mar-04	45.68		Aug-03	Feb-04	43.21
Apr-04	May-05	59.60	Apr-04	Apr-05	57.47		Jun-04	Mar-05	57.78		Aug-04	Feb-05	61.81
Apr-05	May-06	61.15	Apr-05	Apr-06	57.87	1	Jun-05	Mar-06	54.53		Aug-05	Feb-06	53.16
Apr-06	May-07	59.99	Apr-06	Apr-07	57.12	1	Jun-06	Mar-07	50.64		Aug-06	Feb-07	52.66
Apr-07	May-08	71.09	Apr-07	Apr-08	69.84	1	Jun-07	Mar-08	68.54		Aug-07	Feb-08	72.04
Apr-08	May-09	50.00	Apr-08	Apr-09	/6.71	┡	Jun-08	Mar-09	/8.85		Aug-08	Feb-09	81.06
Average		50.68	Average		50.34	1	Average		49.97		Average		51.62
Deviation fr	om mean	9.95 -1.86	Deviation from	n mean	-0 dU T0.22	1	Deviation from	m mean	0.68		Deviation from	n mean	12.45 0.08
- Charlon III	o mean	1.00	Deviation 1101	cuit	0.00	1			0.00			cuit	0.00

Table A6.10. Analysis of "El Niño" occurrences in Nare River discharges (1997-2007)

		TABLE :	l. /	ANALYSIS (OF "EL NI	ÑO" OCCL CAU	JRI CA	RENCES - R RIVER	IVER DISCI	HARGES IN	Μ	I3/SEG		
	Jul. 86 Mar. 88				Abr. 91 Jul. 92				Feb. 93 Ago. 93				Mar. 94 Abr. 95	
Start	Finish	Average		Start	Finish	Average		Start	Finish	Average	F	Start	Finish	Average
Jul-46	Mar-48			Apr-46	Jul-47			Feb-46	Aug-46		ŀ	Mar-46	Apr-47	
Jul-47	Mar-49	122.05		Apr-47	Jul-48	120.06		Feb-47	Aug-47	83.00		Mar-47	Apr-48	119.43
Jul-48	Mar-50	152.67		Apr-48	Jul-49	118.81		Feb-48	Aug-48	115.14		Mar-48	Apr-49	119.00
Jul-49	Mar-51	219.10		Apr-49	Jul-50	215.75		Feb-49	Aug-49	122.29		Mar-49	Apr-50	192.93
Jul-50	Mar-52	160.95		Apr-50	Jul-51	205.88		Feb-50	Aug-50	295.57		Mar-50	Apr-51	232.36
Jul-51	Mar-53	125.95		Apr-51	Jul-52	132.94		Feb-51	Aug-51	144.86		Mar-51	Apr-52	137.86
Jul-52	Mar 54	167.52		Apr-52	JUI-53	118.03		Feb-52	Aug-52	123.14		Mar 52	Apr-53	149 14
Jul-53	Mar-56	190.62		Apr-53 Apr-54	Jul-54	148.30		Feb-55 Feb-54	Aug-55 Aug-54	144.14		Mar-54	Apr-54 Apr-55	176.00
Jul-55	Mar-57	170.10		Apr-55	Jul-56	184.56		Feb-55	Aug-55	163.57		Mar-55	Apr-56	192.64
Jul-56	Mar-58	124.86		Apr-56	Jul-57	147.88		Feb-56	Aug-56	152.00		Mar-56	Apr-57	149.07
Jul-57	Mar-59	92.10		Apr-57	Jul-58	105.13		Feb-57	Aug-57	125.43		Mar-57	Apr-58	109.86
Jul-58	Mar-60	110.38		Apr-58	Jul-59	97.00		Feb-58	Aug-58	84.71		Mar-58	Apr-59	90.29
Jul-59	Mar-61	117.76		Apr-59	Jul-60	119.94		Feb-59	Aug-59	91.43		Mar-59	Apr-60	120.50
Jul-60	Mar-62	111.62		Apr-60	Jul-61	109.75		Feb-60	Aug-60	114.86		Mar-60	Apr-61	112.00
Jul-61	Mar-63	127.29		Apr-61	Jul-62	117.63		Feb-61	Aug-61	98.86		Mar-61	Apr-62	111.64
Jul-63	Mar-65	130.52		Apr-62	Jul-63	144.38		Feb-62 Feb-63	Aug-62	122.29		Mar-63	Apr-63 Apr-64	129.00
Jul-64	Mar-66	120.67		Apr-64	Jul-65	129.81		Feb-64	Aug-64	121.14		Mar-64	Apr-65	132.43
Jul-65	Mar-67	149.76		Apr-65	Jul-66	111.06		Feb-65	Aug-65	94.00		Mar-65	Apr-66	108.14
Jul-66	Mar-68	161.86		Apr-66	Jul-67	168.13		Feb-66	Aug-66	94.86		Mar-66	Apr-67	168.07
Jul-67	Mar-69	130.33		Apr-67	Jul-68	134.88		Feb-67	Aug-67	147.00		Mar-67	Apr-68	139.36
Jul-68	Mar-70	137.00		Apr-68	Jul-69	136.63		Feb-68	Aug-68	133.86		Mar-68	Apr-69	137.29
Jul-69	Mar-71	161.86		Apr-69	Jul-70	137.31		Feb-69	Aug-69	128.14		Mar-69	Apr-70	137.50
Jul-70	Mar-72	179.00		Apr-70	Jul-71	180.69		Feb-70	Aug-70	131.57		Mar-70	Apr-71	186.93
Jul-71	Mar-73	123.00		Apr-/1	Jul-72	156.75		Feb-71	Aug-/1	1/9.5/		Mar-/1	Apr-72	167.00
Jul-72	Mar-75	178 90		Apr-72	Jul-73	171 50		Feb-72 Feb-73	Aug-72 Διισ-73	133.43 89.71		Mar-72	Δnr-74	173.36
Jul-74	Mar-76	174.43		Apr-74	Jul-75	151.69		Feb-74	Aug-74	159.86		Mar-74	Apr-75	157.21
Jul-75	Mar-77	145.24		Apr-75	Jul-76	178.94		Feb-75	Aug-75	155.29		Mar-75	Apr-76	187.86
Jul-76	Mar-78	97.76		Apr-76	Jul-77	102.69		Feb-76	Aug-76	152.14		Mar-76	Apr-77	110.29
Jul-77	Mar-79	111.86		Apr-77	Jul-78	108.19		Feb-77	Aug-77	77.14		Mar-77	Apr-78	104.71
Jul-78	Mar-80	123.76		Apr-78	Jul-79	119.25		Feb-78	Aug-78	92.00		Mar-78	Apr-79	112.71
Jul-79	Mar-81	118.10		Apr-79	Jul-80	124.44		Feb-79	Aug-79	118.00		Mar-79	Apr-80	132.64
Jul-80	Mar-82	142.24		Apr-80	Jul-81	128.19		Feb-80	Aug-80	105.14		Mar-80	Apr-81	119.00
Jul-81	Nar 84	144.95		Apr-81	JUI-82	141 99		Feb-81	Aug-81	151./1		Mar 92	Apr-82	152.00
Jul-82	Mar-85	152.19		Apr-82	Jul-83	141.00		Feb-83	Aug-82	171.25		Mar-83	Δnr-84	141 64
Jul-84	Mar-86	157.14		Apr-84	Jul-85	163.19		Feb-84	Aug-84	158.29		Mar-84	Apr-85	169.21
Jul-85	Mar-87	130.90		Apr-85	Jul-86	147.00		Feb-85	Aug-85	117.14		Mar-85	Apr-86	144.50
Jul-86	Mar-88	96.57		Apr-86	Jul-87	110.50		Feb-86	Aug-86	148.14		Mar-86	Apr-87	120.00
Jul-87	Mar-89	139.76		Apr-87	Jul-88	98.63		Feb-87	Aug-87	80.29		Mar-87	Apr-88	89.14
Jul-88	Mar-90	158.19		Apr-88	Jul-89	167.38		Feb-88	Aug-88	101.86		Mar-88	Apr-89	167.71
Jul-89	Mar-91	117.14		Apr-89	Jul-90	127.88		Feb-89	Aug-89	147.57		Mar-89	Apr-90	135.07
Jul-90	Mar-92	107.52		Apr-90	Jul-91	116.38		Feb-90	Aug-90	129.00		Mar-90	Apr-91	118.36
Jul-91	Mar-94	122 95		Apr-91	Jul-92	105.00		Feb-91	Aug-91 Διισ-92	78 71		Mar-91	Δnr-92	99.86
Jul-93	Mar-95	125.52		Apr-93	Jul-94	136.75		Feb-93	Aug-93	121.86		Mar-93	Apr-94	140.43
Jul-94	Mar-96	129.10		Apr-94	Jul-95	120.63		Feb-94	Aug-94	134.57		Mar-94	Apr-95	123.86
Jul-95	Mar-97	149.90		Apr-95	Jul-96	144.25		Feb-95	Aug-95	106.29		Mar-95	Apr-96	141.50
Jul-96	Mar-98	115.71		Apr-96	Jul-97	146.75		Feb-96	Aug-96	152.00		Mar-96	Apr-97	154.50
Jul-97	Mar-99	124.76		Apr-97	Jul-98	94.31		Feb-97	Aug-97	131.86		Mar-97	Apr-98	92.43
Jul-98	Mar-00	192.90		Apr-98	Jul-99	161.88		Feb-98	Aug-98	91.57		Mar-98	Apr-99	162.07
Jul-99	Mar-01	166.79		Apr-99	Jul-00	196.44		Feb-99	Aug-99	177.14		Mar-99	Apr-00	207.86
JUI-00	Mar 02	103.21		Apr-00	JUI-01	119.82		Feb-00	Aug-00	786.96 199.96		iviar-00 Mar 01	Apr-01	102 56
Jul-01	Mar-04	92.33		Apr-01 Apr-02	Jul-02	94 24		Feb-01	Aug-01 Aug-02	00.30 97 04		Mar-01	Apr-02 Apr-03	90 42
Jul-02	Mar-05	118 19		Apr-02	Jul-04	105 12		Feb-02	Aug-02	91 73		Mar-02	Apr-03	106 50
Jul-04	Mar-06	136.31		Apr-04	Jul-05	122.75		Feb-04	Aug-04	88.13		Mar-04	Apr-05	125.39
Jul-05	Mar-07	131.57		Apr-05	Jul-06	141.19		Feb-05	Aug-05	119.00		Mar-05	Apr-06	144.29
Jul-06	Mar-08	144.85		Apr-06	Jul-07	132.30		Feb-06	Aug-06	148.51		Mar-06	Apr-07	133.14
Jul-07	Mar-09	176.39		Apr-07	Jul-08	176.43		Feb-07	Aug-07	130.51		Mar-07	Apr-08	172.94
Jul-08	Mar-10			Apr-08	Jul-09			Feb-08	Aug-08	179.73	L	Mar-08	Apr-09	182.54
Average		136.78		Average		136.54		Average		127.86	1	Average		139.02
St, Dev.		27.21		St, Dev.		29.27		St, Dev.		36.02	S	St, Dev.		31.37
Deviation fro	om mean	-1.48		Deviation fro	m mean	-1.14		Deviation fro	om mean	-0.17	1	Jeviation fro	m mean	-0.48

Table A6.11. Analysis of "El Niño" occurrences in Cauca River discharges (1986-95)

		TAE	BLE 2. ANALYS	SIS OF "EL I	NIÑO" OCCI CAU	UR CA	RENCES - R RIVER	IVER DISCH	ARGES IN N	/13	/SEG		
	Abr. 97 May. 98			Abr. 02 Abr. 03				Jun. 04 Mar. 05				Ago. 06 Feb. 07	
Start	Finish	Average	Start	Finish	Average		Start	Finish	Average		Start	Finish	Average
Apr-46	May-47		Apr-46	Apr-47		1	Jun-46	Mar-47			Aug-46	Feb-47	
Apr-47	May-48	123.71	Apr-47	Apr-48	122.85		Jun-47	Mar-48	126.30		Aug-47	Feb-48	132.86
Apr-48 Apr-49	May-49 May-50	211.14	Apr-48 Apr-49	Apr-49 Apr-50	117.08		Jun-48 Jun-49	Mar-50	105.90		Aug-48 Aug-49	Feb-49 Feb-50	107.14
Apr-50	May-51	217.86	Apr-50	Apr-51	221.54		Jun-50	Mar-51	205.30		Aug-50	Feb-51	196.14
Apr-51	May-52	137.07	Apr-51	Apr-52	134.31		Jun-51	Mar-52	131.60		Aug-51	Feb-52	135.29
Apr-52	May-53	122.07	Apr-52	Apr-53	121.62		Jun-52	Mar-53	115.60		Aug-52	Feb-53	121.14
Apr-53 Apr-54	May-54 May-55	151.29	Apr-53 Apr-54	Apr-54 Apr-55	151.85		Jun-53 Jun-54	Mar-54 Mar-55	150.00		Aug-53 Aug-54	Feb-54 Feb-55	169.43
Apr-55	May-56	188.21	Apr-55	Apr-56	191.31		Jun-55	Mar-56	195.80		Aug-55	Feb-56	210.57
Apr-56	May-57	150.79	Apr-56	Apr-57	147.31		Jun-56	Mar-57	150.90		Aug-56	Feb-57	151.43
Apr-57	May-58	108.29	Apr-57	Apr-58	108.23		Jun-57	Mar-58	98.10		Aug-57	Feb-58	94.00
Apr-58	May-59	94.00	Apr-58	Apr-59	92.00		Jun-58	Mar-59	91.50		Aug-58	Feb-59	98.00
Apr-59 Apr-60	May-60	124.57	Apr-59 Apr-60	Apr-60 Apr-61	124.92		Jun-60	Mar-61	129.60		Aug-59 Aug-60	Feb-60 Feb-61	154.14
Apr-61	May-62	116.57	Apr-61	Apr-62	114.23		Jun-61	Mar-62	114.50		Aug-61	Feb-62	111.29
Apr-62	May-63	148.86	Apr-62	Apr-63	144.23		Jun-62	Mar-63	139.10		Aug-62	Feb-63	141.29
Apr-63	May-64	128.21	Apr-63	Apr-64	127.23		Jun-63	Mar-64	107.50		Aug-63	Feb-64	111.29
Apr-64	May-65	137.57	Apr-64	Apr-65	137.23		Jun-64	Mar-65	137.50		Aug-64	Feb-65	141.71
Apr-66	May-67	172.07	Apr-65	Apr-67	110.40		Jun-66	Mar-67	107.90		Aug-65	Feb-67	217.43
Apr-67	May-68	134.86	Apr-67	Apr-68	135.62		Jun-67	Mar-68	131.70		Aug-67	Feb-68	128.71
Apr-68	May-69	140.50	Apr-68	Apr-69	137.46		Jun-68	Mar-69	127.80		Aug-68	Feb-69	131.43
Apr-69	May-70	141.64	Apr-69	Apr-70	141.31		Jun-69	Mar-70	134.50		Aug-69	Feb-70	132.57
Apr-70	May-71	187.93	Apr-70	Apr-71	186.08		Jun-70	Mar-71	193.00		Aug-70	Feb-71	212.43
Apr-71 Apr-72	May-72	101.07	Apr-71	Apr-72 Apr-73	99.00		Jun-71	Mar-72	151.40 91.50		Aug-71 Διισ-72	Feb-72 Feb-73	158.57
Apr-73	May-74	180.07	Apr-73	Apr-74	182.62		Jun-73	Mar-74	204.30		Aug-73	Feb-74	225.71
Apr-74	May-75	152.93	Apr-74	Apr-75	150.46		Jun-74	Mar-75	153.20		Aug-74	Feb-75	160.14
Apr-75	May-76	186.21	Apr-75	Apr-76	187.85		Jun-75	Mar-76	192.40		Aug-75	Feb-76	206.71
Apr-76	May-77	104.93	Apr-76	Apr-77	104.08		Jun-76	Mar-77	90.40		Aug-76	Feb-77	85.14
Apr-78	May-78	118.86	Apr-78	Apr-78 Apr-79	116.62		Jun-78	Mar-79	107.30		Aug-77	Feb-78 Feb-79	119.80
Apr-79	May-80	129.79	Apr-79	Apr-80	131.69		Jun-79	Mar-80	131.90		Aug-79	Feb-80	135.29
Apr-80	May-81	127.14	Apr-80	Apr-81	118.31		Jun-80	Mar-81	111.40		Aug-80	Feb-81	112.29
Apr-81	May-82	174.21	Apr-81	Apr-82	170.00		Jun-81	Mar-82	151.80		Aug-81	Feb-82	144.57
Apr-82	May-83	148.79 148.50	Apr-82	Apr-83	146.69		Jun-82	Mar-83 Mar-84	121.20		Aug-82	Feb-83 Feb-84	121./1
Apr-83	May-85	148.30	Apr-84	Apr-85	143.54		Jun-84	Mar-85	128.50		Aug-83	Feb-85	188.43
Apr-85	May-86	148.50	Apr-85	Apr-86	148.85		Jun-85	Mar-86	148.00		Aug-85	Feb-86	150.14
Apr-86	May-87	115.14	Apr-86	Apr-87	114.00		Jun-86	Mar-87	109.30		Aug-86	Feb-87	108.57
Apr-87	May-88	92.07	Apr-87	Apr-88	91.38		Jun-87	Mar-88	86.80		Aug-87	Feb-88	91.57
Apr-88	May-89	1/4.93	Apr-88	Apr-89	1/5.15		Jun-88	Mar-89 Mar-90	194.20		Aug-88	Feb-89 Feb-90	204.29
Apr-90	May-91	117.93	Apr-90	Apr-90	117.31		Jun-90	Mar-91	102.90		Aug-90	Feb-91	120.00
Apr-91	May-92	106.43	Apr-91	Apr-92	108.92		Jun-91	Mar-92	106.40		Aug-91	Feb-92	112.00
Apr-92	May-93	106.79	Apr-92	Apr-93	102.23		Jun-92	Mar-93	100.80		Aug-92	Feb-93	101.43
Apr-93	May-94	141.14	Apr-93	Apr-94	140.54		Jun-93	Mar-94	131.00		Aug-93	Feb-94	137.43
Apr-94 Apr-95	May-95	123.50	Apr-94	Apr-95 Apr-96	121.62		Jun-94 Jun-95	Mar-95	110.00		Aug-94	Feb-95 Feb-96	114.14 146.71
Apr-96	May-97	148.71	Apr-96	Apr-97	150.54		Jun-96	Mar-97	151.30		Aug-96	Feb-97	157.71
Apr-97	May-98	91.86	Apr-97	Apr-98	89.00		Jun-97	Mar-98	78.30		Aug-97	Feb-98	66.00
Apr-98	May-99	169.57	Apr-98	Apr-99	170.31		Jun-98	Mar-99	172.00		Aug-98	Feb-99	180.43
Apr-99	May-00	205.29	Apr-99	Apr-00	205.85		Jun-99	Mar-00	205.30		Aug-99	Feb-00	225.14
Apr-00 Apr-01	May-01	124.74	Apr-00 Apr-01	Apr-01 Apr-02	102.03	1	Jun-00 Jun-01	Mar-01	98 72		Aug-00 Aug-01	Feb-01 Feb-02	109.57
Apr-02	May-03	92.83	Apr-02	Apr-03	91.22		Jun-02	Mar-03	77.57		Aug-02	Feb-03	71.90
Apr-03	May-04	108.64	Apr-03	Apr-04	108.44	11	Jun-03	Mar-04	104.03		Aug-03	Feb-04	108.37
Apr-04	May-05	129.41	Apr-04	Apr-05	129.38	1	Jun-04	Mar-05	132.23		Aug-04	Feb-05	139.90
Apr-05	May-06	144.29	Apr-05	Apr-06	141.38	1	Jun-05	Mar-06	137.94		Aug-05	Feb-06	147.89
Apr-06 Apr-07	May-08	133./5	Apr-06 Apr-07	Apr-07	128.62 177 17	1	Jun-06 Jun-07	Mar-08	108.26		Aug-06	Feb-07	103.66
Apr-08	May-09	1, 5.00	Apr-08	Apr-09	180.40	11	Jun-08	Mar-09	175.81		Aug-08	Feb-09	181.46
Average	,	139.49	Average		139.02	Π	Average		134.86		Average		139.53
St, Dev.		31.07	St, Dev.		31.54	1	St, Dev.		35.09		St, Dev.		39.82
Deviation fr	om mean	-1.53	Deviation fror	n mean	-1.52	1	Deviation fror	m mean	-0.07		Deviation from	n mean	-0.90

Table A6.12. Analysis of "El Niño" occurrences in Cauca River flows (1997-2007)

		TABLE :	L. /	ANALYSIS	OF "EL NIÍ	ÑO" OCCL MAGDA	JR	RENCES - R NA RIVER	IVER DISCH	IARGES IN	M3/SEG		
	Jul. 86 Mar. 88				Abr. 91 Jul. 92				Feb. 93 Ago. 93			Mar. 94 Abr. 95	
Start	Finish	Average		Start	Finish	Average		Start	Finish	Average	Start	Finish	Average
Jul-72	Mar-74	198.51		Apr-72	Jul-73	161.18		Feb-72	Aug-72	215.87	Mar-72	Apr-73	158.22
Jul-73	Mar-75	256.77		Apr-73	Jul-74	261.46		Feb-73	Aug-73	152.23	Mar-73	Apr-74	248.98
Jul-74	Mar-76	247.04		Apr-74	Jul-75	236.34		Feb-74	Aug-74	297.01	Mar-74	Apr-75	236.84
Jul-75	Mar-77	253.34		Apr-75	Jul-76	285.58		Feb-75	Aug-75	234.67	Mar-75	Apr-76	273.19
Jul-76	Mar-78	193.41		Apr-76	Jul-77	232.01		Feb-76	Aug-76	304.99	Mar-76	Apr-77	238.92
Jul-77	Mar-79	168.98		Apr-77	Jul-78	190.93		Feb-77	Aug-77	176.37	Mar-77	Apr-78	183.85
Jul-78	Mar-80	183.66		Apr-78	Jul-79	193.09		Feb-78	Aug-78	178.44	Mar-78	Apr-79	174.26
Jul-79	Mar-81	181.18		Apr-79	Jul-80	215.63		Feb-79	Aug-79	218.23	Mar-79	Apr-80	214.96
Jul-80	Mar-82	208.41		Apr-80	Jul-81	202.89		Feb-80	Aug-80	204.24	Mar-80	Apr-81	179.19
Jul-81	Mar-83	224.60		Apr-81	Jul-82	261.77		Feb-81	Aug-81	223.89	Mar-81	Apr-82	247.41
Jul-82	Mar-84	191.81		Apr-82	Jul-83	215.84		Feb-82	Aug-82	283.74	Mar-82	Apr-83	229.51
Jul-83	Mar-85	209.93		Apr-83	Jul-84	207.09		Feb-83	Aug-83	182.39	Mar-83	Apr-84	193.59
Jul-84	Mar-86	226.24		Apr-84	Jul-85	235.73		Feb-84	Aug-84	226.76	Mar-84	Apr-85	220.95
Jul-85	Mar-87	220.01		Apr-85	Jul-86	245.43		Feb-85	Aug-85	208.51	Mar-85	Apr-86	219.66
Jul-86	Mar-88	171.06		Apr-86	Jul-87	208.83		Feb-86	Aug-86	285.93	Mar-86	Apr-87	225.78
Jul-87	Mar-89	177.14		Apr-87	Jul-88	167.64		Feb-87	Aug-87	156.34	Mar-87	Apr-88	141.64
Jul-88	Mar-90	187.12		Apr-88	Jul-89	208.44		Feb-88	Aug-88	173.71	Mar-88	Apr-89	194.78
Jul-89	Mar-91	165.73		Apr-89	Jul-90	186.99		Feb-89	Aug-89	194.80	Mar-89	Apr-90	172.93
Jul-90	Mar-92	159.59		Apr-90	Jul-91	182.13		Feb-90	Aug-90	211.97	Mar-90	Apr-91	172.99
Jul-91	Mar-93	153.53		Apr-91	Jul-92	165.45		Feb-91	Aug-91	184.37	Mar-91	Apr-92	162.81
Jul-92	Mar-94	186.16		Apr-92	Jul-93	169.35		Feb-92	Aug-92	140.97	Mar-92	Apr-93	147.02
Jul-93	Mar-95	211.82		Apr-93	Jul-94	244.79		Feb-93	Aug-93	207.71	Mar-93	Apr-94	220.15
Jul-94	Mar-96	1/9.88		Apr-94	Jul-95	218.29		Feb-94	Aug-94	296.24	Mar-94	Apr-95	226.53
Jui-95	Mar-97	186.36		Apr-95	Jul-96	199.99		Feb-95	Aug-95	158.97	Mar-95	Apr-96	180.45
Jul-96	Mar-98	151.98		Apr-96	Jul-97	202.57		Feb-96	Aug-96	248.69	Mar-96	Apr-97	200.88
Jul-97	Iviar-99	161.50		Apr-97	Jul-98	150.57		Feb-97	Aug-97	180.00	Mar-97	Apr-98	128.23
Jul-98	Mar 01	209.02		Apr-98	Jul-99	210.25		Feb-98	Aug-98	157.60	Mar 00	Apr-99	199.95
Jul-99	Iviar-01	177.97		Apr-99	Jui-00	150.97		Feb-99	Aug-99	237.87	Mar 00	Apr-00	220.04
Jul-00	Mar 02	120.10		Apr-00	Jul-01	160.19		Feb-00	Aug-00	255.55	Mar 01	Apr-01	120 70
Jul-01	Mar 04	122.77		Apr-01	Jul-02	160.10		Feb-01	Aug-01	102.00	Mar 02	Apr-02	159.70
Jul-02	Mar OF	142.49		Apr-02	Jul-03	149.24		Feb-02	Aug-02	145 21	Mar 02	Apr-03	1/1 20
Jul-04	Mar-06	145.40		Apr-04	Jul-04	140.24		Feb-03	Aug-03	145.21	Mar-04	Apr-04	141.20
Jul-04	Mar-07	176 21		Apr-05	Jul-06	100 02		Feb-05	Aug-04	158 7/	Mar-05	Δpr-06	175 20
Jul-05	Mar-02	205.80		Apr-06	Jul-00	209.05		Feb-06	Aug-05	222.24	Mar-06	Apr-00	196.8/
Jul-07	Mar-00	253.59		Δpr-07	Jul-07	255 37		Feb-07	Διισ-07	233.24	Mar-07	Δnr-08	229 5/
Jul-08	Mar-10	233.50		Apr-08	Jul-09	200.07		Feb-08	Aug-08	261 97	Mar-08	Anr-09	274 84
	14101 10	188 40			301 05	203 36			, wp 00	201.57		7.61.02	195 73
St Dev		33.89		St. Dev		35 52		St. Dev		46.66	St Dev		38 70
Deviation fr	om mean	-0.51		Deviation fro	om mean	-1 07		Deviation fro	om mean	0.00	Deviation from	m mean	0.80
								1					

Table A6.13. Analysis of "El Niño" occurrences in Magdalena River discharges (1986-95)

		TAI	BLE 2. ANALY	SIS OF "EL M	NIÑO" OCCI MAGDA	URI	RENCES - R NA RIVER	IVER DISCH	ARGES IN N	13,	/SEG		
	Abr. 97 May. 98			Abr. 02 Abr. 03				Jun. 04 Mar. 05				Ago. 06 Feb. 07	
Start	Finish	Average	Start	Finish	Average	11	Start	Finish	Average		Start	Finish	Average
Apr-72	May-73	155.96	Apr-72	Apr-73	154.37	11	Jun-72	Mar-73	131.63		Aug-72	Feb-73	110.30
Apr-73	May-74	263.41	Apr-73	Apr-74	262.03		Jun-73	Mar-74	279.30		Aug-73	Feb-74	288.46
Apr-74	May-75	231.73	Apr-74	Apr-75	225.95		Jun-74	Mar-75	219.19		Aug-74	Feb-75	209.10
Apr-75	May-76	280.36	Apr-75	Apr-76	276.30		Jun-75	Mar-76	275.74		Aug-75	Feb-76	277.21
Apr-76	May-77	234.94	Apr-76	Apr-77	235.78		Jun-76	Mar-77	215.10		Aug-76	Feb-77	199.49
Apr-77	May-78	190.36	Apr-77	Apr-78	189.50		Jun-77	Mar-78	175.23		Aug-77	Feb-78	174.39
Apr-78	May-79	183.64	Apr-78	Apr-79	179.32		Jun-78	Mar-79	155.50		Aug-78	Feb-79	131.64
Apr-79	May-80	211.74	Apr-79	Apr-80	212.75		Jun-79	Mar-80	198.14		Aug-79	Feb-80	187.31
Apr-80	May-81	198.64	Apr-80	Apr-81	181.30		Jun-80	Mar-81	169.86		Aug-80	Feb-81	150.37
Apr-81	May-82	261.22	Apr-81	Apr-82	254.11		Jun-81	Mar-82	232.97		Aug-81	Feb-82	227.03
Apr-82	May-83	227.59	Apr-82	Apr-83	225.99		Jun-82	Mar-83	193.28		Aug-82	Feb-83	178.54
Apr-83	May-84	201.66	Apr-83	Apr-84	196.80		Jun-83	Mar-84	176.30		Aug-83	Feb-84	192.64
Apr-84	May-85	225.25	Apr-84	Apr-85	226.62		Jun-84	Mar-85	227.59		Aug-84	Feb-85	240.34
Apr-85	May-86	225.78	Apr-85	Apr-86	228.61		Jun-85	Mar-86	232.66		Aug-85	Feb-86	193.00
Apr-86	May-87	216.29	Apr-86	Apr-87	215.65		Jun-86	Mar-87	215.15		Aug-86	Feb-87	185.46
Apr-87	May-88	146.08	Apr-87	Apr-88	145.81		Jun-87	Mar-88	134.43		Aug-87	Feb-88	138.06
Apr-88	May-89	209.62	Apr-88	Apr-89	204.78		Jun-88	Mar-89	223.75		Aug-88	Feb-89	189.40
Apr-89	May-90	176.95	Apr-89	Apr-90	165.11		Jun-89	Mar-90	154.06		Aug-89	Feb-90	145.20
Apr-90	May-91	178.29	Apr-90	Apr-91	176.77		Jun-90	Mar-91	160.47		Aug-90	Feb-91	133.59
Apr-91	May-92	158.67	Apr-91	Apr-92	163.41		Jun-91	Mar-92	162.55		Aug-91	Feb-92	164.14
Apr-92	May-93	160.81	Apr-92	Apr-93	153.82		Jun-92	Mar-93	152.84		Aug-92	Feb-93	125.54
Apr-93	May-94	229.96	Apr-93	Apr-94	219.87		Jun-93	Mar-94	203.01		Aug-93	Feb-94	187.73
Apr-94	May-95	221.67	Apr-94	Apr-95	224.13		Jun-94	Mar-95	197.61		Aug-94	Feb-95	164.83
Apr-95	May-96	187.24	Apr-95	Apr-96	184.72		Jun-95	Mar-96	175.37		Aug-95	Feb-96	148.77
Apr-96	May-97	194.89	Apr-96	Apr-97	191.48		Jun-96	Mar-97	190.73		Aug-96	Feb-97	173.97
Apr-97	May-98	134.79	Apr-97	Apr-98	129.55		Jun-97	Mar-98	112.84		Aug-97	Feb-98	79.47
Apr-98	May-99	214.17	Apr-98	Apr-99	210.75		Jun-98	Mar-99	203.99		Aug-98	Feb-99	186.63
Apr-99	May-00	232.73	Apr-99	Apr-00	220.71		Jun-99	Mar-00	205.14		Aug-99	Feb-00	200.50
Apr-00	May-01	157.36	Apr-00	Apr-01	155.56		Jun-00	Mar-01	127.80		Aug-00	Feb-01	121.43
Apr-01	May-02	141.89	Apr-01	Apr-02	138.68		Jun-01	Mar-02	131.14		Aug-01	Feb-02	116.09
Apr-02	May-03	158.58	Apr-02	Apr-03	154.68		Jun-02	Mar-03	148.39		Aug-02	Feb-03	114.97
Apr-03	May-04	145.56	Apr-03	Apr-04	144.25		Jun-03	Mar-04	132.23		Aug-03	Feb-04	129.37
Apr-04	May-05	158.50	Apr-04	Apr-05	158.36		Jun-04	Mar-05	151.66		Aug-04	Feb-05	144.40
Apr-05	May-06	177.11	Apr-05	Apr-06	176.20		Jun-05	Mar-06	163.69		Aug-05	Feb-06	155.50
Apr-06	May-07	194.76	Apr-06	Apr-07	190.65	11	Jun-06	Mar-07	171.75		Aug-06	Feb-07	148.36
Apr-07	May-08	241.32	Apr-07	Apr-08	239.09		Jun-07	Mar-08	238.13		Aug-07	Feb-08	214.46
Apr-08	May-09		Apr-08	Apr-09	276.02		Jun-08	Mar-09	289.07		Aug-08	Feb-09	263.03
Average		198.04	Average		197.01		Average		187.25		Average		172.72
St, Dev.		37.52	St, Dev.		39.22	11	St, Dev.		44.13		St, Dev.		47.26
Deviation fro	om mean	-1.69	Deviation from	n mean	-1.08	1	Deviation from	m mean	-0.81		Deviation fror	n mean	-0.52

Table A6.14. Analysis of "El Niño" occurrences in Magdalena River discharges (1997-2007)

			TABLE 1. AN	NALYSIS O	F "EL NIÑO JEPIRACHI	" C PO	OCCURREN WERPLAN	CES - ENER T	GY IN KWH			
	Jul. 86 Mar. 88			Abr. 91 Jul. 92				Feb. 93 Ago. 93			Mar. 94 Abr. 95	
Start	Finish	Average	Start	Finish	Average		Start	Finish	Average	Start	Finish	Average
Jul-85	Mar-87	5764185	Apr-85	Jul-86	5715773		Feb-85	Aug-85	6379056	Mar-85	Apr-86	5539347
Jul-86	Mar-88	6422022	Apr-86	Jul-87	6441876		Feb-86	Aug-86	6379056	Mar-86	Apr-87	6247520
Jul-87	Mar-89	6132963	Apr-87	Jul-88	6816347		Feb-87	Aug-87	7354998	Mar-87	Apr-88	6631787
Jul-88	Mar-90	5864084	Apr-88	Jul-89	6095130		Feb-88	Aug-88	7269545	Mar-88	Apr-89	6011369
Jul-89	Mar-91	6062719	Apr-89	Jul-90	6475338		Feb-89	Aug-89	6650089	Mar-89	Apr-90	6306075
Jul-90	Mar-92	6182776	Apr-90	Jul-91	6395260		Feb-90	Aug-90	6688416	Mar-90	Apr-91	6011417
Jul-91	Mar-93	6402382	Apr-91	Jul-92	6756367		Feb-91	Aug-91	7084624	Mar-91	Apr-92	6561814
Jul-92	Mar-94	6253623	Apr-92	Jul-93	6441281		Feb-92	Aug-92	7519818	Mar-92	Apr-93	6559013
Jul-93	Mar-95	6480640	Apr-93	Jul-94	6721780		Feb-93	Aug-93	6657573	Mar-93	Apr-94	6396776
Jul-94	Mar-96	5632175	Apr-94	Jul-95	6577503		Feb-94	Aug-94	7846772	Mar-94	Apr-95	6600790
Jul-95	Mar-97	5233897	Apr-95	Jul-96	5506845		Feb-95	Aug-95	5952472	Mar-95	Apr-96	5333111
Jul-96	Mar-98	5810455	Apr-96	Jul-97	5966733		Feb-96	Aug-96	6316614	Mar-96	Apr-97	5733818
Jul-97	Mar-99	5729205	Apr-97	Jul-98	6257190		Feb-97	Aug-97	7416243	Mar-97	Apr-98	6272154
Jul-98	Mar-00	5229874	Apr-98	Jul-99	5865564		Feb-98	Aug-98	6480070	Mar-98	Apr-99	5756883
Jul-99	Mar-01	4937749	Apr-99	Jul-00	5658389		Feb-99	Aug-99	6393935	Mar-99	Apr-00	5368818
Jul-00	Mar-02	5195507	Apr-00	Jul-01	5064481		Feb-00	Aug-00	6757620	Mar-00	Apr-01	4926389
Jul-01	Mar-03	6429024	Apr-01	Jul-02	6109140		Feb-01	Aug-01	4499979	Mar-01	Apr-02	5484855
Jul-02	Mar-04	5687418	Apr-02	Jul-03	6810213		Feb-02	Aug-02	7295008	Mar-02	Apr-03	6637391
Jul-03	Mar-05	4780761	Apr-03	Jul-04	5508310		Feb-03	Aug-03	7306087	Mar-03	Apr-04	5206022
Jul-04	Mar-06	4601699	Apr-04	Jul-05	4903049		Feb-04	Aug-04	5645756	Mar-04	Apr-05	4955349
Jul-05	Mar-07	4954198	Apr-05	Jul-06	5004060		Feb-05	Aug-05	4899743	Mar-05	Apr-06	4795268
Jul-06	Mar-08	4566048	Apr-06	Jul-07	4981479		Feb-06	Aug-06	6258557	Mar-06	Apr-07	5201357
Jul-07	Mar-09		Apr-07	Jul-08	4747240		Feb-07	Aug-07	4787152	Mar-07	Apr-08	4517570
Jul-08	Mar-10		Apr-08	Jul-09			Feb-08	Aug-08	5719404	Mar-08	Apr-09	
Average		5652427.35	Average		5948667		Average		6481608	Average		5784995.29
St, Dev.		624131.16	St, Dev.		671731		St, Dev.		885823	St, Dev.		665029.00
Deviation fro	om mean	1.23	Deviation fro	om mean	1.20		Deviation fro	om mean	0.20	Deviation fro	m mean	1.23

Table A6.15. Analysis of "El Niño" occurrences in Jepirachi power plant (1986-95)

			TABLE 2. /	ANALYSIS C	OF "EL NINO	" OCCURREN	CES - ENER	GY IN KWH			
					JEPIRACHI	POWERPLAN	т				
	Abr. 97			Abr. 02			lun. 04			Ago. 06	
	May. 98			Abr. 03			Mar. 05			Feb. 07	
	•										
Start	Finish	Average	Start	Finish	Average	Start	Finish	Average	Start	Finish	Average
Apr-85	May-86	5485924	Apr-85	Apr-86	5464287	Jun-85	Mar-86	5349617	Aug-85	Feb-86	4618802
Apr-86	May-87	6194097	Apr-86	Apr-87	6226935	Jun-86	Mar-87	6281286	Aug-86	Feb-87	5896328
Apr-87	May-88	6666956	Apr-87	Apr-88	6611991	Jun-87	Mar-88	6671300	Aug-87	Feb-88	5921141
Apr-88	May-89	5857533	Apr-88	Apr-89	5788216	Jun-88	Mar-89	5494269	Aug-88	Feb-89	4671913
Apr-89	May-90	6312681	Apr-89	Apr-90	6289994	Jun-89	Mar-90	6212223	Aug-89	Feb-90	5980936
Apr-90	May-91	6181645	Apr-90	Apr-91	6109291	Jun-90	Mar-91	5920517	Aug-90	Feb-91	5362740
Apr-91	May-92	6554485	Apr-91	Apr-92	6571330	Jun-91	Mar-92	6463968	Aug-91	Feb-92	5817303
Apr-92	May-93	6270095	Apr-92	Apr-93	6437596	Jun-92	Mar-93	6394728	Aug-92	Feb-93	5749208
Apr-93	May-94	6375075	Apr-93	Apr-94	6322395	Jun-93	Mar-94	6437959	Aug-93	Feb-94	5983270
Apr-94	May-95	6548945	Apr-94	Apr-95	6553348	Jun-94	Mar-95	6457344	Aug-94	Feb-95	5690374
Apr-95	May-96	5284812	Apr-95	Apr-96	5247704	Jun-95	Mar-96	4956561	Aug-95	Feb-96	4219238
Apr-96	May-97	5694275	Apr-96	Apr-97	5676717	Jun-96	Mar-97	5527502	Aug-96	Feb-97	4798268
Apr-97	May-98	6126576	Apr-97	Apr-98	6172706	Jun-97	Mar-98	6091264	Aug-97	Feb-98	5432388
Apr-98	May-99	5677508	Apr-98	Apr-99	5650640	Jun-98	Mar-99	5429478	Aug-98	Feb-99	4783342
Apr-99	May-00	5361301	Apr-99	Apr-00	5284234	Jun-99	Mar-00	4973152	Aug-99	Feb-00	4121783
Apr-00	May-01	4639438	Apr-00	Apr-01	4804179	Jun-00	Mar-01	4847088	Aug-00	Feb-01	4484514
Apr-01	May-02	5888374	Apr-01	Apr-02	5783438	Jun-01	Mar-02	6438151	Aug-01	Feb-02	5772640
Apr-02	May-03	6683619	Apr-02	Apr-03	6540770	Jun-02	Mar-03	6516598	Aug-02	Feb-03	6147751
Apr-03	May-04	5155986	Apr-03	Apr-04	5081660	Jun-03	Mar-04	4681166	Aug-03	Feb-04	3924521
Apr-04	May-05	4968975	Apr-04	Apr-05	5032894	Jun-04	Mar-05	4980736	Aug-04	Feb-05	3944830
Apr-05	May-06	4734004	Apr-05	Apr-06	4683796	Jun-05	Mar-06	4689910	Aug-05	Feb-06	4397437
Apr-06	May-07	4971834	Apr-06	Apr-07	5045007	Jun-06	Mar-07	5034841	Aug-06	Feb-07	4399596
Apr-07	May-08	4517908	Apr-07	Apr-08	4421820	Jun-07	Mar-08	4271867	Aug-07	Feb-08	3734293
Apr-08	May-09		Apr-08	Apr-09		Jun-08	Mar-09		Aug-08	Feb-09	
Average		5745741	Average		5730476	Average		5657458	Average		5037070
St, Dev.		685203	St, Dev.		678529	St, Dev.		745717	St, Dev.		799741
Deviation fro	om mean	0.56	Deviation from	n mean	1.19	Deviation fro	m mean	-0.91	Deviation from	n mean	-0.80

Table A6.16. Analysis of "El Niño" occurrences in Jepirachi power plant (1997-
2007)

The next Table summarizes the results. It can be seen that the four rivers show negative values for most of "El Niño" occurrences, while Jepirachi generation is positive in most of them. The most severe occurrences for the rivers analyzed are April 1991 - July 1992 (when a severe rationing in the country occurred) and April 1997 - May 1998 when pool prices raised significantly forcing regulatory changes in the market. During these periods Jepirachi generation is well above the mean value, complementing the hydroelectric generation.

Table A6.17. Summary	y of	"El Niño"	occurrences	1986-2007
----------------------	------	-----------	-------------	-----------

	Departure	ANALYSIS from mean v	OF "EL NIÑ alue expresse	IO" OCCUR d as number o	RENCES fstandard dev	iations		
				"EL NIÑO" O	CCURRENCES			
	Jul. 86	Abr. 91	Fe b. 93	Mar. 94	Abr. 97	Abr. 02	Jun. 04	Ago. 06
	Mar. 88	Jul. 92	Ago.93	Abr. 95	May. 98	Abr. 03	Mar. 05	Feb.07
Guavio River	1.03	-0.53	0.64	1.50	-0.87	0.66	0.94	-1.02
Nare River	-0.73	-1.39	-0.71	-0.64	-1.86	-0.90	0.68	0.08
Cauca River	-1.48	-1.14	-0.17	-0.48	-1.53	-1.52	-0.07	-0.90
Magdalena River	-0.51	-1.07	0.00	0.80	-1.69	-1.08	-0.81	-0.52
Jepirach i Powerplant	1.23	1.20	0.20	1.23	0.56	1.19	-0.91	-0.80

5.3 FIRM ENERGY

An analysis of firm energy obtained from hydroelectric plants (with and without reservoir) and Jepirachi power plant in isolated operation (such as it is in done by Colombian regulation for the estimation of the reliability charge for hydroelectric power plants) as well as for Jepirachi power plant. Firm energy is defined as the maximum monthly energy that can be produced without deficits during the analysis period which will include El Niño occurrences. Same results were obtained for the total energy obtained from the joint operation of the hydroelectric power plants.

The analysis was done using a simulation model that operates the plants and the reservoirs to provide a given energy target, adjusting this target until no deficits are generated. The analysis was done for each one of the hydroelectric plants selected.

Hypothetical hydroelectric plants of similar capacity to wind power plants were analyzed. Mean multiannual inflow to the hydroelectric power plants (expressed in energy) at the plant sites is equal to the same value for the Jepirachi generation. This was done multiplying river discharges by a factor to convert them to energy such that mean inflows are equal to mean Jepirachi generation. In order to avoid confusion with existing hydroelectric plants, the hypothetical plants analyzed will be named as Guavio River, Nare River, Cauca River and Magdalena River.

Several reservoir sizes were analyzed; reservoir size (expressed as a fraction of mean annual inflow to the reservoir in energy) varies between 0 (run of river plant) to 1 (substantial regulation capacity). Results are shown in the next chapters.

5.3.1 GUAVIO RIVER

The Table A6.18 and Figure A6.13 show results for Guavio River. Firm energy has been normalized dividing actual firm energy by the sum of mean energy for Guavio River and Jepirachi.

FIRM ENERGY FOR GUAVIO AND JEPIRACHI IN ISOLATED AND JOINT OPERATION Firm Energy/Mean Energy							
	Reservoir volume expressed as a fraction of mean energy inflow to Guavio						
	0	0.2	0.4	0.6	0.8	1	
Guavio River (isolated)	0.064	0.334	0.451	0.481	0.507	0.514	
Jepirachi (isolated)	0.089	0.089	0.089	0.089	0.089	0.089	
Guavio River + Jepirachi in isolated operation	0.153	0.423	0.540	0.570	0.596	0.602	
Guavio River + Jepirachi in joint operation	0.212	0.709	0.860	0.908	0.935	0.962	

Table A6.18. Firm energy for Guavio and Jepirachi in isolated and joint operation

Figure A6.13. Firm energy for Guavio and Jepirachi in isolated and joint operation

The substantial increment in firm energy when joint operation is considered can be seen both in the Table and the Figure. This is due to the fact that critical periods for Guavio River do not coincide with Jepirachi generation during the same period. Next Figures, showing reservoir operation both in isolated and joint operation, illustrate this fact. The Figure A6.14, corresponding to a reservoir size of .2, shows that in isolated operation the reservoir is emptied during the "El Niño" occurrence of April 1997 – May 1998, while in joint operation the reservoir is emptied in April 2001. The "El Niño occurrence of April 1997 – April 1998 is balanced with large generation in Jepirachi power plant, showing the complementarity of river discharges in Guavio River and wind generation in Jepirachi power plant. The Figure A6.15, corresponding to a reservoir size of .5, illustrate the same effect.

Figure A6.14. Guavio River reservoir operation with the reservoir size .2

Figure A6.15. Guavio River reservoir operation with the reservoir size .5

5.3.2 NARE RIVER

Next Tables and Graphs show same results for Nare River as those shown for Guavio River. It can be seen the similarity of results with those for Guavio River.

FIRM ENERGY FOR NARE AND JEPIRACHI IN ISOLATED AND JOINT OPERATION Firm Energy/Mean Energy							
	Reservoir volume expressed as a fraction of mean energy inflow to Nare						
	0	0.2	0.4	0.6	0.8	1	
Nare River(isolated)	0.179	0.369	0.435	0.459	0.471	0.480	
Jepirachi (isolated)	0.089	0.089	0.089	0.089	0.089	0.089	
Nare River + Jepirachi in isolated operation	0.268	0.458	0.524	0.548	0.560	0.569	
Nare River + Jepirachi in joint operation	0.410	0.811	0.943	0.972	0.994	1.009	

Table A6.19. Firm energy for Nare and Jepirachi in isolated and joint operation

Figure A6.16. Firm energy for Nare and Jepirachi in isolated and joint operation

Figure A6.17. Guavio River reservoir operation with the reservoir size .2

Figure A6.18. Guavio River reservoir operation with the reservoir size .5

5.3.3 CAUCA RIVER

The next Tables and Figures show same results for CaucaRiver as those shown for Guavio and Nare River. Once again, one can easily see the similarity of results with those for Guavio and Nare Rivers.

 Table A6.20. Firm energy for Cauca and Jepirachi in isolated and joint operation

FIRM ENERGY FOR CAUCA AND JEPIRACHI IN ISOLATED AND JOINT OPERATION Firm Energy/Mean Energy							
	Reservoir volume expressed as a fraction of mean energy inflow to Cauca						
	0	0.2	0.4	0.6	0.8	1	
Cauca River (isolated)	0.146	0.381	0.417	0.443	0.466	0.489	
Jepirachi (isolated)	0.089	0.089	0.089	0.089	0.089	0.089	
Cauca River + Jepirachi in isolated operation	0.234	0.470	0.506	0.532	0.555	0.578	
Cauca River + Jepirachi in joint operation	0.346	0.824	0.903	0.922	0.941	0.957	

Figure A6.19. Firm energy for Cauca and Jepirachi in isolated and joint operation

Figure A6.20. Cauca River reservoir operation with the reservoir size .2

Figure A6.21. Cauca River reservoir operation with the reservoir size .5

5.3.4 MAGDALENA RIVER

The next Tables and Figures show same results for Magdalena River as those shown for Guavio River. It can be seen the similarity of results with those for Guavio River.

Table A6.21. Firm energy for Magdalena and Jepirachi in isolated and joint operation

FIRM ENERGY FOR MAGDALENA AND JEPIRACHI IN ISOLATED AND JOINT OPERATION Firm Energy/Mean Energy							
	Reservoir volume expressed as a fraction of mean energy inflow to Magdalena						
Magdalena River (isolated)	0.082	0.354	0.429	0.447	0.465	0.484	
Jepirachi (isolated)	0.089	0.089	0.089	0.089	0.089	0.089	
Magdalena River + Jepirachi in isolated operation	0.170	0.442	0.518	0.536	0.554	0.572	
Magdalena River + Jepirachi in joint operation	0.350	0.770	0.869	0.910	0.929	0.948	

Figure A6.23. Magdalena River reservoir operation with the reservoir size .2

Figure A6.24. Magdalena River reservoir operation with the reservoir size .5

