Versatile, fast response, long Life Energy Storage

Robin Lane
Commercial Director

World Bank Energy Storage Partnership
7th June 2022
Technology overview

“Like hydro, but we don’t need mountains or water”

“New engineering, new integration, but not new science”

Surface equipment - Heavy lift equipment / working as a generator in reverse / weight management

Underground equipment: Cables, weight and shaft
Design of technology underpinned by scientific principle

E=MGH... Energy = mass x gravity x height

2 design principles

Heavy weights
- Tonnes? ✗
- Tens of tonnes? ✗
- Need weights in hundreds of tonnes to generate interesting amount of electricity ✓

Big drops
- Cranes? ✗
- Buildings? ✗
- Going underground allows us to use the geology of the earth to hold up the weight* ✓

* Existing shaft depths may be 800m or 1km. New, purpose built shafts, at c.250m, will be less deep but will be larger diameter of 8m or more
Timeline of achievements & next steps

2018-2021

- **> £3.5m**
 - Total R&D funding

- **> £4m**
 - Raised in equity funding

- **7**
 - Patents filed (4 granted, 3 pending)

- **2**
 - Independent studies by Imperial College London verifying levelised cost of storage over 25 yrs below Li-ion, CAES, Flow batteries

- **1**
 - Grid connected, 250kW Concept Demonstrator validates technology capabilities (s response, multi weight system)

2021-'24

Full scale, 'first of a kind' commercial deployment

- Evaluation of potential sites underway in Czechia & Poland
- 4MW / 1MWh, single weight system designed to optimise revenues from balancing services
- Series A, Tranche 2, scheduled for 2022, seeking £6-£10m
250kW Concept demonstrator

Gravitricity battery generates first power at Edinburgh site

By KevinDone
BBC Scotland's environment correspondent

21 April

This 'giant battery' has generated electricity for the first time.

A project to create electricity from gravity has generated its first power at a demonstrator site in Edinburgh.
Gravitricity vs. alternative ES technologies

- Lifetime
- Round trip efficiency
- Non degradation in performance
- Standing losses / parasitic loads
- End of life costs
- Location flexibility
- Speed of response (<1s)

Lithium Ion
Pumped Hydro
Gravitricity
Gravitricity vs. alternative ES technologies

Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature / benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>• High efficiency, every year (no degradation)</td>
</tr>
<tr>
<td></td>
<td>• Long life</td>
</tr>
<tr>
<td></td>
<td>• No standing losses or parasitic loads</td>
</tr>
<tr>
<td>Performance</td>
<td>• Rapid response (<1s) for lucrative fast response markets</td>
</tr>
<tr>
<td></td>
<td>• Versatile energy / power ratio (15 mins – 8 hrs)</td>
</tr>
<tr>
<td>Implementation</td>
<td>• Low embedded carbon footprint (no ore mining)</td>
</tr>
<tr>
<td></td>
<td>• No explosive chemistry</td>
</tr>
<tr>
<td></td>
<td>• Small footprint</td>
</tr>
</tbody>
</table>

LCOS Formula

\[
\text{LCOS} = \frac{\text{Capex (initial) + Capex (replacement) + O&M + Charging cost}}{\text{units generated}}
\]

Note: End of life costs are not included.

Graph

- **Sodium sulphur**
 - Charging: $532
 - Replacement: $367
 - O&M: $310
 - Investment: $274
 - Total: $171

- **Lithium ion**
 - Charging: $532
 - Replacement: $367
 - O&M: $310
 - Investment: $274
 - Total: $171

- **Compressed air (tanks)**
 - Charging: $532
 - Replacement: $367
 - O&M: $310
 - Investment: $274
 - Total: $171

- **Flow battery**
 - Charging: $532
 - Replacement: $367
 - O&M: $310
 - Investment: $274
 - Total: $171

- **Gravitricity energy-design**
 - Charging: $532
 - Replacement: $367
 - O&M: $310
 - Investment: $274
 - Total: $171

Long-life, reliable, energy storage for Critical National grid support infrastructure

LCOS = (Capex (initial) + Capex (replacement) + O&M + Charging cost) / units generated; n.b. no end of life costs are included
Behind the year on year growth, we see three key trends changing the shape of the energy storage market in years to come:

Key trends in global large scale energy storage market

- **Longer duration**
 - Increased renewable penetration will drive need for longer duration energy storage – average duration of 1.8 hours in 2013 has already grown to 3.3 hours
 - Ancillary services ... daily peak shaving ... solar & storage for 24/7 power

- **Longevity of service**
 - Growing vision of storage as an infrastructure asset, with associated requirements for asset lifetime
 - Short term opportunism vs. long term strategic

- **Higher cycling**
 - Storage increasingly used to balance fast changing, localised variations in supply & demand
 - Fast changing = need high cycling
Our Single weight system has been focus to date; other variants entering product roadmap

<table>
<thead>
<tr>
<th>Variant</th>
<th>Description</th>
<th>TR Level</th>
<th>Existing / new mine</th>
<th>Work to date</th>
<th>Work underway</th>
</tr>
</thead>
</table>
| 1. Single Weight | Gravity based electricity storage deploying single weight | 5/6 | Both | • Imperial College (2018) validates cost competitiveness
• Concept demonstrator | Actively assessing sites for ‘first of a kind’ full scale commercial deployment |
| 2. Multi weight | Gravity based electricity storage deploying multiple weights | 4/5 | New | • Imperial College (2019) validates cost competitiveness | Funded FEED development now under way |
| 3. Single weight w/ hydrogen | Mine shaft deploys single weight system and stores hydrogen | 3 | New | Preliminary analysis undertaken
| | | | | Working with Arup to develop FEED (BEIS Funded project) | |

Other possible variants include interseasonal heat storage, and adaptations for open cast mines, boreholes and raised bore mining
Targeting four markets with distinct use cases, customers and areas of value

<table>
<thead>
<tr>
<th>Description</th>
<th>End Customer</th>
<th>Value to End customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grid services
Power or energy for grid balancing & frequency regulation</td>
<td>• DNOs / TSOs</td>
<td>• Ensuring quality & security of supply
• Longevity of operation</td>
</tr>
<tr>
<td>2. Co-location
Coupling storage and large scale renewable generation at same site</td>
<td>Solar farm owners & operators, asset optimisers</td>
<td>• Time shift solar supply to high price peak periods
• Reduced connection costs
• Revenue stacking (voltage control)</td>
</tr>
<tr>
<td>3. Commercial & industrial
Supporting industrials to decarbonise operations</td>
<td>• Mining
• Oil & Gas
• Data centres</td>
<td>• Reducing grid demand (Triad or similar)
• Resilience / reliability of supply
• Ancillary service income</td>
</tr>
<tr>
<td>4. Energy Access
Designed into mini grids delivering energy access to rural and off grid communities</td>
<td>• Utilities
• Mini grid developers</td>
<td>• Mini grid integration
• Improves energy access to off grid communities, esp. during non daylight</td>
</tr>
</tbody>
</table>

* Connection costs based on capacity not throughput, which means developers have to choose between having to curtail at times or paying costs for a capacity they rarely use. Particularly acute with solar, with c. 12% load factor (av. output / peak output)
Selected use cases & local demand drivers support selection of key geographies:

- **IUK funded EC7 feasibility study now complete**
- **Discussions ongoing with mine owners & other stakeholders**
- **Feasibility study underway** in India
- **Site evaluations underway. Probable site for first full scale deployment** in the UK
- **LD FEED Study underway** in South Africa
- **Feasibility study underway** in Chile

Primary target markets:
- Australia
- South Africa

Secondary target markets:
- India
Is Energy Storage a format war?

Format wars – one problem, two solutions

1. At Gravitricity, we don’t think so!
2. Identifying characteristic of energy storage is the variance in requirements:
 - Duration
 - Energy & Power
 - Location
 - Conditions
 - High / low cycling
 - Importance of efficiency
 - Durability and longevity
 - Capex vs opex … and more

Different requirements = different technology solutions
Thank you

Robin Lane
Commercial Director
Robin.lane@gravitricity.com