III – Low Carbon Scenario for LULUCF

Brazil GHG Emissions Profile

Low Carbon Scenario

1. Drastically reduce Deforestation

- Act on Primary Causes: reduce need for new land
 Free-up land for crop expansion by increasing low productivity of livestock
- 2. Complementary Forest Protection :

Protect against illegal cuts

2. Large Sequestration Opportunities

1. Forest Recovery up to full Legal Reserves compliance

2. Plantations for Renewable Charcoal for Steel Industry

Capture of up to 1/3 of current emissions from deforestation

Trade-off between Legal Compliance and Risk of Carbon Leakage

More sequestration but *less land* remains available for crop expansion and therefore risk of more pressure to deforest elsewhere

Large Sequestration Potential

Eucalyptus plantations Carbon sequestration rates (tCO2/ha/year)

APP (Riparian forests)

"Reduce Need for New Land" : A Challenge

Low Carbon Scenario:

certain mitigation options requires additional land Shock 1: Absorption of excess land demand in reference scenario

 \rightarrow requires to free 16.8 million Ha additional land

Shock 2: Elimination of non-renewable charcoal by 2017 and increase participation of renewable plantations for charcoal to reach 46% for steel production → requires 2.7 million Ha additional land

Shock 3: Expansion of Sugar Cane for Brazil to supply 15% of the ethanol required for a Mix of 20% of ethanol in world gasoline

 \rightarrow requires 6.4 million Ha additional land

<u>Shock 4:</u> Recovering of the environmental liabilities of legal forests,

→ requires to free 44.3 million Ha additional land

Combined effects : + 70 million Ha to be absorbed

Increase Productivity of Livestock to free-up land for expansion of other activities to avoid deforestation

- Complete cycle degraded pastures
- Complete cycle extensive pastures
- Extensive cow-calf + growing w/ supplementation + finishing on Integrated Crop-Livestock
- Extensive cow-calf + growing w/ supplementation + finishing in feedlot

SISTEMA AGROSSILVIPASTORIL

Ótima opção para parte da fazenda

Segundo Ano Eucalipto + Soja

Terceiro ao Décimo Ano Eucalipto – Pastagem - Animal

Terceiro Ano

Pastagem

Reference and Low carbon Scenarios Summarized Results – BRAZIL (Million of Hectares)

Land use Reference Scenario

Low Carbon Scenario

more reforestation, more bio-energy triggers more efforts to free-up pasture

Alternatives for mitigation of GHG emissions

- Improvement of forage quality
- Genetic improvement of the cattle herd
- Expansion of the feedlot sector
- Recovery of degraded pastures
- Adoption of integrated systems (Crop-Livestock, Crop-Livestock-Trees)

- Increased stocking rates
- Decreased demand for grazing lands
- Improvement of performance indices
- Decreased age at slaughter
- Decrease in cow herd size needed to supply calves
- Decrease in greenhouse gas emissions

Projected growth of Livestock GHG emissions

Greenhouse Gases (GHGs) Emissions from Agricultural Systems

II. Emissions from fossil fuels

I. Soil Emissions

- N₂O Fertilizer, crop residues and soil C losses (N₂O from soil N mineralization)
- **CH**₄ Biomass burning and waterlogged rice

CO₂eq – Based on the GHGs generated from diesel oil combustion to produce the energy required for field operations (fertilization, disc plough, seeding...).

Zero Tillage

Projected growth of Agriculture GHG Emissions

GHG emissions balance

Reference

Low Carbon

Reduction of Deforestation:

(-68%) compared to the Reference Scenario2010-2030

(-83%) in the Amazon Region compared to the historical average 1996-2005

Low Carbon Scenario

Projections 2008-2030

Accommodation of marginal expansion of crops → sharp drop, but effort to be renewed every year

PAUSE: Q&A AND DEBATE

3) What Constrains are there (Institutions, Capacity, Finance) ?

4) Are there Trade-offs ?

IV – Economic Analysis -

To inform the Decision Process

Inform the Decision Making Process

Key questions	Example: Cogeneration from Sugarcane
Is there a low carbon option ?	Extracting condensing turbine, 90 bars
What is the mitigation potential ?	158 MtCO2e (7.5MtCO2/year)
Does it make sense economically from a planning perspective ?	YES: Marginal Abat. Cost = - \$ 105 /tCO2 (8% social discount rate)
Would it happen spontaneously ? Break-Even Carbon Price = +\$8/tCO2	NO: Sector Expected IRR is 18% > 8% Incentive required = + \$ 8 /tCO2
How much financing needed ?	Additional investment = + \$ 35 billion (+\$1.6 bi /year)

Social Costs and Private Cost of Mitigation Options for

More Productive Livestock Systems:

- →are more capital intensive
- \rightarrow require financing
- →induce additional financial costs
- → request higher IRR than 8% social discount rate
- \rightarrow require incentive

(Break-even Carbon Price)

Marginal Abatement Cost / Break-Even Carbon Price Curves

Additional Financing is needed

• For Incentive (to finance Break-Even Carbon Price)

• For Investment

Average Investment needed: U\$ 22 billion additional per year (U\$5bi/y for LULUCF)

(National Investment = U\$ 250 bi/year, FDI = U\$ 30 bi/year)

Not exorbitant, however new instruments are required

PAUSE: Q&A AND DEBATE

5) What Opportunities are there for the WBG to engage ?