IGCC

(Integrated Gasification Combined Cycle) Technology Overview

Presentation to World Bank February 22, 2007 Washington DC

Dr. Tan-Ping Chen Sr. Vice President, Energy Technology Nexant, Inc. San Francisco

> Phone: 415-369-1077 tpchen@nexant.com

Presentation Outline

- Brief Introduction of Nexant
- IGCC Technology Background
- Comparison of Performance, Cost, and Emission with Other Generation Technologies
- Potential Technical Advancements for IGCC Plants
- Expansion of IGCC for Poly-Generation
- Barriers of Using IGCC in India and China
- Conclusions

ပ Nexant

Brief Introduction of Nexant

Dr. Tan-Ping Chen Nexant, Inc.

What is Nexant?

- Used to be Bechtel Technology & Consulting, spun off in Jan. 2000; Bechtel has US\$17 billion annual sale
- Bechtel is the majority owner; other investors include Morgan Stanley, Mitsubishi Capital, IBM, First Technology
- Headquarter in San Francisco with offices in London, DC, and White Plains (NY), Mesa (AZ), Denver, Houston, LA
- Started with 150 people, grew to 250 by acquisition
- Main business: consulting & technology development services in energy area
- 7 business lines: Energy Technology, Energy Management, Electric Power, Oil and Gas, Chemicals, ChemSystems Online, Energy Solutions

Energy Technology Business Line

Type of Work

- Project feasibility/planning studies
- Engineering & construction of pilot units and demonstration plants
- Owner's engineer for commercial plants
- Technology survey
- Technology investment due diligence
- Market study
- Lender's engineer
- Arbitration

6 Nexant

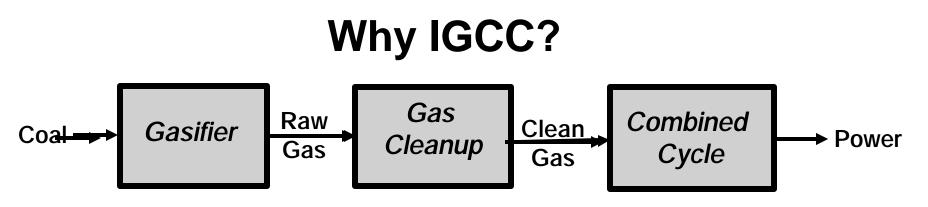
 Technology Development

Technologies

- Gasification to make power, SNG, hydrogen, methanol, ethanol, DME, MTO, ammonia, and other chemicals
- Direct and indirect coal liquefaction
- Biomass and garbage conversion
- Gas turbine, combined cycle, reciprocating engines
- PC, FBC, cogeneration
- Emission controls
- CO2 capture from syngas and flue gas
- Hydrogen, fuel cells, distributed power generation
- Solar power
- Oil shale, tar sands
- Waste coal utilization

Clients

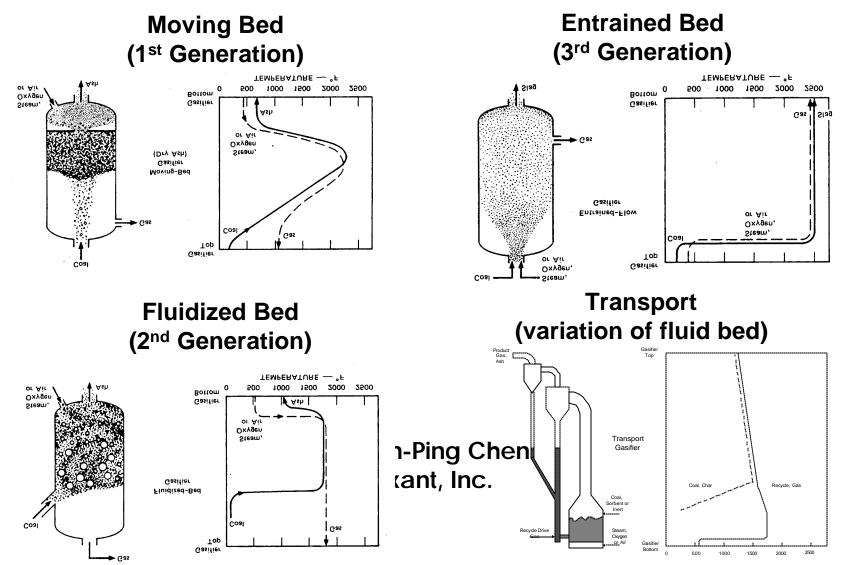
- UNDP, UNIDO, GEF
- ADB
- USAID
- USTDA
- USDOE
- NEDO
- EPRI
- Private electric/gas utilities (Virginia Power, Baltimore G&E, Tokyo Electric, SCE, etc)
- Private oil/gas/chemical companies (Shell, Chevron, BP, DuPont, etc)
- Technology developers (Alstom, GE, RTI, etc)
- Investors, IPP


Gasification Experience

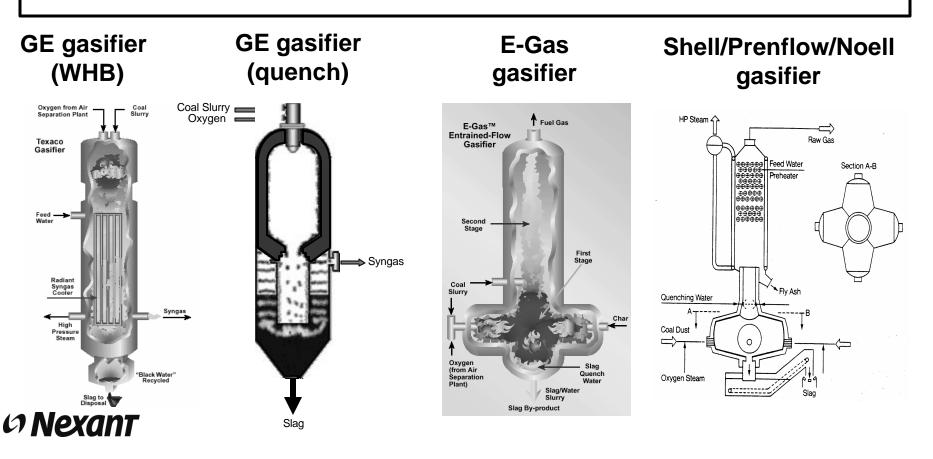
- Built 100 MW Cool Water IGCC demonstration plant
- Built 1300 tpd coal to chemicals (methanol, acetic acid, and acid anhydride) plant for Eastman
- Built 250 MW IGCC plant at Tampa Electric in Florida
- Built LuNan 500 tpd coal to ammonia plant
- Conducted Shanghai Wujing tri-generation feasibility study under USTDA funding
- Owner's engineer for US\$650 million clean coal project for USDOE and WMPI to co-produce FT liquid and electricity
- Owner's engineer to Reliance for a \$2 billion coke gasification plant in India
- Conducting \$2 million India IGCC study for NTPC under USAID funding
- Conducting \$0.55 million polygeneration feasibility study for HITS in Shenyang under USTDA funding
- Conducting a coal-to-liquid study in Mongolia for QGX
- Conducted more than 130 other gasification feasibility studies

IGCC Technology Background

:

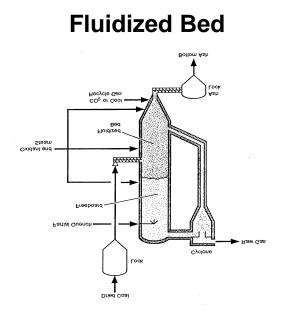


- High efficiency: due to CC; GT steadily increases efficiency
- Young Technology: amply room for advancements & improveme
- GHG reduction:
 - by high efficiency
 - Low syngas volume (15-20% of PC flue gas) to facilitate CO_2 capture
- Low SOx and NOx :
 - H₂S is much easier to remove than SO₂
 - Pollution control is easier for: gas firing: lean burner, steam injection, SCR
- Low water consumption: 2/3 power from GT


ပ Nexant

Major Types of Coal Gasifiers

Entrained Bed Gasifier


- Most commercial gasifiers are this type
- Very high temperature to provide good carbon conversion for any grade of coal
- Heavy metals in ash can be encapsulated in glass-like slag
- Slurry feed type (GE, E-Gas) and dry feed type (Shell, Prenflow, Noell)
- Hot syngas from GE gasifier can be cooled not only by WHB but also water quench

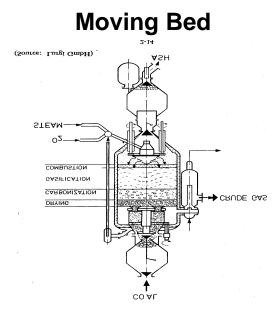
Other Types of Gasifiers

Transport

Product Gas,

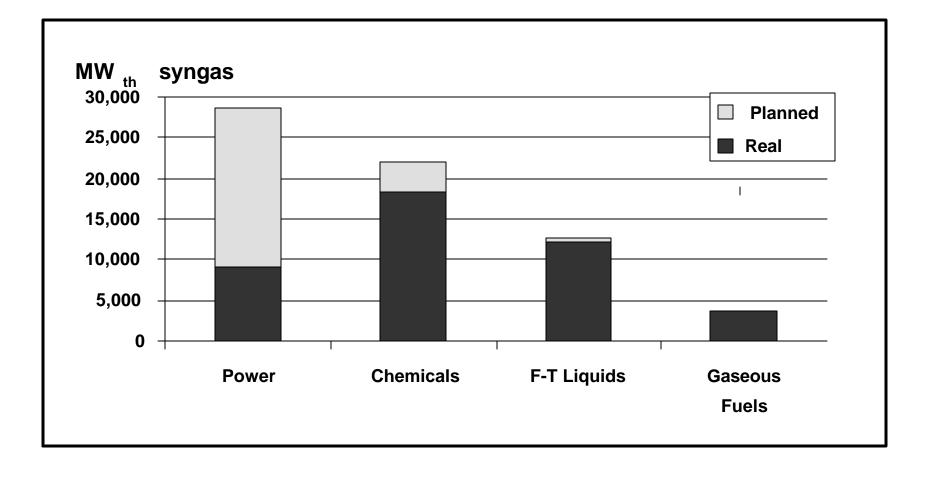
- U-Gas gasifier (developing)
- HT Winkler gasifier (commercial, RWE idle)
- No slagging
- Medium oxidant use
- Medium cold gas efficiency
- Good for high ash, high
 O Nexativity coals

Recycle Drive


- No slagging
- Medium oxidant use

Coal

Sorbent or

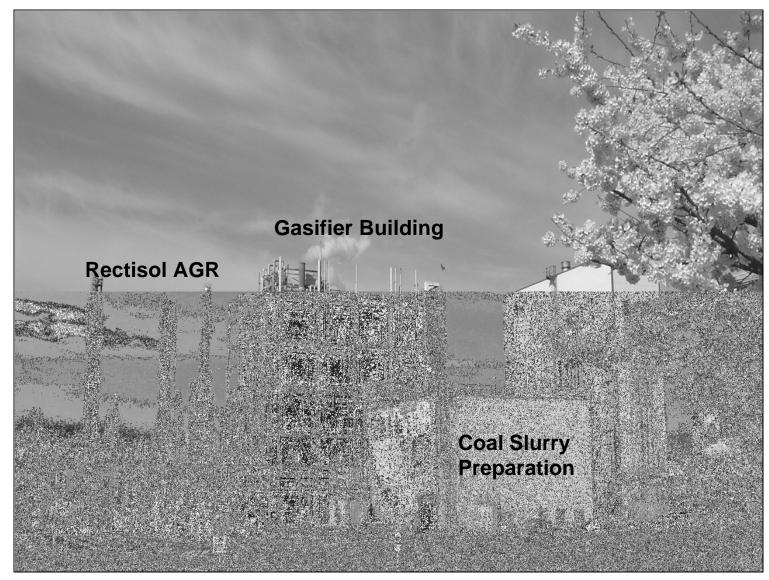

Steam, Oxyger

- Medium cold gas efficiency
- High throughput
- Good for high ash, high reactivity coal

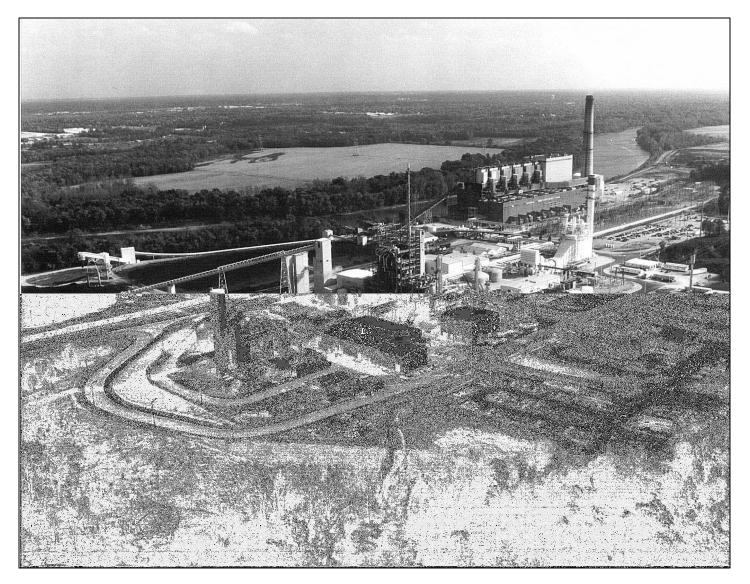


- Lurgi gasifier (commercial)
- No slagging
- Low oxidant use
- High cold gas efficiency
- Require lump coal
- Require non-caking coal, high steam use
- Liquid products Issues

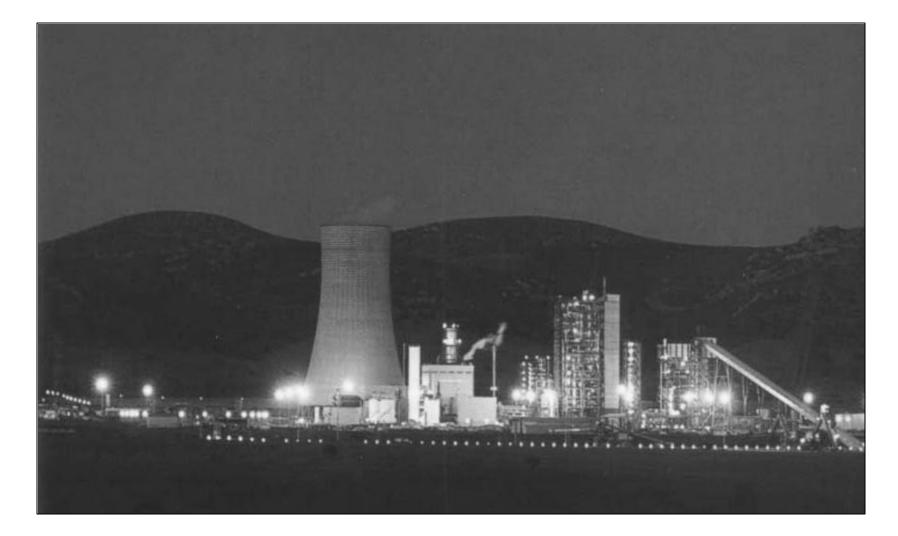
Gasification Capacity by Applications



Tampa Electric 250 MW IGCC Plant



Eastman Coal to Chemicals Plant



Wabash 250 MW IGCC Plant

Puertollano 310 MW IGCC Plant

6 Nexant

Coal Based IGCC Plants

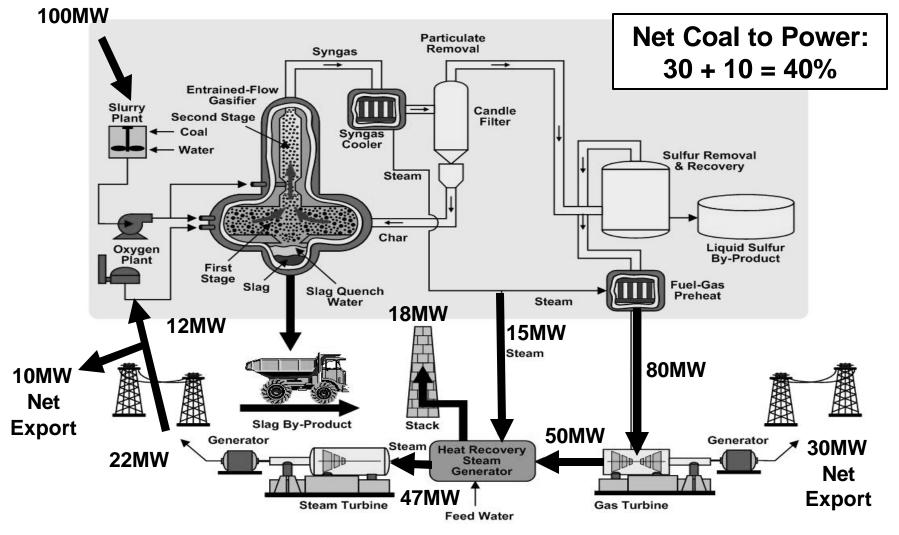
Project/ Location	Combustion Turbine	Gasification Technology	Net Output MW	Start-Up Date
Wabash River, IN	GE 7 FA	Global Egas (formerly Destec)	262	Oct 1995
Tampa Electric, FL	GE 7 F	GE (formerly Texaco)	250	Sept 1996
Demkolec (now Nuon), Buggenum Netherlands	Siemens V 94.2	Shell	253	Jan 1994
ELCOGAS Puertollano Spain	Siemens V 94.3	Krupp-Uhde Prenflo	310	Dec 1997

6 Nexant

Many Gasification Projects in Planning in North America

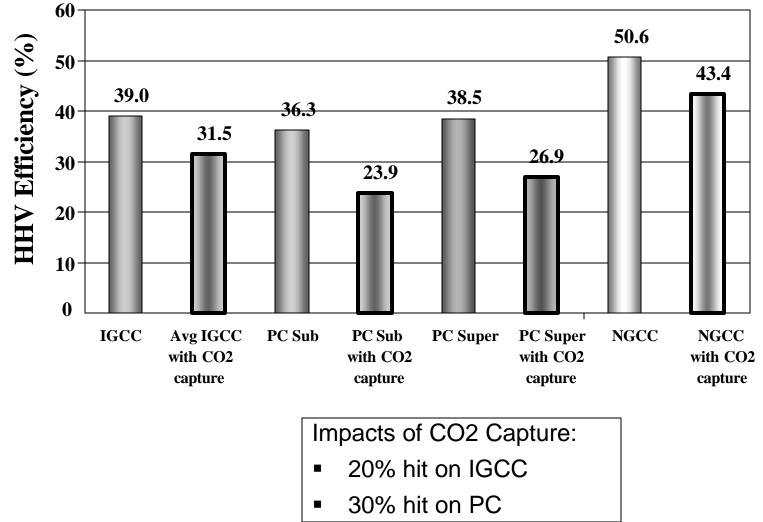
- American Electric Power Agrium/Blue Sky AK
- Baard Generation OH
- BP/Edison Mission CA
- Cash Creek Generation KY
- Clean Coal Power IL
- DKRW WY
- Duke/Cinergy IN
- Energy Northwest WA
- Erora Group IL
- Excelsior Energy MN
- First Energy/Consol OH
- Leucadia National LA
- Madison Power IL

- Madison Power IL
- Mountain Energy ID
- NRG Energy DL
- Orlando Util/Southern FL
- Otter Creek MT
- Power Holdings IL
- Rentech MS
- Royster Clark/Rentech IL
- Southeast Idaho ID
- Steelhead Energy IL
- Synfuel OK
- Tampa Electric
- WMPI PA
- Xcel Energy CO

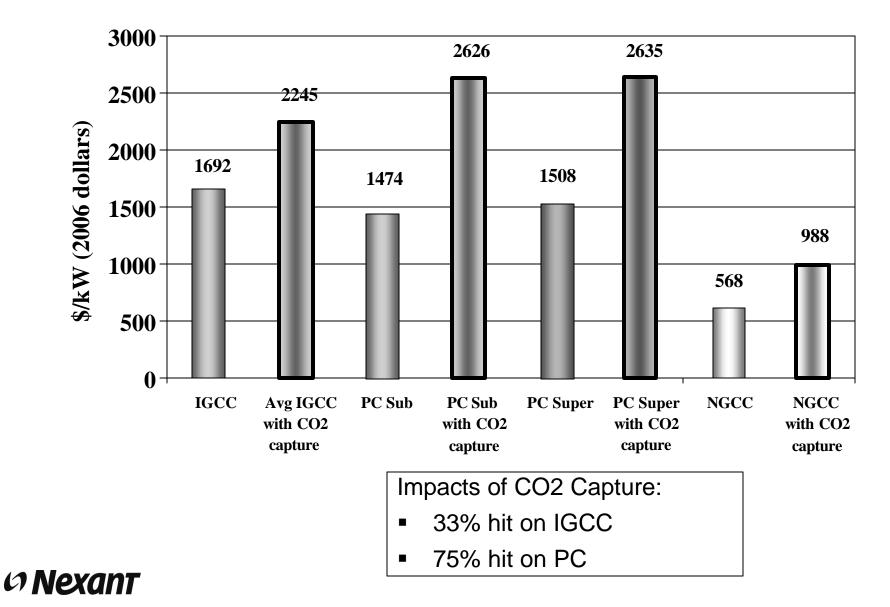

Nexant Most projects are for power, but also SNG and liquid fuels; Many also use petcoke; Many projects also in other countries

Comparison of Performance, Cost, and Emissions with Other Generation Technologies

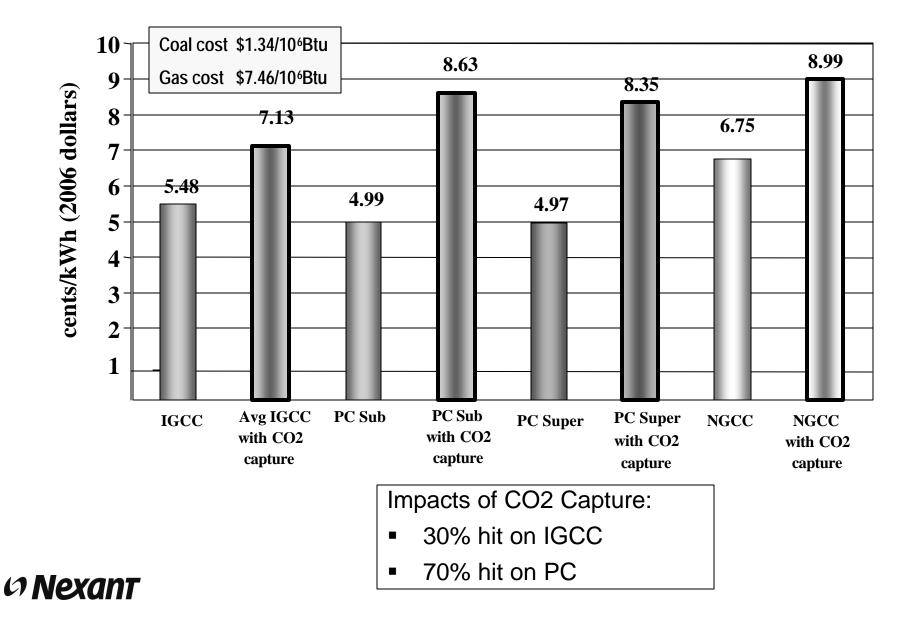
Dr. Tan-Ping Chen Nexant, Inc.

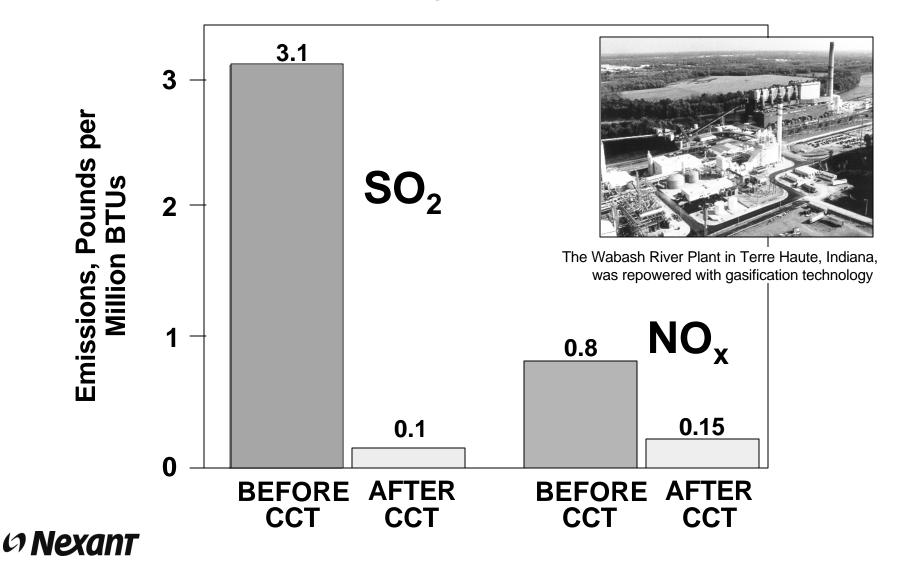


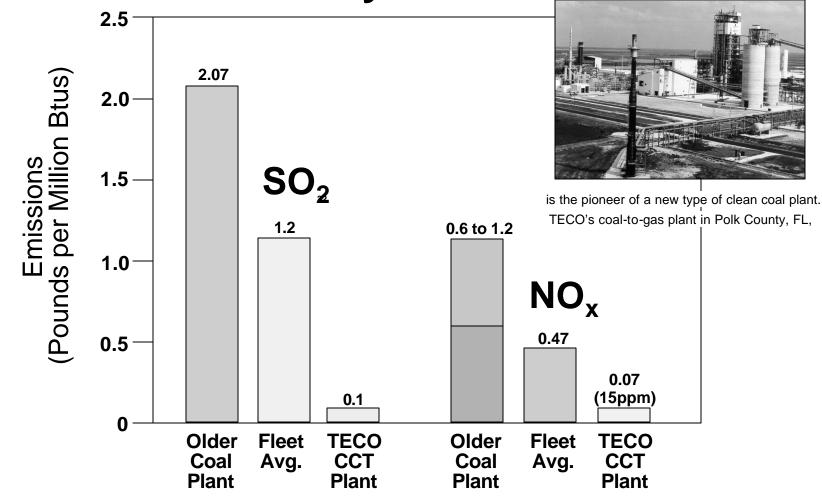
IGCC Plant Energy Flow & Efficiency



Ο Nexant


COMPARISON OF EFFICIENCY


COMPARISON OF CAPITAL COST


COMPARISON OF GENERATION COST

Wabash River Clean Coal Project A Case Study for Cleaner Air

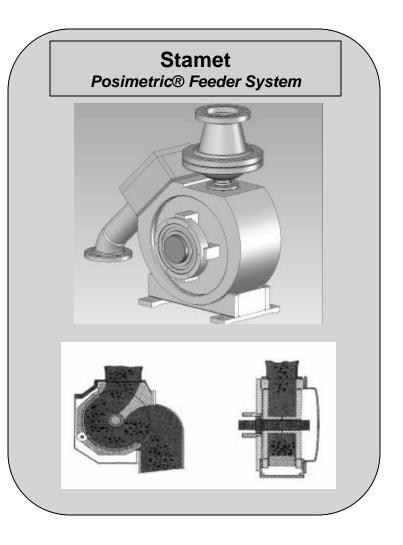
Tampa Electric (TECO) Clean Coal Project A Case Study for Cleaner Air

Plant Availability

PC (commercial record):

- 90-95%

- IGCC (maximum achieved):
 - Tampa Electric: 81%
 - Wabash: 85%
 - Puertollano: 75%
 - Buggenum: 86%

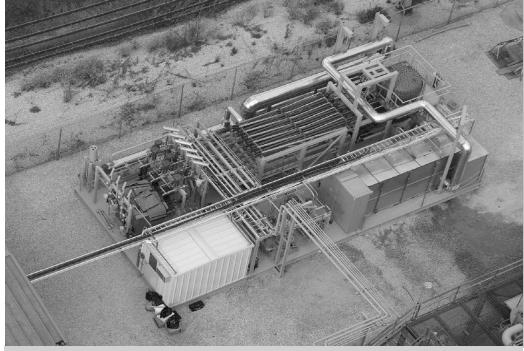

Potential Technical Advancements for IGCC Plants

Dr. Tan-Ping Chen Nexant, Inc.

Dry Solids Pump for High Pressure Coal Feed to Gasifier

- Principle:
 - Uses pulverized coal under mechanical pressure to maintain high pressure seal to gasifier
- Benefit:
 - Reduce heat penalties with slurry feed and highmoisture (western) low-rank coals
 - 0.2-1% plant efficiency increase
- **Nexant**0-100/kW capital cost reduction

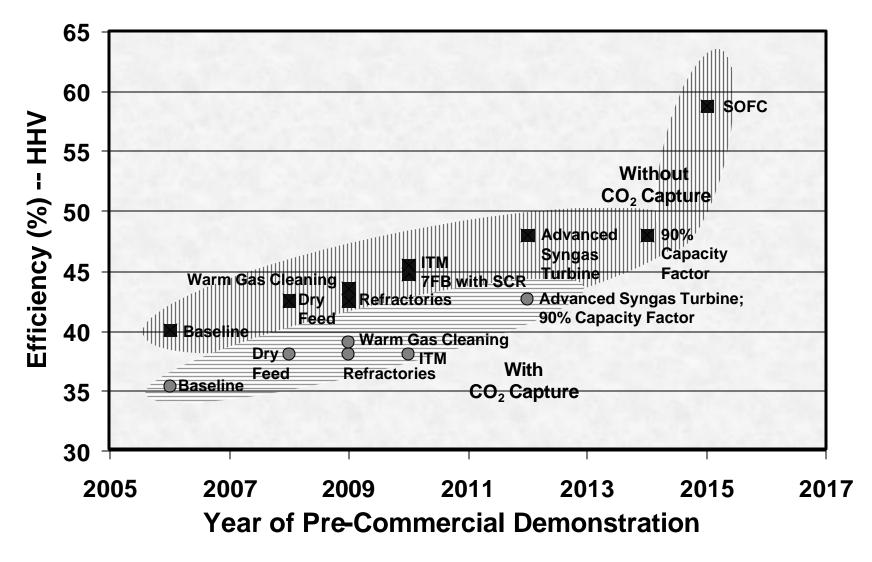
RTI Warm Gas Cleanup


- Sulfur removal @ 800-900 °F by attrition-free solid sorbent
- PDU tests at Eastman confirmed sulfur removal down to 5 ppmv
- Comparison with cold gas cleanup:

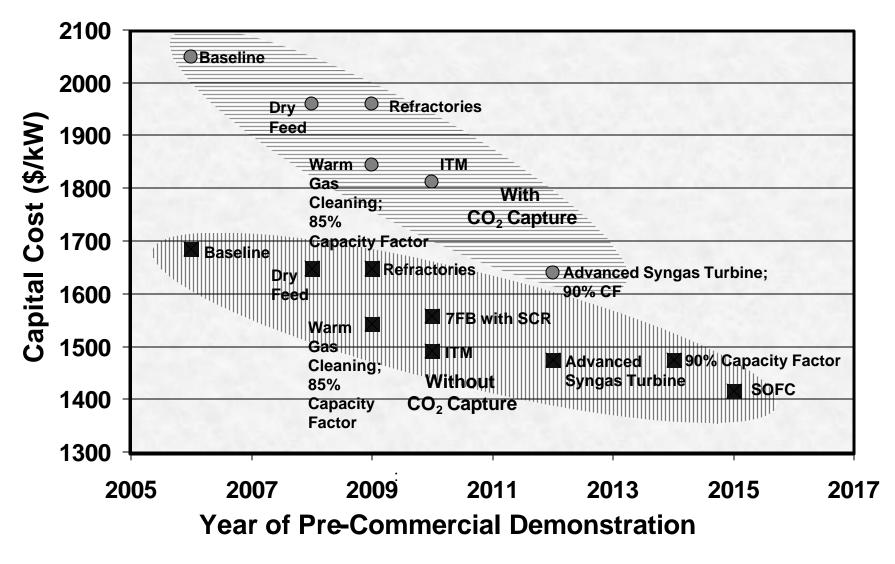
	MDEA	Rectisol	WGC		
Gasification	67.6	67.6	67.6		
Low Temp Gas Coolin	g 12.3	12.3	0		
Sulfur Removal and Recovery	48.2	77.3	43.1		
Balance of Plant	246.1	260.6	234.5		
Total Cost (\$ MM)	374.2	417.8	345.2		
Sevinge SM	VI (29.0)	(72.6)	reference		
Savings\$/kV	V \$114	\$279	reference		
COS Hydrolysis Need	ed Yes	No	No		
Residual Sulfur, ppmv	50-100	<1	<5		
Nexant					

ITM (Ionic Transport Membrane) Air Separation

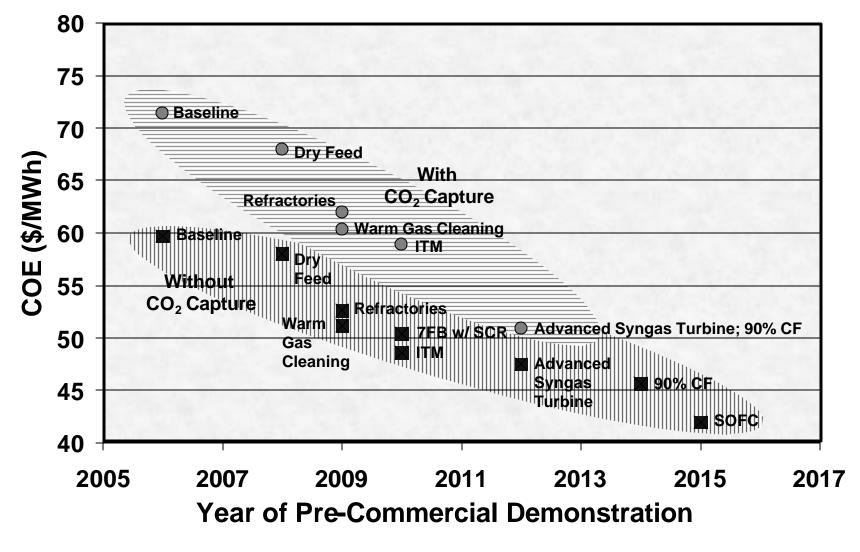
- Oxygen ionized to transport through ceramic membrane at 1800 °F for separation from air stream
- Tested at Sparrows Point in January 2006 produced >95% purity oxygen
- Oxygen plant cost and power consumption are reduced more than 35%
- IGCC plant efficiency is reduced by 2% and cost reduced by 7%



Subscale engineering prototype ITM test unit at APCI's Sparrows Point gas plant

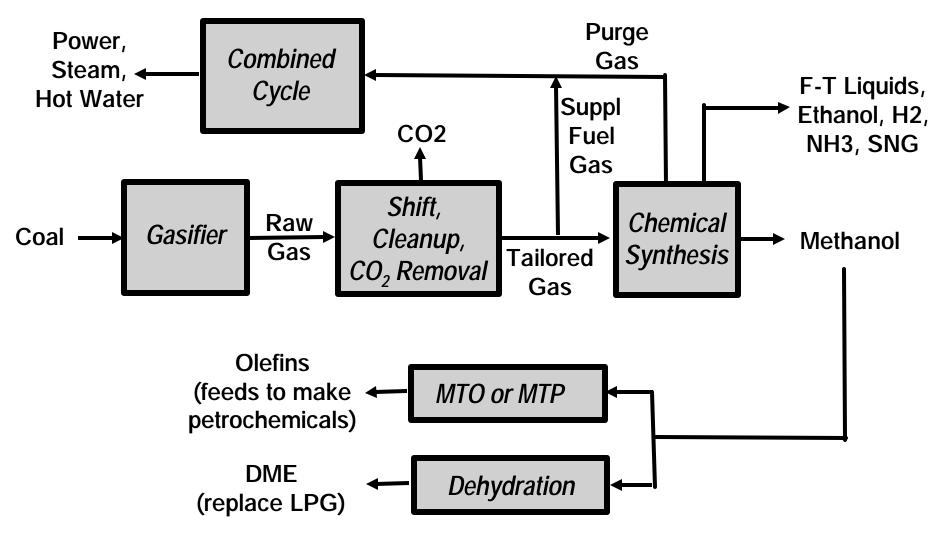

FY06 – 5 TPD test module FY08 – 150 TPD test module FY09 - Offer commercial modules

ပ Nexant


Efficiency Timeline

Capital Cost Timeline

Cost Of Electricity (COE) Timeline



Expansion of IGCC to Polygeneration

:

Poly-Generation

Reasons for Poly-Generation

- Too many ways to produce power from coal & other energy sources (PC, CFBC, nuclear, hydro, wind, etc.)
- IGCC is too expensive now to compete for power generation; needs environmental benefits as the driver
- Power produced as byproduct; cheaper and very clean
- Coal is hydrocarbon sources; liquid fuels for transportation & petrochemicals are deal as replacement for the every more expensive petroleum
- Liquid fuels & chemicals are much higher value products than coal; solve shipping cost issue of coals in remote areas
- Has partial benefit of GHG reduction

ပ**Nexant**

Comparison of Methanol with Gasoline for Transportation

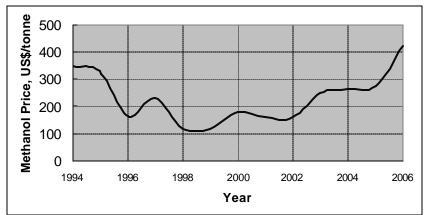
	Gasoline	Methanol
Molecular Formula	C ₇ H ₁₅	CH ₃ OH
Molecular Weight	99	32
Density	0.74	0.795
Lower Heating Value, MJ/kg	42.5	19.7
Octane Number (RON)	100	108.7
Cruise Range, km	600	450
Vehicle Exhaust Emissions, g/km		
CO	0.86-2.08	0.2-1.43
СН	0.08-0.19	0.03-0.06
NO _x	0.2-0.43	0.04-0.19
1,3 Butadiene	0.6	<0.5
Benzene	4.7	1.5
Aldehydes	2.5	5.8
Methanol		79

Methanol for Transportation Market

- Can replace both gasoline and diesel
- Vehicle engines prefer oxygenated fuels
 - Engines are more efficient due to less air intake methanol has half gasoline HHV but engines require only 30% more
 - Build-in oxygen reduces emissions over entire driving cycle
- Technical issues
 - Toxicity, Poor miscibility with gasoline, Hard to startup during cool weather, Too high a vapor pressure during the hot weather, Engine gasket corrosion
- Using additives can solve the technical issues above
- Need 1,200 million tonnes/year even at 15% blending with gasoline/diesel

၊ Nexant

Other Market Potential for Methanol


- Can cheaply dehydrate to DME for replacing LPG
- Methanol provides missing link to production of coal-based petrochemicals
 - Olefins are the basic feedstocks to produce polymers and many other petrochemicals
 - Old way is to convert coal into carbide, which then reacts with water to produce olefins (acetylene) – polluting & expensive process
- New & economic way is to convert coal-based methanol into olefins (UOP's MTO process or Lurgi's MTP process)

Methanol Market Size and Price

- Consumption: 32 million tonnes in 2005
- Methanol produced in NG rich regions @ \$60/tonne
- Very volatile market price; causes:
 - Overbuild in NG rich regions

- Much larger market for transportation fuel, household fuel, and petrochemicals; price should stabilize & key to gasoline/diesel price
- Price expected to stabilize @ \$340/tonne, corresponding to \$85/bbl gasoline/diesel (or \$60/barrel crude) adjusted by HHV difference
- China consumes 7 million tonnes methanol in 2005; new production plants being built (2/3 from coal) have capacity of 10 million tonnes
 Ø Nexant

DME & Olefin Market Sizes and Prices

DME

- LPG sale in 2005: 205 million tonnes; \$580/tonne ; \$ 120 billion
- DME HHV: 68% of LPG
- No need to change burner to switch from LPG to DME
- DME price: \$400/tonne after adjusting for HHV difference from LPG
- Olefins
 - Ethylene sale in 2005: 133 million tonnes; \$750/tonne; 100 billion
 - Propylene sale in 2005: 80 million tonnes; \$800/tonne; 65 billion

Nexantge market for methanol to grab

Barriers of Using IGCC In India and China

:

Characteristics of India Coals

- High ash content (35-45%)
 - Detrimental to entrained bed gasifier
 - Penalize IGCC more than PC
- High ash fusion temperature
 - Detrimental to entrained bed gasifier
 - Fluid bed gasifier is ideal, but no vendor support
- High reactivity
 - Entrained bed gasifier is overkill
 - Fluid bed gasifier is ideal, but no vendor support
- Low sulfur content (<0.5%)

Nexant – Less environmental driving force to use IGCC

Applications of IGCC in India

- Operated several coal gasification plants in the past
- Coal is not very ideal for IGCC
- Suited fluid bed gasifier needs development
 - Tests in US/India showed Indian coal converted well in this type of gasifier despite the high ash content
- Emission standards are not stringent in India
 - FGD is still not required for PC
- Large cost differential over PC
 - PC costs only \$700/kW
- India still plans to support a 100 MW IGCC demo
 - Potential to be competitive with technical
- advancements
 - Environmental & GHG reduction pressures

Applications of IGCC in China

- China is leading in using coal gasification; but all for chemical production; no IGCC yet
- Emission standards are not very stringent in China
 - FGD is required for PC but not well enforced
 - Emission limits of sulfur and NOx are still higher than those in developed countries
 - Emission control on mercury, arsenic, and trace pollutants are not considered at all
- Large cost differential over PC (\$700/kW)
- Power generation over built; detrimental to build IGCC
- **Nexant** Going the direction of polygeneration

Summary

:

Conclusions

- IGCC currently cannot compete with PC
 - Cost of generation is 10-15% more
 - Availability is lower (75-85% vs. 90-95%)
 - PC using super-critical steam cycle catches up in efficiency
- IGCC, however, has great commercial potential
 - Ample rooms for technical advancements, performance enhancements, and cost reduction
 - More cost effective to comply with stringent emission control
 - More cost effective for carbon capture
 - Fuel flexible can use low cost petroleum coke
 - Can co-produce transportation fuels/chemicals by polygeneration
- WB financing for IGCC projects can promote clean and carbon-free use of coal and petcoke

GE Gasifier Projects in China

????	???????	?? MPa	????/?	????	????
???????	F 2.8m 1? 1?	2.7	360	???	1993?
?????	F 2.8m 3? 1?	4.0	3×500	??	1995?
?????	F 2.8m 2? 1?	6.5	2×750	???	1996?
???????	F 2.8m 1?	2.9		??	2000?
?????	F 2.8m 2? 1?	4.0	2×500	???	2000?
??????	F 2.8m 2? 1?	4.0	2×1000	???	2005?
??????	F 2.8m 2? 1?	4.0	2×480	???	2005?
????	F 2.8m 1?	8.4		???????	2006?
?????	F 2.8m 1?	6.5	800	??	2006?
????	1?				????
??20??????	F 2.8m 2? 1?	4.0	2×450	??	????
???	F 2.8m 3? 1?	6.5	3×750	??	????

6 Nexant

Other Coal/Coke Based Gasification Plants

Gasifier	Feedstock	Project
Texaco	Coal	1,300 tpd Tennessee Eastman coal to chemicals
		1,000 tpd Lunan coal to ammonia in China
		1,000 tpd Ube coal to ammonia in Japan
		900 tpd Hefi City coal to ammonia/urea in China
	Coke	120 MW Motiva Refinery IGCC in Delaware
		600 MW Citgo Refinery IGCC in Louisiana (in engineering)
Shell	Coal	900 tpd coal to chemicals at Yingcheng, China (2004 startup)
		2,000 tpd coal for ammonia/urea at Donting, China (2004 startup)
		1,200 tpd coal for chemical at Liuzhou, China (2005 startup)
		2,000 tpd coal for chemical at Heibei, China (2005 startup)
	Coke	2,300 tpd IGCC with H2 coproduction at Paradip, India (2005 startu
		5,000 tpd IGCC at Sardinia, Italy (2006 startup)
Lurgi	Coal	16,800 tpd lignite to SNG in North Dakota
		100,000 tpd coal to liquid fuels and chemicals in South Africa
U-Gas	Coal	800 tpd Wujing trigeneration plant in Shanghai
BGL Coal		540 MW IGCC in Kentucky (2007 startup)
		541 MW IGCC in Ohio (2007 startup)

() Nexant