Upstream Geothermal Development # Narendra Widjajanto Netherlands, November 19, 2013 Skyline Building Lt. 11 Jl. MH. Thamrin No. 9, Jakarta Pusat Telp: 021-39833222 Fax: 021-39833230 www.pge.pertamina.com **Overview of Indonesia Geothermal Potential** **Overview of Geothermal Cycles** **Exploration and Resource Confirmation** **Key Factor for Geothermal Development** #### **Overview of Indonesia Geothermal Potential** Overview of Geothermal Cycles **Exploration and Resource Confirmation** Key Factor for Geothermal Development # Indonesia has the highest potential for geothermal energy in the world, which remains largely untapped Source : Indonesia's Geothermal Reserve and Utilization Status, Compared to Other Countries (PT. Pertamina Geothermal Energy, PIT API XII November 2012) PERTAMINA GEOTHERMAL ENERGY # Gol is making a strong push for renewable energy, with plans to significantly increase geothermal power generation ¹ 2025 proposition is assumed to be the same as shown in RUPTL 2020 SOURCE: PGE annual report, Press reports, Team analysis # **Geothermal Resources Map of Indonesia** # **PGE's Working Areas** Concession Area = 14 (MEMR Decree No 2067K/30/MEM/2012 Total Installed Capacity PGE = 402 MW **STATUS: 2013** ### PGE projects are in different stages of project development Overview of Indonesia Geothermal Potential # **Overview of Geothermal Cycles** **Exploration and Resource Confirmation** Key Factor for Geothermal Development # **GEOTHERMAL PROCESS** Overview of Indonesia Geothermal Potential Overview of Geothermal Cycles **Exploration and Resource Confirmation** Key Factor for Geothermal Development # A typical Geothermal Project has 3 Phases Upstream Approximate figures TYPICAL 50 MW PROJECT **Exploration Development Operation** Opera-**Geology &** Reservoir Desktop Geo-**Feasibility** Delineation Production SGS tions and Geo-& exploration managestudy drilling physics study drilling construction mainchemistry Major **NORC** Commissioning NOID milestones Internal go/no-go milestones MT survey Drill up to 3 Drill 4-7 Regular Construct discovery production operations steam Key wells and injection gathering activities wells systems and piping 6-9 1 3-4 12-15 2-3 0-6 In parallel N/A N/A Up to 15 **Approx** with months duration production (months) drilling \$5k \$30-50k \$300-500k \$15-25m \$300k (If needed) \$25-50m \$10-15m N/A N/A **Approx** cost (\$) **SOURCE**: Expert inputs # **Exploration & Resource Confirmation Phase** | No | Phase | Activites | Potensial Risk | |----|---|---|--| | 1 | Geology & Geochemistry Geophysics Infrastructure & exploration drilling | Prepare exploration program Process project approval for Environment Process local and regional permit for land and forest usage Procurement process and execution Bridges dan roadways preparation Land clearance with locals | Geological Hazards (Landslide Subsidence vs "Cut & Fill") Civil Works (Technology & Competency) Uncertainty for various permit approvals | | 2 | Drilling
(exploration &
production) | Prepare detailed drilling program Rig Mobilization & Logistics Rig review Dilling process execution | Drilling execution risk Geological risk (hard rocks, fracture, permeability) Gas / steam leakages | | 3 | Production Testing | Prepare testing facilitiesHeating up periodFinal testing | Steam result confirmation delay due to long heating up period. Resource risk leads to steam availability/reinjection well below target | PERTAMINA GEOTHERMAL ENERGY 02 Desember 2013 Pages 13 Overview of Indonesia Geothermal Potential Overview of Geothermal Cycles **Exploration and Resource Confirmation** **Key Factor for Geothermal Development** #### Key Barriers For Developing Indonesia's Geothermal Potential Barriers make it challenge to mobilize significant investments for achieving GoI target > Page 15 GEOTHERMAL ENERGY #### Resource Risk Make it More Challenging To Mobilize Investment Uncertainties associated with geothermal field conditions and resource characteristics during the initial stages of field development will cause developers to require a price premium for taking on this risk SOURCE: ESMAP World Bank Geothermal Handbook 2012 #### **Geothermal Project Cost Structure** - Cost ranges can vary depending a variety of factors such as: depth of the resource, geologic characteristics and temperature - Upstream Cost less than Dowstream Cost but having the most riskiest part. - The upstream phases, (drilling phase), can be considered the riskiest parts of geothermal project development. PERTAMINA GEOTHERMAL ENERGY 02 Desember 2013 Page 17 Overview of Indonesia Geothermal Potential **Overview of Geothermal Cycles** **Exploration and Resource Confirmation** **Key Factor for Geothermal Development** # **Next Steps for Managing Geothermal Barriers** | No | Barriers | Explanation | Next Steps | |----|---|---|--| | 1 | Project delayed
due to Various
Permits
uncertainty | Uncertainty for
acquiring apporvals
from local and national
government agency | Project socialization Revised related procedures / regulation to support green energy development especially for geothermal activities | | 2 | Resource and Upstream Risks | Steam availability below target Difficulties in getting injection wells | Expert and technology enhancement Operational excellence Prepare sufficient time to develop geothermal fields properly (5-7 years) Increase risk mitigation in developing upstream projects in parallel Upstream Risk beared by Government | # **Next Steps for Managing Geothermal Barriers** | No | Barriers | Explanation | Next Steps | |----|--|--|---| | 3 | Offtake
uncertainty and
financial risk | Adequate pricing for
steam and electricity | Propose more attractive new tariff
to the government to increase
certainty in geothermal
investment projects Includes environment cost in coal
tariff in order gain comparability
with geothermal tariff |