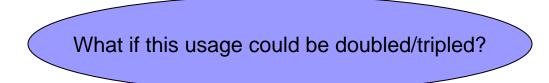
Minimum Energy Design for Industrial Processes

Presented to


WB Energy Efficiency Thematic Group Washington D C

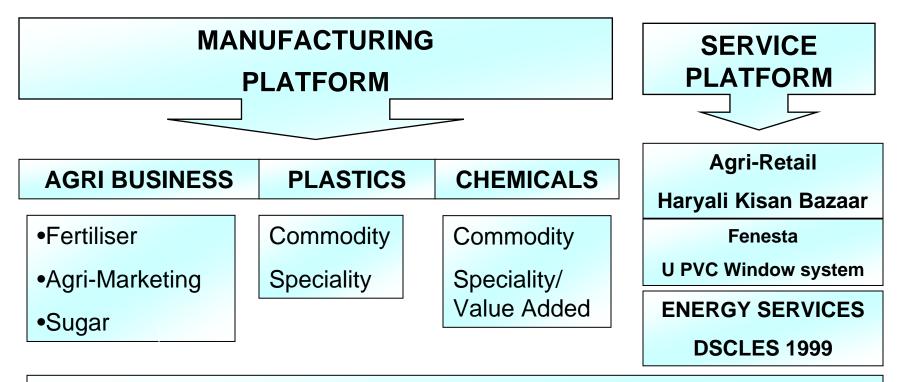
Dr. G C Datta Roy, CEO- Energy Business DSCL ENERGY SERVICES CO LTD, INDIA

August 13, 2007

To Begin with a Poser

Driving a car-only 1% is used for the job-70% is wasted in conversion & another 20% in transporting the transporter*

*Natural Capitalism-RMI 13 August 2007



Presentation Structure

- Brief introduction to the DSCL Group & DSCL Energy Services
- Minimum Energy Design-Concept
- MED-Historical perspectives
- Applications
- Case studies-Conceptual
- Case studies-Practical
- MED-Looking ahead

DSCL : Business Portfolio Rs. 3000 Crs Conglomerate

Power (>230 MW) (RE >70 MW) (Export >25 MW)

DSCLES - Overview

- Established in 1999
- Largest ESCO in India with over 40 professionals and fully networked offices in Delhi & Ahmedabad
- Energy Efficiency & Renewable Energy-over 150 Projects-net contribution of over 525 MW in India and other countries in Asia and Africa
- GHG Reduction of over 2 MNT/year

Minimum Energy Design-Concept

Energy need analysis

- □ Movement of material/mass transfer
- Heat transfer
- Energy transformation/transportation
- Computation
- Need fulfillment processes
 - □ Law of physics and chemistry
 - Bio-sciences

MED-Brief Historical Perspective

- Early research in UK and Russia in 1930s for optimization of steam distillation processes
- Flurry of activities in the 80s post publication of report on pioneering work done by B Linhoff and others on HEN & 'Pinch'
- Currently standard practice in some of the industries like refineries and petrochemicals. Very little information on action in other industries
- MED concept developing to encompass all energy related activities

MED-Applications

- Industry (Process synthesis, HEN etc)
- Buildings (LEED etc)
- Transportation (Power technologies, Ultra light material technologies)
- Computation

Minimum Energy Design-Industry

- Process synthesis
 - □ Mass exchange/transfer
 - □ Mixing
 - □ Separation
 - □ Reactions
- Synthesis of heat exchanger network (HEN)
 - Maximum heat recovery
 - Most cost effective engineering
- Synthesis of control system

Process Synthesis – An Example

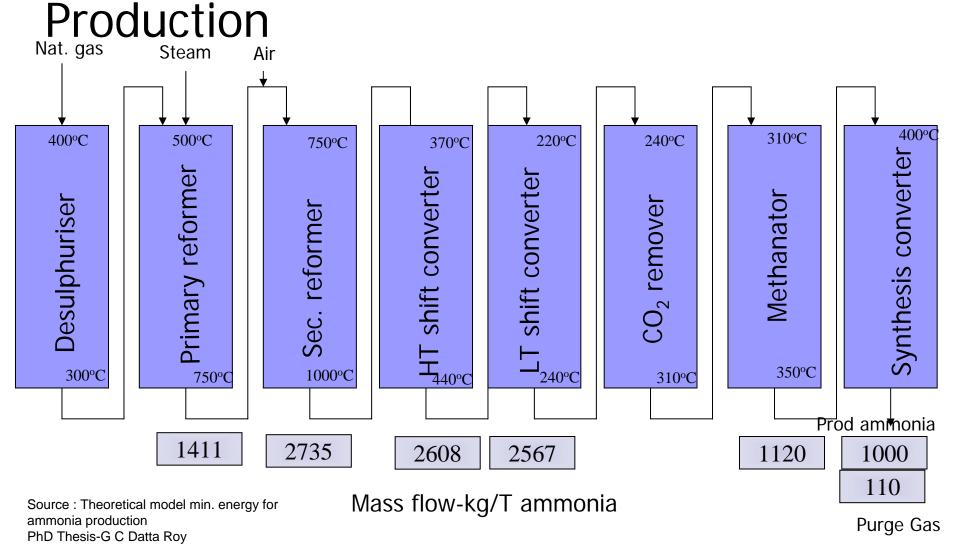
Minimum energy consumption in sugar production by cooling crystallization of concentrated raw juice M Grabowski (Warsaw University of Technology); J Klemes (University of Manchester); K Urbaniec, G Vaccari (University of Ferrera, Italy) and X. X Zhu

> The sugar manufacturing process based on cooling crystallization of concentrated raw juice is considered. Micro-filtration and softening of raw juice makes it possible to obtain white sugar by three or four stage cooling crystallization. Prior to Crystallization raw juice should be concentrated by multi stage evaporation in a pressure range below the atmospheric pressure. The preferred evaporator arrangement is backward feed. As the temperature of vapors and condensates leaving the evaporator station is low, the opportunities for heat recovery is limited. In order to save energy, vapor compression can be applied.

> > gstku@coi.pw.edu.pl

HEN

- Process cold streams
 - □ (All streams where heat is being added)
- Process hot streams
 - □ (All streams undergoing cooling)
- Cold composite curve (CCC)
- Hot composite curve (HCC)
- Grand composite curve (GCC)
- Pinch
- Heat exchange on either side of the 'Pinch' yields maximum energy savings
- Heat exchange across the 'Pinch' causes double waste



Use of 'Pinch' for audit can dramatically improve process energy efficiency

MED Conceptual Analysis-Case Study

Ammonia Process

Minimum Energy Design-NH₃

13 August 2007

SNW Heat Flow

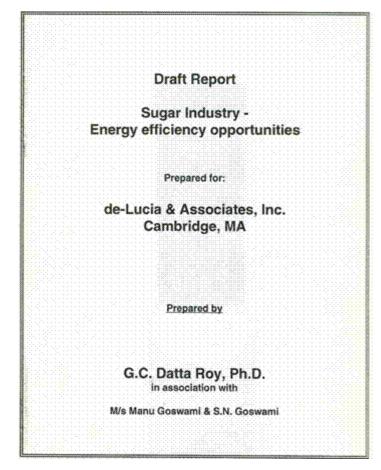
SNW No.	SNW Temp	Cp-cold stream-K Cal/C/T				SNW	Cp	hot st	oam K	K.Cal/C/T Diff.		SMAN		SNW	Cumu		
	C.	CI	C2	C3	Total	200	Hot	141	H2	нз	744	Total	rate	Der	Heat flow Th K Calit	fistive flow Th K Cal/T	roant flow
•	ø	¢	P	E.		a	м	ĩ	2	×	L	м	N	o	P	٥	R
-			•		C+D+E	111 311						I+J+K+L	M-F		N X O X 10 ³	P	
1	980 450					118 134 117	1000 470					1580	1580	530	837.4	837,4	-
8	420					154 141	440	1580				2311	2311	30	69.3	906.7	
813	400.					111 117	420					3793	3723	20	74.5	961.2	•
N	360			965	1337	411 111	370		1482			3603	2466	50	122.8	1104.0	
~	310				372	115 111	330					2213	1841	40	73.6	1177.6	
M	220				1.367	111 111	240		J		731	2213	846	90	76.1	1253.7	
VII	200	392	905		1367	111 31	220					2232	966	20	17.3	1271.0	
VIII VIII	100				1367	111 MI	120			1501		2232	065	100	86.5	1357.5	
IX	80				372	111 111	100			Ų.		2202	1960	20	39.2	1396.7	
×	300				372	111 111	50					731	356	50	17.7	1414.4	
XI	20					HI III	40					731	731	10	73	1414.4	

Energy Required for 1 MT of NH₃ Production

Heat of Combustion ⁶

5.56 million kCal/T against the then prevailing benchmark of 7.0

- Methane 13265 kCal/kg
- Ethane 12400 kCal/kg
- Mass Flow Rate
 - Methane 388.95 kg/h
 - □ Ethane 32.4 kg/h
- Energy Required
 - □ 388.95 x 13265 + 32.4 x 12400 = 5.56 million kCal/T of ammonia
- The above estimate
 - □ Includes 20% hydrogen gas loss in the process
 - Excludes energy requirement for compressors, pumps, refrigeration and utilization of 1 T of surplus steam/ ton of ammonia



Sugar Process

Specific steam consumption-White Cane Sugar Process

- Steam is required in different processes like evaporation, crystallization etc.
- MED concept was applied for determination of the minimum steam need against the then prevailing consumption of about 0.50 T/T of cane crushing (expressed as % cane).

Particulars	Unita	Case 1	Case 2	Case 3	Cazo 4	Case 5	Case 6	Case 7	Cane 8	Case
		w/o grid suppty	with grid supply	With Th.comp	With steam saving	With Power Baving	With PLC	With bagasse dryer	Extr. press. 0.9 g	Extr pres-
A. Quituple Effect : (E	NENES)									
 Live steam press. Live steam temp. Exhaust steam press. Th. comp. steam press. 	E(g) 0 E(g) 	62 450 1 8/4	02 450 1 8/A	Not read. due to very low	62 450 1 N/A	62 450 1 N/A	62 450 1 N/A	62 450 1 N/A	02 450 .9 N/A	6 45 1. N/
 Steam to heaters Yapour to heaters Steam to evaporators Steam to vac. pans Vapour to vac. pans Steam for feed heat. Total process steam Steam to Th. comp. Steam to TBY 	T/he	.00 14.63 34.51 .00 17.85 .00 34.51 .00 1.65	.00 14.03 34.48 .00 17.85 .00 34.48 .00 34.48 .00	flow thru PBV	.00 14.83 34.80 .00 17.85 .00 33.91 .00 1.05	.00 14.03 34,55 .00 17,85 .00 34.53 .00 2.77	.00 14.63 34.61 .00 17.85 .00 34.51 .00 1.65	.00 14.63 34.51 .00 17.85 .00 34.51 .00 1.65	.00 14.81 34.25 .00 17.85 .00 34.25 .00 1.77	14,6 34,7 17,8 34,7 0 34,7 0 1,5
X sleam saved Live steam load % Steam 3 power saved Internal power cons.	X T/hr X KX	0 31.84 30.32 0 3150	0 31,99 3e-47 6 3150		21.25 23.92 0 3150	0 31.74 30.12 1 3045	0 31.84 3* 2.3. 0 3150	0 31.84 3+ 32 0 3150	0 31.61 30.10 0 3150	32.0 3#5
Power to grid - Realization - Realizat - Tota							0	0	0 162.6 0	159.
- Power to grid - Realization - Realizat	result fi	rom n	nodel	for a	105 T	СН р	roces	s fact	ory	159. 159.
Power to grid Realization Total Summary 1 Live stage Ensust steam pro-	T/hr	5.90 13.72 93.90 103 17.85 .00 41.79 8.60 8.43	1.20 13.72 39.93 17.85 41.82 .00	for a	105 T	CH p		s fact	0ry	159. 159.
Power to grid Realization to Realization to Realization to Summary I Live Staat Ethnost steam pro- Th. comp. steam pro- Th. comp. steam pro- Steam to beaters Neam to beaters Steam to evaporators Steam to vac. pans Steam for feed heat. Total process steam Steam to Th. comp.	T/hr 14 14 14 14 14 14 14 14 14 14 14 14 14	1.90 13.72 35.90 00 17.85 .00 17.85 .00 41.79 .60 8.43 0 37.81	1.90 13.72 39.93 00 17.85 00 41.82 00 41.82 00 00 38.80	1,00 13,72 32,83 60 17,85 .00 34,73 5,00 1,87 0 36,25	1.90 13.72 39.66 .00 17.85 .00 40.94 .00 8.08 2 37.11	1,90 13,72 39,90 17,85 00 41,73 .00 16,03 0 37,59	N/A 1.90 13.72 32.90 17.85 .00 41.73 .00 8.93 0 37.81	s fact	152-6 OTY 62 450 -8 N/A 1.89 43:70 29.64 13:70 29.64 17.85 -00 17.85 -00 41.53 -00 9.05 -00 37.57	159. 159. 159. 159. 159. 159. 159. 159.
Power to grid Realization to Realization to Realization to Summary of Live steam pro- Th comp. steam pro- Th comp. steam pro- Steam to beaters Vapour 1D heaters Steam to vac. pans Vapour to vac. pans Vapour to vac. pans Steam to vac. pans Steam to vac. pans Steam to vac. pans Steam to rece beat. Total process steam Steam to Thy Steam to Thy	T/he 11 11 11 11 11 11 11 11 11 11 11 11 11	5.90 13.72 39.90 00 17.85 .00 41.79 60 8.93	1.00 13.72 39.93 00 17.85 00 41.82 00 .00 0	1,50 13,72 32,83 .00 17,85 .00 34,73 5,00 1,87	1.90 13.72 39.68 .00 17.85 .00 40.94 40.94 .00 8.08	1:90 19:72 39:90 17:85 .00 41:73 00 10:03	N/A 1.90 13.72 32.90 17.85 .00 41.73 .00 41.73 .00 .00 .00 .00 .00 .00 .00 .0	1 85 fact 1 87A 1-30 13.72 39.90 17.85 1.00 41.79 8.93 0 8.93	162-6 OTY 450 .9 N/A 1.89 43.70 39.64 .00 17.85 .00 41.53 .00 9.05	159. 159. 45 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

be

Recent development-2006-07

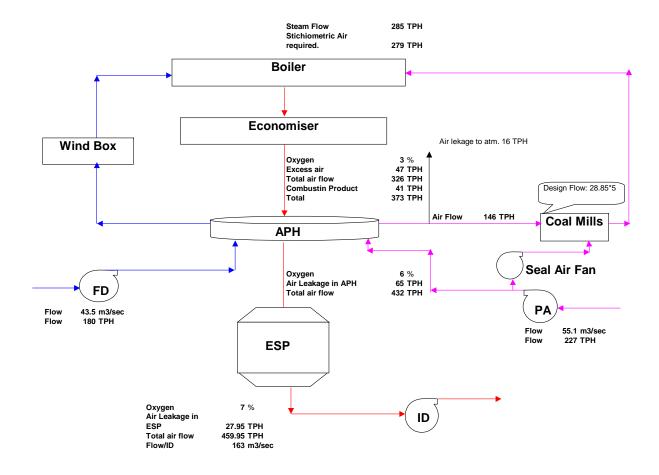
- Two factories have achieved steam consumption close to calculated figures
 - □ GMR Sugar, AP-35% on cane
 - □ DSCL Sugar, Ajbapur-38% on cane
- Recent proposal from a sugar consultant-32% on cane
- Bulk of the 400 factories still operating at 45 to 50% on cane

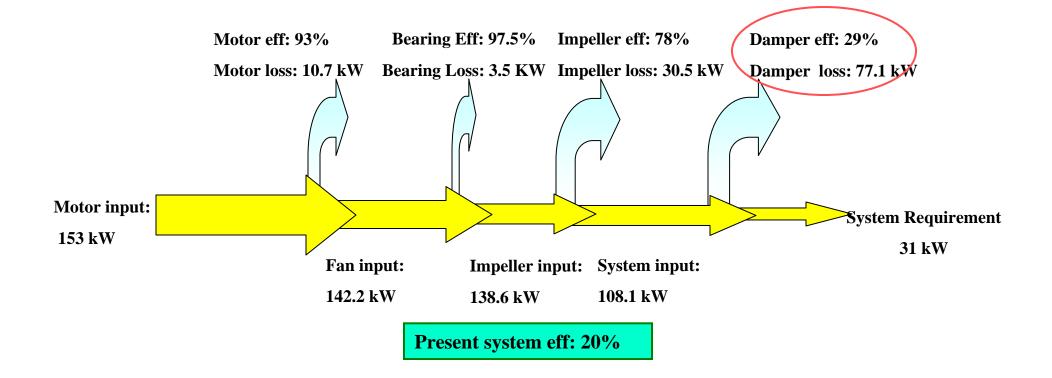
Conclusion

- 40 to 50% savings can be achieved by application of MED in many types of process industry
- In India, Sugar industry alone can save about 7.5 million T of bagasse-power generation from the same would result in GHG saving of over 5 million T/year
- Newer application of MED likely to result in revolutionary changes in the energy-scope in the industries

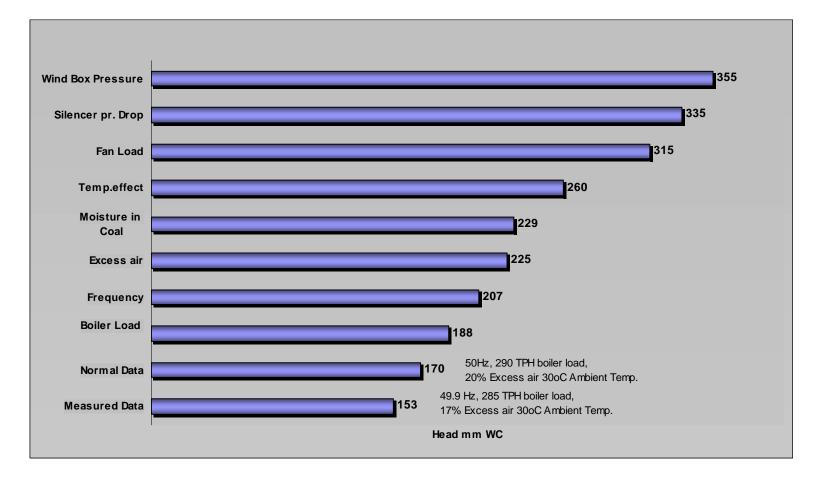
MED Retrofit Applications

Retrofit Methodologies-Comparative Evaluation

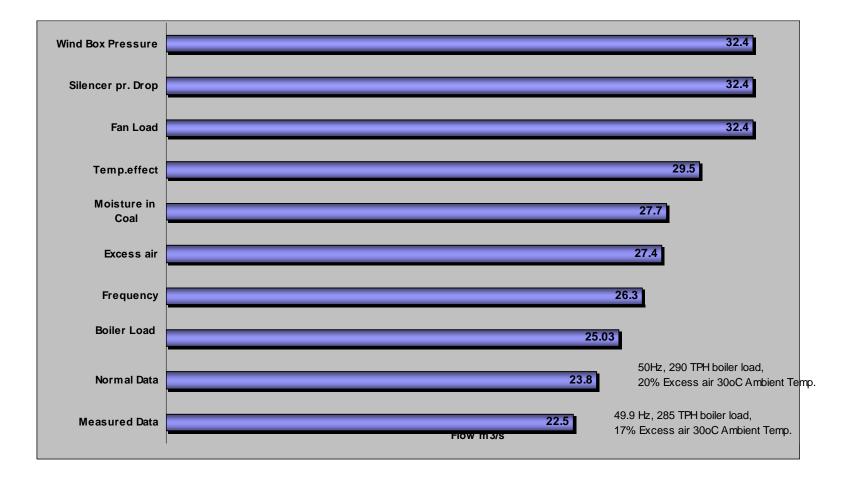

Methodology	Guiding Principle
Conventional energy audit	Mainly evaluation of efficiency of the existing operating system, used only for retrofit
Benchmarking	Comparing against the existing best-Gap analysis-Project design
MED	Challenging the existing best and setting new targets based on fundamentals. Can be used for new design as well as retrofit


Power Plant

Boiler Auxiliary – Gas Balance



Sankey of FD Fan – Present System

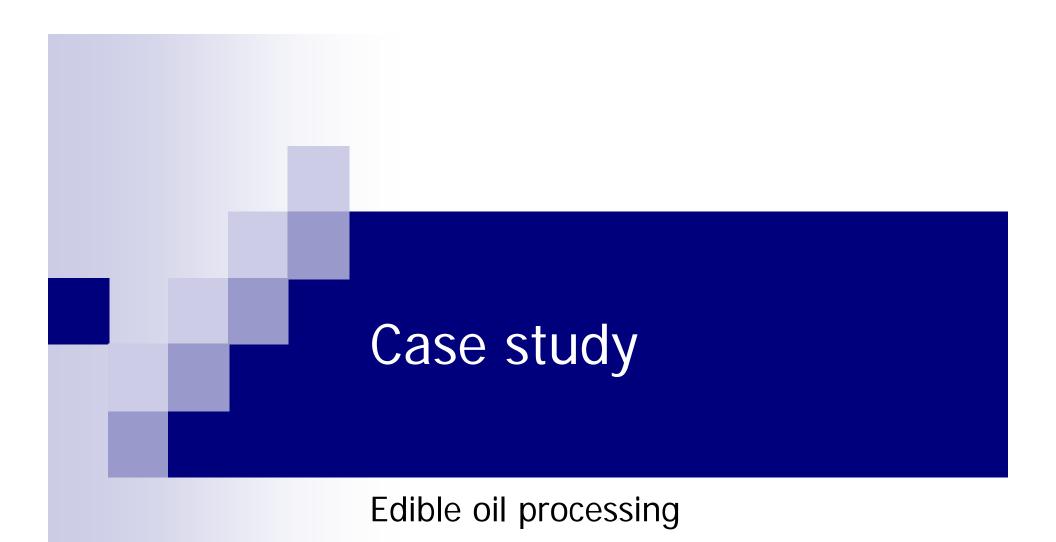


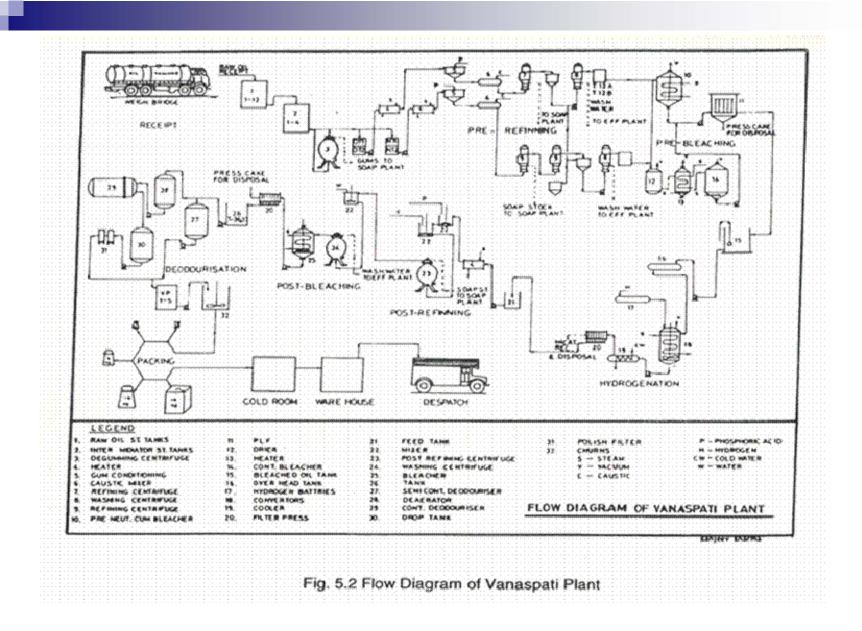
Constraint on Pressure : Normalized Condition

Constraint on Flow: Normalized Condition

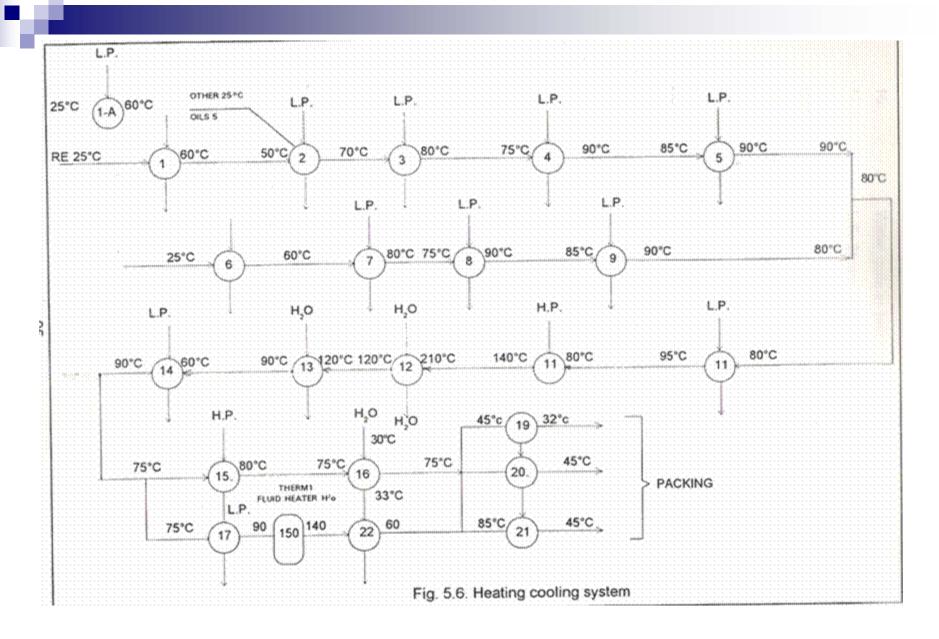
Screening of Options : Constraint Screen

S.No	Options	Result	
	FD Fan		Remarks
1	Exisiting fons + VFD with LT/HT motor	*	Passes the Centraint
2	Two new fans with new LT motor & VSD	4	Passes the Centraint
3	Existing fans with lower RPM motor(740 rpm)	x	Will not be adequate for low frequency when boller load is 305 TPH Does not pass the technical constraint screen
4	New smaller size fans with existing motor	×	Does not pass the constraint screen as margins will be reduced
5	Gear Bax	×	Does not pass the constraint screen as margins will be reduced
6	Slip ring motor with GRR	×	Net a normal practice in power plants. Need. further study
7	New single for	×	Does not pass the constraint screen as margins will be reduced

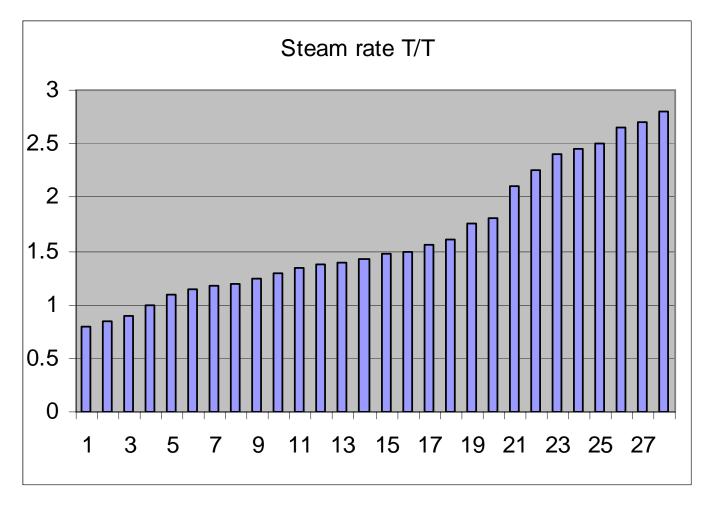



Screening of Options: Economic Screen

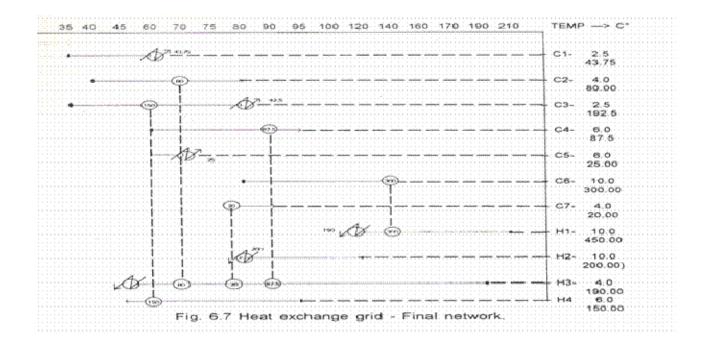
S.No	Options	Savings	Investment	Result	Remark
	FD Fan	KW	Rs Lac		
L	Exisiting fans + VFD with LT/HT motor	184	74.1	ł	Most ecnomical option
	Single fan + VFD with LT motor (One stand by fan)	187	163	I	As compared to one off, gain is less but the cost is high

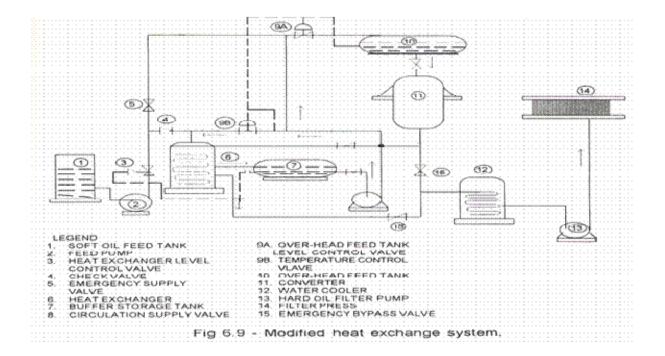

In addition to the above shortlisted option, single fan option for the existing boiler is evaluated considering reduced margins.

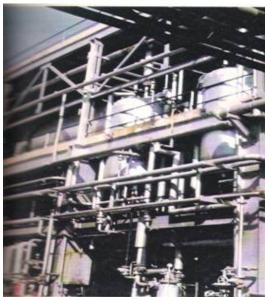
Heat exchanger	Flow-rate T/Hr	Т	Temperature -'C						
No.		Inlet	Outlet	Rise	KC al/Hr				
1 A	2.5	25	60	35	43,750				
1	4	-40	60	20	40,000				
2		50	70	20	40,000				
3		70	80	10	20,000				
4	4	75	90	1.5	30,000				
5		85	90	5	10,000				
6.7	7	25	80	55	1,92,000				
8	7	75	90	15	52,500				
9		85	90	5	17,500				
10	10	80	95	15	75,000				
14	10	70	90	20	1,00,000				
17	.4	75	90	15	30,000				
			Tot	al L.P.	6,51,250				
19	10	80	140	60	3,00,000				
5	6	75	190	115	3,45,000				
			Tota	al H.P.	6,45,000				


1. A

Theoretical need


Particulars	Units	Quantity
LP steam	Kcal/Hr	651250
HP steam	Kcal/Hr	645000
Total	Kcal/hr	1296000
Average enthalpy	Kcal/T	500
Total steam required	T/Hr	2.59
Production	T/Hr	10
Reqd. Sp. consumption	T/T	0.26


Specific steam consumption-28 Plants



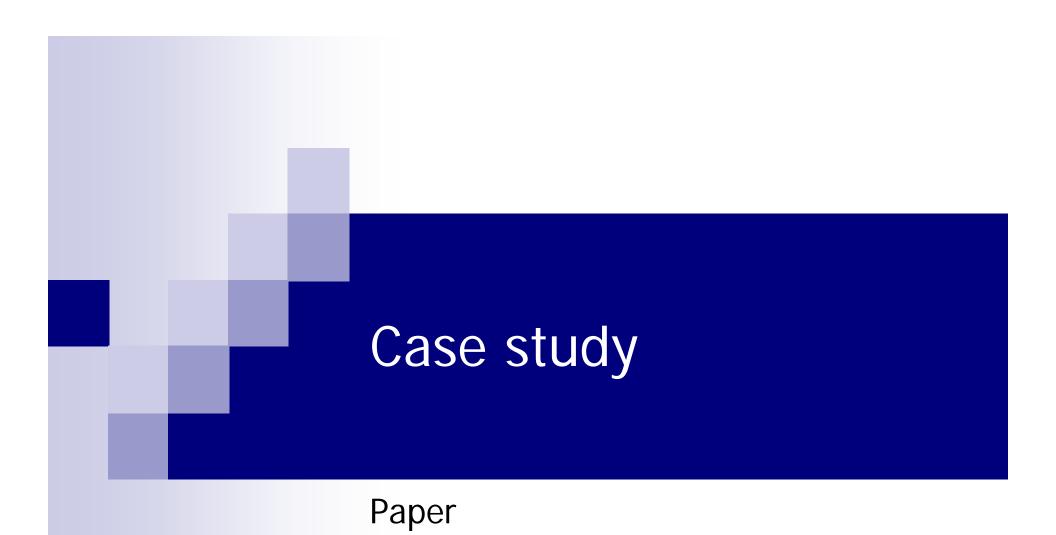
Installations

CD PLANT

Practical demo of HEN in Edible oil processing

HEN PIPING FOR CD

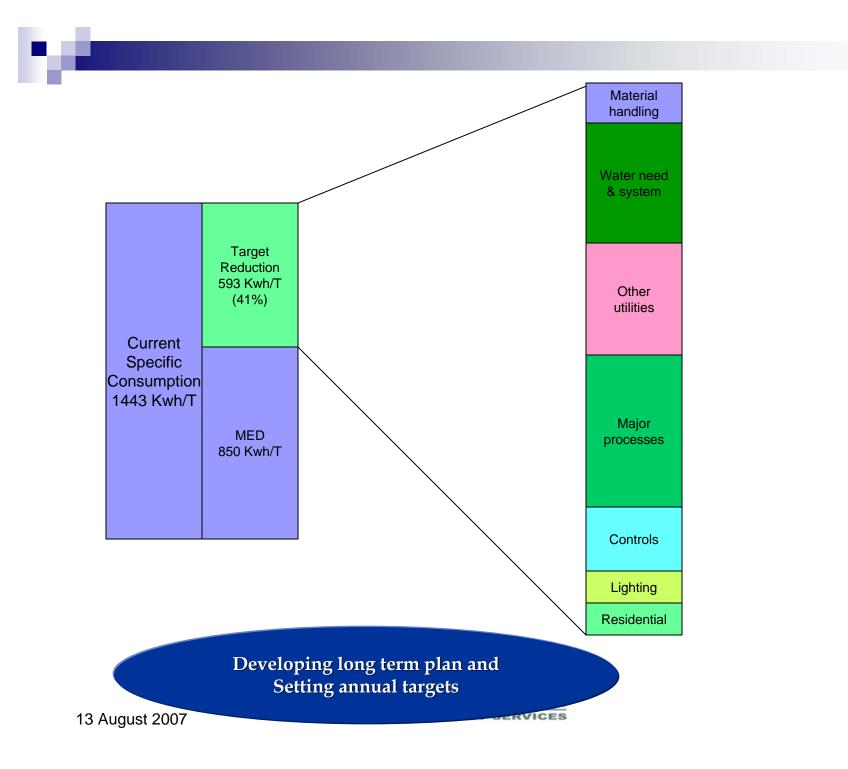
CONVERTER HEN SYSTEM 13 August 2007

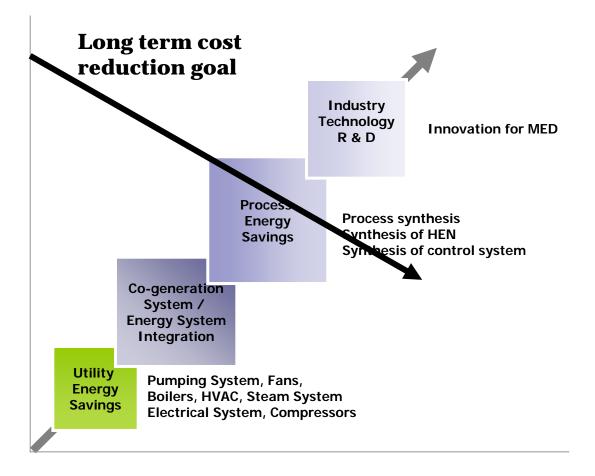


Operating results

- Pre-HEN consumption-1.2 T/T
- Target consumption-0.55 T/T
- Best achieved-0.75 T/T

Retrofit challenges-Proper sizing & laying out HEN system Dynamic heat transfer coefficient behavior of oil




Step by step approach-Retrofit solution

Min. ener	gy Actual usa	ige Gap analy	vsis Constrain	ts Implementation
Requirement				
	Measurement	Benchmark		
Process Synthesis	system	Overall gap	Technical	Long term journey plan
Synthesis of	Accounting system	Component	System	Intermediate
HEN	Monitoring	Gap	Economic	& short term Plan
Exergy analysis	Overall usage	System evaluation	Financial	
Overall	Discreet	Equipment	Others	M&E mechanism
minimum need	Usage	evaluation		

Scaling the Technology Ladder - Plan

Status of paper industry-CMIE 2006

Table 5.2 Electricity	Consump	tion in	Paper Inc	lustr y (K	wh/Tonn	Ço					
Company	1.99	\$ 199	7 ,199	8 1999	2000	2001	200	2 200	2004	1 2005	10 year (% chg) (
Seshasayee										hard	5. W. MILLER
Paper & Boards Amria	17.53	5 187	3 181	6 1760	1825	1740	150	1387	1353	1364	-22
Banaspati Co. West Coast	1315	133	0 131	2 1434	1352	1257	1103	1097	1170	1050	-20
Phper Mills Parijat	1468	145	1 1300	5 1281	1295	1286	13.12	1216	1174	1189	-19
Paper Mills Andhra Pradesh	500	431.2	2 391.19	371.77	373.4	43.4.7	610.03	609.87	461.81	408.64	-18
Paper Mills Delta Paper	1538	173	8 1654	1615	1 6 2 8	1674	13:60	1324	1313	1263	-18
Mills	1162	129	5 1251	1190	1119	1095			1136	982	-15
Sirpur Papur Milla Tamil Nadu	2009	199	5 1867					1742			.11
Newsprint & Paper	1659	1654	1630	1607	1,595	1.556	1629	1717	1657	1527	-8
Satia Paper Mills	1203	1138		1221	1055	11:47	1184	1185	1167		-7
Ballarpur Industries	1406	1435		1443	1447	1436		1398	1430	1354	
Orient Paper & Inds. Shree Bhawani	1742.18	1823.44	1973	2045	1734	1731	1689	1603	1698	1687	-
Paper Mills	1168	1033	1036	976	964	9.85	1060	1165	1163	1137	
Simplex Mills Co.	1126	1241	1054	1178	1012	1030	1077	1093	1161	1104	-2
N R Agarwal Inels.	547	517	484	554	587	561	464	610	591	548	0
Nice Papers Shree Ajit		7.56.02	615.65	562.98	544,74	373.29	428.99			376.09	
Pulp & Paper			430	377	344	309	306	298	301	296	
I K Paper		1662	1656	1 6 9 1	1595	1478	1518	1497	1448	1416	
Abhishek Industries Victory	P 50000 100000	n en		anderene al actu				840	820	810	
Paper & Boards(India)					1308	1089	950	1020	823	776	
imami Paper Mills				858	803	889	759	804	790	758	
langal Papers	180080.008. <u>8</u>	793	961			851	756		694	730	
Stobal Boards	CONTRACTOR CONTRACTOR	1384	1063	931	951	898	989.82	760.72	846.97	705.06	
Senchmark,		100015154004	*2.155.0110							102.00	
Average M/tonne of	1476.87	1352.24	1247.48	1228.99	1198.20	1223.73	1111.07	1147.20	1109.43	1037,49	
hper sclustry	5.32	4.87	4,49	4,42	4.31	4,41	4,00	4,13	3.99	3.73	-30
Average U/tonne of	1116.00	1092.01	1029.79	1191.44	989.62	972.09	948.32	970.07	1118.61	1082.45	
² aper lo. of companies	4.02	3.93 85	3.71	4.29	3.56	3.50	3.41 92	3,49 83	4.03	3.90	-3
and the second se				400		- · A & A		83	65	41	

MED Application-Looking Ahead

- The MED process is expensive and complex-would require huge capacity building at both ends-Industry and Service Providers
- Market competition for global players likely to help in faster penetration
- Energy and environmental compulsions would also catalyze-example of sugar

Nanoscience*-Exciting Application of MED Concept

- Production of hydrogen from water
- Selective catalyst for EE in manufacturing processes
- High efficiency solar cell at 1% of present cost
- Super light weight materials
- Nanostructured materials for fuel cells, batteries etc
- Biotechnology for materials synthesis and energy harvesting

*www.sc.doe.gov/bes/reports/files/NREN_report.pdf

13 August 2007

