Hybrid PV+Batteries in The Gambia

Gambia Power Sector Snapshot (challenges)

- National power system is limited to the Great Banjul Area with small local grids in the regions based on diesel generation
- HFO is the only source of generation. Old power plants in Kotu and Brikama, 30 MW of new HFO groups and 30 MW of rental generation (Karpower boat)
- High technical and commercial losses (improving during last 7 years)
- Frequent blackouts due to weak system
- Recent connection with West African Power Pool (WAPP) but still unreliable national system
- Manual dispatching with an ongoing project for a control system (WB/EIB/EU).

Storage was part of ongoing WB/EIB/EU project (2018-Ongoing)

Project was designed to modernize the power system in the country and to decrease the unbearable cost of generation and system reliability

- Increase generation (solar + BESS)
- Improve reliability of the network
- Install a control system for generation, transmission and distribution
- Prepare the system for the connection with WAPP line
- Increase collection rate by installing prepayment meters
- Support the reform in the national utility (NAWEC)

Why Energy Storage in The Gambia?

- The Government is decided to promote local solar to complement the imports from WAPP and minimize use of HFO
- Solar was a good alternative because the resource is abundant and international prices had declined drastically in the last years
- However, the situation of the power system did not allow variable generation without putting the stability in even a more dire situation, even with the connection with WAPP
- Energy storage was seen as the [only] way forward for:
 - Supporting variable generation integration into a weak system by smoothing the solar generation
 - Reasonably extending daytime generation to peak consumption times (early evening)
 - Providing some stability support to the grid
- Project structure would be an EPC contract with 3 years O&M with capacity training for the national utility. After these 3 years, the utility will take over the plant (or extend the O&M contract)
- Specifically for energy storage, the RFP allows [preferently] the option of proposing a long-term capacity maintenance contract to ensure adequate capacity of the system throughout the lifetime of the project.

Project Description

- Feasibility study was conducted in advance to define specifications
- Energy Storage System: Li-Ion Battery
- Technical specifications: 8 MWh/4 MW.
- **Business model:** EPC + 3 years O&M. Preferred option to propose capacity maintenance agreement for the storage system for 15 years.

Feature	Remarks
Type of technologies for BESS	Li-Ion
PV capacity	20 MWac
Minimum capacity of storage (MWh)	8 MWh
Requirements for BESS technologies	Maturity of the supplier (projects+manufacturing)
Minimum annual net generation	At point of interconnection (including losses)
Production profile	Not defined to Bidders
Island mode	Yes
System stability	Guaranteed PV stability
Storage degradation management	100% during the 3 years O&M

Procurement process

- Relatively new Implementation Unit but well staffed
- Expert consultant support for procurement within the Implementation Unit
- International company supporting technically the procurement process
- Procurement modality: Initial Selection (prequalification) + 1 stage
 - Initial selection of appropriate bidders (6)
 - Request for Proposal was issued in 2020, proposal were received in February 2021
 - Contract signed at mid 2021 but contractor requested price revision end of 2021
 - Request not accepted and retendering in December 2021
 - New evaluation almost completed
- International Owner's Engineer was recruited to supervise the execution and O&M

Main issues and lessons learnt

Main issues \rightarrow solutions	Lessons learnt
 Technical capability on BESS by the implementation team → International consultants to support Definition of the system in advance → Complete Feasibility Study was carried out Economic evaluation methodology needs to be carefully gauged → techno-economic based on LCOE Reliability of BESS suppliers proposed by Bidders → minimum requirements in the RFP (experience + manufacturing capacity) Instability of market during the last two years → 	 General experts are needed along the process (not many real expert companies) For Feasibility, Technical specs, Bidding documents, Evaluation Owner's engineer is needed to supervise (ideally the same expert consultant) International consultant needs to be carefully selected Economic evaluation should be tested in advance (real economic value for the system vs pure cost) Extra carefully when selecting the preferred Bidder (and associated BESS supplier) Market has been very volatile during the last two years (COVID and war)

Thank you!

mmillansanchez@worldbank.org

