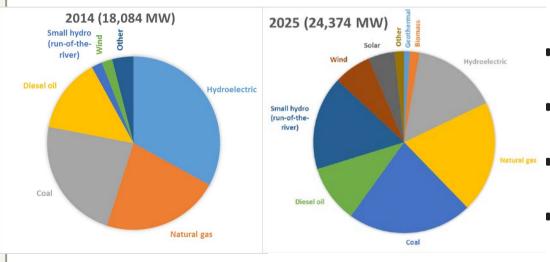
Mannvit Technical- and market barriers to cost effective geothermal drilling Case study on Chile


Carlos Jorquera, Lilja Tryggvadóttir April 26th, 2016

763 50 🍄 MANNVIT

Energy Market in Chile

• Present status & goals

- Geothermal potential is ~3350 MWs
- Current electricity price for long term PPA around 50-70 USD/MWh and expected to be in the range of 50-100 USD/MWh depending on bilateral negotiation.
- Renewable energy from 37 to 46% of the energy matrix.
- Geothermal from 0 to 1% of the energy matrix.
- Translates to 244 MW of installed geothermal capacity in year 2025.

D

 Long term goal for year 2050 to have renewable energy in 70% of the energy matrix. Of that geothermal is planned in the range of 178 – 3.310 MW.

Geothermal Industry in Chile

- Status of development (Dec. 2015)
 - 74 exploration rights
 - 9 exploitation rights
 - 1 project with PPA
 - Cerro Pabellón (Empresa Geotermica del Norte / ENEL)

- Geothermal projection scenario 2050
 - Energy Policy 2050 gives a wide range: 178 – 3.310 MW

Geothermal Projection scenario for year 2050 ⁽¹⁾ MW	Average MW per year (2)	Drilled wells ⁽³⁾ Average per Year / Total number of wells in 2050	Average Investment (4) 2016-2050 US\$ million
278	8	2/58	1,946
814	24	5 / 170	5,670
970umin	28	6 / 202	6,790
1,340	38	8 / 280	9,380

Note:

1: Scenario from the Waybill 2050.

n

2: Average MW to come online per year for the period 2016–2050.

3: 6 MW per well; 1 reinjection well every 4 producers; ; failure wells not included 4: Assumption for the investment per MW (optimistic for Chile): US\$ 7.0 million per MW

Barriers?

- History
 - Geothermal development in stages since 1920s
 - New geothermal law since 2000
 - Still no geothermal MWs online
- Sporadic development connected to public policies

B

• Type of barriers

MANNVIT

- Financial
- Technical
- Regulatory
- Labor
- Geographic
- Environmental
- Social

D

Barriers

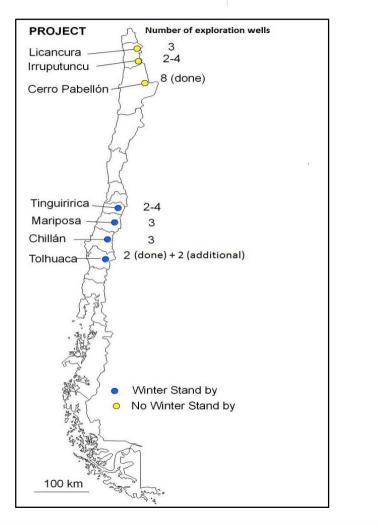
- Financial
 - Achieving PPA
 - Profitability of geo projects
 - High CAPEX of wells
 - Electricity price
 - No incentives, like tax reductions
 - High risk of capital makes project funding challenging

B

• Technical

D

- Rig availability
- Lack of service providers
- Low interest in drilling contracts for few wells


MANNVIT

- Infrastructure e.g. connection to grid
- Operation of machines in high altitude

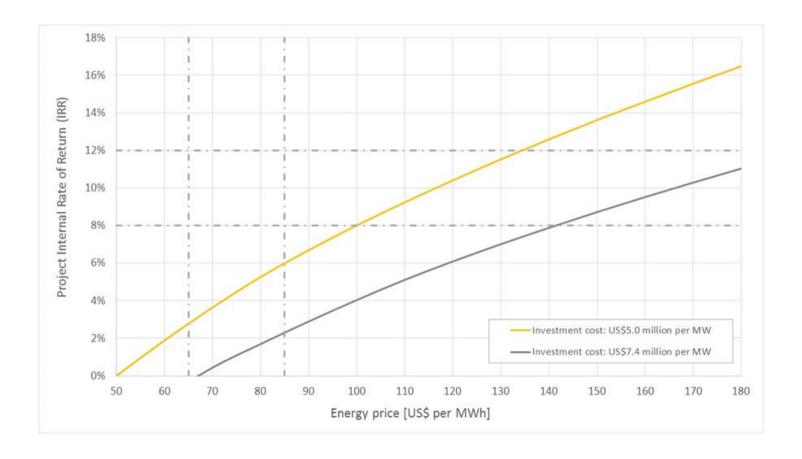
50 🕸 mannvit

Further Barriers

- Regulatory and Labor Barriers
 - Long permitting process
 - Lack of qualified staff in institutions
 - Lack of experienced developers
 - Lack of experienced rig crews
 - Altitude sickness
- Geographic, Environmental and Social Barriers
 - Remote areas
 - Long transport route
 - Difficult access
 - Severe winter conditions
 - Local opposition to GEO development

D

Closing the gap


2

3

A

B

B

C

D

1 1

E

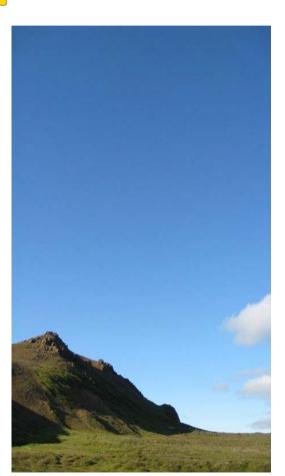
D

1963 50 🍄 MANNVIT

F

2

Industry role during drilling phase


- Find ways to lower CAPEX
 - Design
 - Construction
 - Effective tendering
 - Bulk procurement
 - Consider contract form
- Careful planning for local conditions
 - Remote locations, altitude
 - Winter conditions
 - Regulation and permits

Government role during drilling phase

- Strengthen development framework e.g. permits, laws and regulations and their implementation
- Analysis and practice of:
 - Public drilling company
 - Super Single Rig Type
 - Financial tools to "close the gap" for developers
 - Tax incentives (e.g. VAT)
 - Risk mitigation fund
 - Cost sharing e.g. investment in first unit, infrastructure
 - Loan guarantees

Wrap up

- All investigated successful geothermal countries invested public funds
- A few central located easy access projects developed by private efforts
- Challenges such as low enthalpy or remote sites can render the opportunity unfeasible due to high CAPEX, in case of Chile: 7 MUSD/MW (average)

MANNVIT

- Without a model showing positive cash flow, and thus a PPA, developers are not willing to start confirmation drilling
- Exploration phase thus connects to project profitability
- A mix of ways is necessary if the gap is to be bridged
- To fulfill the Energy Agenda and Energy Policy 2050 public investment will be necessary
- Work in progress with the Ministry of Energy to find possible ways.

www.mannvit.com

C

Δ

B

D

D