

Geothermal Drilling Overview

Dr. Horst Kreuter

My Point of View

No drilling engineer

- Developer and consultant for geothermal projects worldwide
 - Germany
 - Switzerland
 - Tanzania
 - Indonesia
- First well drilled in 2003
 - Upper Rhine Valley / Offenbach an Queich

evelopmen

- Depth: 2360 m
 - Deviated well
- No major drilling problems
 - But: ...dry well

Downhole tool: Seismic prediction while drilling Hard rock drilling using electrical impulse method

Content

- I. Importance of Drilling
- **II.** Geothermal Plays and Drilling
- III. Geothermal vs. Oil and Gas Drilling

© Exorka

- **IV.** Drilling as a Team Effort
- V. Planning
- VI. Must Haves
- **VII.** Present and Future

I. Importance of Drilling

- Drilling cost vs. project cost
 - Heat project
 - Electricity project

up to 90 % (excluding distribution system)

50 - 70%

Drilling riskLost in hole

Side-tracks

You can loose a well but you cannot loose a power plant

© BMU 200

II. Geothermal Plays and Drilling

Plays / Resource Types

Definition

- Temperature (low moderate high enthalpy)
- Geothermal systems (closed hydrothermal EGS)
- Geological setting (convective conductive / plate tectonics / magmatic non magmatic)
- Differences in drilling concepts and connology
 - Magmatic
 - Large resources (> 10 MW, 100 MW, 200 MW)
 - High enthalpy
 - Slim-hole exploration wells
 - Many wells / power plant
 - Medium depth
 - High temperature equipment (BOP passing, cement,...) and related procedures
 - Composition of gas and fluid may bettengerous (e.g. HCI gas)
 - Non Magmatic

Full size exploration production and injection v

2-4 wells / power plant

Medium to large depth (5030 m TVD / 65

Standard equipment and procedures

III. Geothermal vs. Oil and Gas Drilling

Differences

- Low medium enthalpy
 - Well size
- Less horizontal drilling
- Reservoir protecting drilling methods 4
- EGS: Hard rock drilling
- High enthalpy
 - All of above
 - High temperature equipment
 - High temperature safety procedures
 - Less electronics

IV. Drilling as a Team Effort

- Drilling and drilling service
 - Drilling rig
 - Services:

Mud Logging Directional drilling Supervision Coilectubing Stimutation Cement Casing Geological sampling Data acquisition Drill bit Drilling tools

V. Planning

Drilling program

- Drilling procedure (section by section)
- Casing and cementing program
- Drilling fluids program
- Drill bit program
- Directional program
- Well logging
- Geological sampling program / muc coging
- Drilling data acquisition
- Testing program
 - Procurement
 - Communication
 - Safety program
 - Waste disposal

Interface management

Day rate Meter contract

© Geothermal Resources Group

V. Planning

© A. Sperber

V. Planning

Version:

Phase

Time- and Cost Estimate for the Drilling Project

3

Δ

5

6

conventinal scheme, troublefree, 1 x 18m-core

2

1

VI. Must Haves

Quality

- Rig and material
- Experienced drilling crew
- Planning and supervision
- Team spirit
- Kick-off meeting

Interface Management

- Services
- Timing

Cost

Risk management

© Herrenknecht Vertical

VII. Present and Future

Wells

- Present
 - Deviated wells
 - Side-tracks
 - Future
 - Horizontal wells
- Multilaterals

Technology

- Present
 - Mechanically cutting drilling bits
 - Hydraulic hammer
 - Future
 - Spallation drilling

Iron core drilling (melting)

Unrealistic speed-drilling 5000 m in

Thank you for your attention!

Questions?

