

CEO of EDD Mr Djama Ali Guelleh

Global Geothermal Development Plan The Hague - 19 November 2013

Outline

- Geographycal location
- Energy policies
- History of Geothermal Exploration in Djibouti
- Geothermal prospects
- Actual project « Fialé »
- Requirement to build 3D stochastic model in Assal geothermal field
- Project financing
- Project description
- Conclusion

1 S 1 S 1 S 1

EDD director

- Location
- Energy policies
- Conclusion

Abdou MohamedHistoryGeothermal prospectsActual project

Kayad Moussa3D model

• Preliminary result

Saida Omar • Project description • Project finance

EDD director

- Location
- Energy policies
 Braiset financia
 - Project financing

Volcances with known or inferred Holocene eruptions Source: http://www.volcano.si.edu/gvp/ The Geologic characteristics of the territory of the Republic of Djibouti are exceptionally favorable for the development of Geothermal Energy.

In particular, Djibouti includes Afar depression, also called the "Danakil depression", located at the intersection of three important tectonic structures

GOVERNMENT ENERGY POLICY

The Ministry of Energy in charge of natural Resources is responsible for overall policy formulation in the energy sector

- ✓ Make available a sustainable energy for economic growth
- Avoid any imported HFO in the future and produce more clean energy
 - The government's aim is to develop all available alternative and renewable energy resources whereby the priority goes to geothermal resources for which the country has a very good potential.

Geothermal resources could reduce energy dependency & electricity costs

- Djibouti is 100 % energy dependent (imports HFO for diesel production and hydroelectricity imported from Ethiopia)
- Djibouti has a strong geothermal energy potential
 - At least 10 geothermal prospects areas.
 - And in six of them there are enough available data

Local geothermal generation could enable Djibouti to meet demand at least cost

Sites already prospected

Geothermal sites that get geosciences data All these sites are ready for exploration drilling

Abdou Mohamed History Geothermal prospects Actual project

Djibouti's geothermal potential is still untapped

Geothermal exploration programs in Djibouti started in the 70s

1970s: French BRGM drills 2 deep wells 1980s: Multi-donors project, 4 deep wells drilled 2000s:

Pre-feasibility study performed by an Icelandic company

Confirmation of the geothermal resource was stopped because of:
technical difficulties, including high levels of salinity and scaling.
financing constraints and insufficient implementation capacity.

A LONG GEOTHERMAL HISTORY

1970 to 1975: The two wells have good temperatures only one of them has produced geothermal fluid (Asal 1) with high salinity.

1980 to 1985: The Djibouti government has conducted a detailed general inventory of geothermal resources and more areas of interest were identified

1987 to 1990: The deep geothermal exploration has been the completed :

- two drilling wells in Hanle (Hanle 1 and 2)
- four other wells in the Asal Rift (Asal 3, 4, 5,6).
- A scaling and corrosion study was performed on the well Asal 3.

Target area « Fialé »

The objective :

- Confirmation of the resource in order to mitigate any risk for future development
 - To drill 4 deviated wells and produce 50 to 100 MW in the first phase

Lake Assal, Fiale Caldera Drilling Target

Automatic test in dealer that the

Prefeasibility Study Promises:

- Magma Chamber Heat Source Located 3000 M under Lava Lake
- Underground Seawater Flow Between Goubhet Al Kharab and Lac Assal Provides Geothermal Fluid Recharge

Vertical Fracturing for Improved Permeability

•Seawater Recharge Expected to Reduce Salinity when Compared to Closed Reservoir Encountered with Assal 1,3 & 6

> hpermeable Bedrock

Exploratory Drilling Technical Program

- Four Full Size 9 5/8 inch Geothermal Production Wells
- Average Well Depth of ~ 2,500 Meters
- Use of Deviated Drilling Techniques to:
 - o Cut through Permeable Vertical Faults to Maximize Geothermal Fluid Production
 - Reduce Impact to Lava Lake Environmental Anomaly
- Aerated Drilling Technique to:
 - o Improve Drill Penetration Rate
 - Reduce Formation Damage
 - Well Tests Certified to be in Accordance with Approved Well Test Protocol to Assure IPP Bidder Confidence in Results
- Tests Include Temperature, Chemistry and 90 Day Flow Testing
- Intermediate Reservoir Testing at ~ 600 Meters before Drilling
 - First Well to Depth (Possible Lower Temperature Binary Application)

Geological study

The active nature of the Asal volcanic and tectonic range, displaying a continuous basaltic activity .
Heat source at shallow depth, the last expression of which was found in the lava lake at Fiale

Geological map of the Asal rift

hyaloclastites in orange, recent basalts in deep blue and violet; early rift basalts (300.000 – 100.000 y.) in pale blue ; stratoid series (3 to 1 My) in very pale blue. Lacustrine deposits (diatomite) in yellow

• The wells produces a high-salinity fluid with 1692 moll of Na, 2977 moll of Cl and a pH of 5,1 (Aquater report). The origin of this fluid is referred to a marine water.

• By using a steam fraction at the weir-box of 0.27 and a fluid density of 1.1 g/cm we have calculated the composition of the deep fluid (ppm):

-	Chemical composition of the fluid	PPM	Chemical composition of the fluid	PPM	
	N _a +	24,865	NH ⁺	5,1	8
	K+	4,826	Fe ²⁺	4,47	1
	C _a ²⁺	15,879	SO ²⁻	19,1	
1	M _g ²⁺	24,6	F ⁴⁻	2,3	Ń-
j	SiO ₂	500	Cl-	70,058	Ŋ.
	PH	5,1			

Assal Lake drilling well's characteristics

	N°	Drilled wells	Date: Beginning Of drilling	Date: End of drilling	Final depth (m)	Temperature at bottom (°C)	Total mass flow (t/h)	Salinity g/l	Drilling duration (days)	
	1	Asal 1	8-03-75	12-06- 75	1146	260	135	120	97	Ŷ.
	2	Asal 2	1-07-75	10-09- 75	1554	233 (926m)	-	-	72	4.2
	3	Asal 3	11-06-87	11-09-87	1316	264	350 (WHP = 12,5Bars)	130	93	X
	4	Asal 4	15-09-87	21-12- 87	2013	359	-	180	97	X
	5	Asal 5	7-01-88	7-03-88	2105	359	-	-	61	
NYX	6	Asal 6	8-04-88	10-07- 88	1761	265	150	130	94	1
	Total							524	A	

Kayad Moussa 3D model Preliminary result

Field data for the 3D Model

Wellbore data :

Field scale data :

Log (dip meter), core Gravimetric analysis Borehole televiewer (BHTV) Reservoir structure Seismic data Lithology index

Fracture class properties :

Fracture orientation: dip, azimuth Fracture length, fracture aperture **Common parameters** : friction angle, cohesion, stress field

Group	Direction	Density	Perméability	
1	N130	4x10-7	2.x10 ⁻¹⁴	
2 / E	N130	5x10 ⁻⁷	4x10 ⁻¹⁴	
3	N130	5x10-7	12x10-14	
4	N130	5x10 ⁻⁷	2.6x10 ⁻¹⁴	
5	N100	2x10-7	2.6x10 ⁻¹⁴	

3D Stochastic model for Assal reservoir

➤ These data can be used to generate stochastic model.

\succ This model :

o will be eventually achieve hydraulic stimulation in order to feed the deep reservoir.

o can simulate the requisite pressure and flow rate for that in order to mitigate the induced seismicity.

o can estimate the flow of fluids within the reservoir, over its production lifetime.

Hydraulic and thermal results

Liver Automation Contractor Annaly

- N

Saida OmarProject consomption

The project will be carried out in 2 phases in the form of a PPP

The development of geothermal capacity would be done in two phases

- Phase 1 Geothermal exploratory drilling
 - financed by GoDj (using grants and soft loans from AFD, AfDB, ESMAP, GEF, IDA, OFID and SEFA)
 - aims at assessing the commercial viability of the geothermal resource in Fiale Caldera, located in the Lake Assal region of Djibouti.
 - Phase 2 Geothermal Power Plant Development
 - If the geothermal resources is adequate for large scale power generation, the development of the power plant will be competitively tendered to an IPP

Djibouti's geothermal potential can be developed

- Technical difficulties can be successful:
 - Increased geological knowledge: geothermal reservoirs knowledge has markedly improved, targeting of geothermal resources with lower saline and dissolved solids content now possible
 - Technological advances: improvements in geothermal generation technologies (USA, Iceland, Japan) makes it possible to use saline and saturated geothermal fluids for power generation
 - Seven donors are providing financial support to the project
 - Djibouti government will also contribute
 - The project design builds on international best practices and the lessons learnt from past geothermal explorations in Djibouti

Funding Agencies	Funding (USD)	Funding Type			
Clobal Environmental Engility (CEE)	\$6.040.000	Conditional Cront			
Global Environmental Facility (GEF)	\$0,040,000	Conditional Grant			
African Development Bank (AfDB)	\$5,000,000	Grant			
African Development Bank (AfDB) Trust Fund	\$2,340,000	Grant (Euros)			
Agence Francaise de Developpement (AFD)	\$3,250,000	Grant (Euros)			
International Development Association (IDA)	\$6,000,000	Soft Loan			
OPEC Fund for International Development (OFID)	\$7,000,000	Soft Loan			
Energy Sector Management Assistance Program					
ESMAP)	\$1,100,000	Conditional Grant			
Government of Djibouti (GoDj)	<u>\$500,000</u>	Grant			
Total Funding:	\$31,230,000	SP-			

Exploratory Drilling – Calculating Financial Return When Using IPP Equity

- Exploratory Drilling Investment has a 100% Risk of Loss
- IPP Developers must Use Equity in Order to take Drilling Risk
- Equity Investment Commands the Highest Annual Rate of Return than Any Other Debt Facility
- It is Anticipated to Take 5 Years from the Initial Equity Investment in Drilling Until the Power Plant Commercial Operations Date (COD)
- Investment Return is Accrued Until the COD after which the Payback Period Starts
- The Accrued Investment + Return is Paid Over the Operating Life of the Plant Starting at the COD

Invested Equity \$15 M USD

Invested Equity \$15 M USD Annual Cost to Pay Back \$30 Million Equity Investment in Exploratory Drilling Program Over 20 Year Amortization / Payback Period

\$20,839,630 / Year for 20 Years

Important Note: Investment will Continue to Accrue During Delays Prior to the Commercial Operations Date

EDD directorProject financing

Value Derived from Donor Involvement in Exploratory Drilling Phase

- Removes High Cost, High Risk Exploration Phase from Independent Power Producer (IPP) Investment
- Provides for Competitive and Transparent Tendering Process for Public Private Partnership Contracting Arrangements

Reduced IPP Risk Combined with Transparent, Competitive International Tendering is Anticipated to Reduce IPP Return on Investment

Traditional versus Semi-Integrated Contracting Approach

Under Traditional Approach Geothermal Developer

- Provides Technical and Fiduciary Management of Total Program Including Drilling Operations
- Performs Feasibility Studies, Designs Drilling Program and Targets Wells
- -Contracts and Coordinates Supply of each Specialty Service and Material Provider

Under Semi-Integrated Approach Project Management Unit (PMU)

- Contracts PMU Director to Manage Fiduciary Responsibilities of Program with Direct Line Reporting to EDD Director General
- Contracts Geothermal Consulting Company (GCC) to Perform Feasibility Studies, Design Drilling & Testing Program, Target Wells and Manage Technical Operations and Contract Coordination
- Under GCC Technical Oversight, Contracts and Coordinates Supply of Civil / Infrastructure, Group 1 and Group 2 Specialty Contracts
- Integrates and Engages the Drilling Service Company and Group 3 Drilling Operations Scope of Supply under a Single Contract

Specialty Drilling Contracts

- <u>Civil / Infrastructure Contract</u> Prepares roads and bridges for mobilization of heavy equipment. Constructs and maintains living quarters and infrastructure to support drilling operations.
- Drilling Service Company Provides and operates drilling rig

• Group 1: Steel Based Materials casing wellhead separators drilling bits casing accessories • Group 2: Inspection & Testing capacity testing chemical analysis temperature testing production testing coring & sampling

• <u>Group 3: Drilling</u> Operations

directional drilling, cementing, general services, H2S monitoring provisions, mud controlling services, mud logging, rig top drive water pumps aerated drilling services diesel fuel for operations

And the Real Property of

-

110000

Project Schedule

ID Task lame	Duration -2 -	1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 86 37 3
1 PRO. ECT START	0 days	PROJECT START S Month GCC Selection
2 000 S aff the Project Management Unit (PMU)	55 days 55	days 🛹 — — — 000 Staff the Project Management Unit (PMU)
6		7.5 Month Program Development
7 100 Bigage Geothermal Consulting Company (GCC) through RFP Process	105 days	105 days - 100 Engage Geothermal Consulting Company (GCC) through RFP Process
12		15.5 Month Field Based Drilling Program
13 200 Exploratory Drilling Program Development Phase	160 days	160 days 🗸 200 Exploratory Drilling Program Development Phase
32		
33 300 Exploratory Drilling Phase	335 days	335 days 🖝 🤤 300 Exploratory Drilling Phase
34 30 Mobilize Civil / Infrastructure Contractor to Lac Assal	30 days	30 days
35 30 Perform Civil / Infrastructure Work Prior to DSC Mobilization	45 days	45 days 2004 Perform Civil / Infrastructure Work Prior to DSC Mobilization
36 30 Perform Civil / Infrastructure Work After DSC Mobilization	100 days	100 days 700 - 306 Perform Civil / Infrastructure Work After DSC Mobilization
37 30 Critical Deliveries of Group 1 & 2 Specialty Contracts	50 days	Shellow Descenteir 00 Dev Flow Tast
38 31 Mobilize Drilling Service Company to Lac Assal	30 days	30 days 310 Mobilize Drilling Service Company to Lac Assal
39 311 Drill Well #1 to Shallow Reservoir / Stimulate & Prepare for Testing	20 days	20 days 2 312 Drill Well #1 to Shallow Reservoir / Stimulate & Prepare for Testing
40 31 Well #1 - SetUp and Perform 90 Day Flow Test on Shallow Reservoir	75 days	75 dave 5 dave 314 Well #1 - SetUp and Perform 90 Day Flow Test on Shallow Resembir
41 31 Drill Well #2 to ~ 2500 Meters / Stimulate & Prepare for Testing	30 days	39 days 316 Drill Well #2 to ~ 2500 Meters / Stimulate & Prepare for Testing
42 31 Well #2 - SetUp and Perform 90 Day Flow Test	75 days	75 days 318 Well #2- SetUp and Perform 90 Day Flow Test
43 32 Drill Well #3 to ~ 2500 Meters / Stimulate & Prepare for Testing	30 days	Deep Reservoir 90 Day Flow Tests
44 32 Well #3 - SetUp and Perform 90 Day Flow Test	75 days	75 days 322 Well #3 - SetUp and Perform 90 Day Flow Test
45 32 Drill Well #4 to ~ 2500 Meters / Stimulate & Prepare for Testing	30 days	Ju Jays 🛀 324 Drill Well #4 to ~ 2500 Meters / Stimulate & Prepare for Testin
46 32 Return to Well # 1- Drill to ~2500 Meters / Stimulate & Prepare for Testing	15 days	15 days 🚘 326 Return to Well # 1- Drill to ~2500 Meters / Stimulate & Prepare for Test
47 32 Well #1 - Perform 90 Day Flow Test on Deep Reservoir	75 days	75 days 2 Monthly Figa Si bilitio St Mohr st on Dep Reservo
48 33 Demobilize Drilling Service Company from Project	20 days	20 days 30 Demobilize Drilling Service Company from Project.
49 33 Welter Number of days shown are based on a 5 day work week; h	owever, field based	drilling operations run 7 days per week (i.e. 75 day flow test constitutes 90 calendar day test particul 332 Well #4 - SetUp and Perform 90 Day Flow Test
50 334 Complete Testing / Secure Wells / Demobilize	30 days	30 days 🚞 334 Complete Testing / Secure Wells / Demobilize
51		
52 400 Feasibility Study & Closing Report	45 days	45 days 🛶 🛶 400 Feasibility Study & Closing Repor

Thank you for your attention