

Introduction to Bioenergy: Opportunities and Risks and the Policy Process

Ana Kojakovic

IFC-ESMAP Renewable Energy Training Program 16-18 June 2014 Washington, DC

Bioenergy and Food Security

- Introduction and interlinkages

Bioenergy policy

- Development of sustainable, food secure bioenergy sector
- FAO's BEFS Approach

Sustainable Bioenergy Assessment

- BEFS Rapid Appraisal Tool: Case study Malawi

Bioenergy

.....is all energy derived from <u>biofuels</u>, which are fuels derived from <u>biomass</u>.

Biomass

.....materials of recent biological origin including plant materials and animal waste.

Biofuels and bioenergy

FEEDSTOCK

Woodfuel and woody residues, crop residues, livestock residues, crops, food processing residues

4

From bioenergy feedstock to final energy use

Diefuel	Energy end-user							
BIOIUEI	Househol	ds	Community level	Indu ser	istry & vices	Trans	port	
Vegetable oil (SVO)	Cooking, machinery, electricity		Electricity generation	Mac elec	Machinery, electricity			
Biodiesel	Machinery, electricity			Mac elec	Machinery, electricity			
Ethanol	Cooking (ethanol gel)							
Fuelwood, residues	Cooking, heating		Electricity/heat	Electri	Electricity/heat			
Charcoal	Cooking, hea	ating		Indu proc	ustrial cessing	J		
Pellets	Heating		Electricity/heat	Electri	city/heat			
Briquettes	Cooking, hea	ating						
Fuel gas				Electri	city/heat			
Biogas	Cooking, lightning		Electricity, electricity/heat	Electri	city/heat			
Developing countries		Deve	eloped countries	-	All		F	

Role of bioenergy in Total Primary Energy Supply

Figure 1. Estimated Renewable Energy Share of Global Final Energy Consumption, 2012

BEFS

REN21: Renewables 2014 Global Status report

The importance of bioenergy in TPES across regions in 2009

Share in TPES	OECD34	Latin America	Asia (exc.China)	China	Africa
Biofuels and waste	4.6%	20.2%	23.7%	9.0%	47.6%

Food Security

....exists when all people, at all times, have physical and economic access to sufficient safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life.

1996 World Food Summit held in Rome

The 4 dimensions of food security

- ✓ AVAILABILITY Physical AVAILABILITY of food
- ✓ ACCESS Economic and physical ACCESS to food
- ✓ UTILIZATION Food UTILIZATION
- ✓ STABILITY STABILITY of the dimensions

Linkages: Bioenergy and Food Security

Environmental sustainability, social acceptability, and economic viability of the bioenergy sector "setup"

FAO's Bioenergy and Food Security (BEFS) Approach

• Six areas of support

Stakeholder Dialogue and Capacity Building

Risk Prevention, Management and Investment Screening

development of sustainable, food secure, bioenergy sector

Country Specific Evidence

BEFS Rapid Appraisal

• Characteristics:

- Excel based set of tools
- globally applicable, national (subnational) level assessment
- implementable in a relatively short time
- can be used with limited user defined data, default values are provided as an option
- analysis can focus on country needs
- allows to limit the scope of detailed analysis

Limitations:

- Accuracy of results depend on the accuracy of the data
 - Default data, user defined data
- Further detailed analysis would be required for actual policy formulation, so this is the initial step. A sub-national level BEFS RA could be an option.

Structure

Country Status

Review of key indicators and trends: Agriculture, Energy, Environment, etc.

Boundaries of the analysis

Outputs and interlinkages between modules

Country status	Key food staples, agriculture export crops, energy demand and access
Natural Resources: Biomass Potential Assessment	Quantity of feedstock potentially available considering the country needs Feedstock costs for some cases
Energy end use options	Considering the feedstock potentially available, the feedstock costs and the domestic energy requirements: Production costs, investment requirements, economic profitability, labour needs, number of households supplied, etc.

Results of BEFS RA

....can assist policy makers / technical officers in

- Outlining the country energy, agriculture and food security context
- Outlining the sustainable bioenergy options of interest
- Obtaining initial estimates of which sustainable bioenergy supply chains are viable in the country
- Identifying options of interest that require more in-depth analysis and planning e.g. more detailed BEFS analysis

How does the appraisal account for food security and sustainability?

- Food Security
 - Identify key food staples in the country
 - Strive for feedstock production that is additional to current uses
 - Consider options for income generation, employment and potential tradeoffs (feedstock level, processing level)

• Sustainable use of natural resources

- intensification of agricultural production as preferred option
- forestland and protected areas excluded
- current/planned uses of residues excluded
- importance of residues for soil fertility and structure considered
- Economic and social sustainability
 - competitiveness
 - financial viability
 - outgrowers' inclusion

BEFS RA Case study:

Rural electrification options in Malawi

Introduction to the case study: The flow of BEFS Rapid Appraisal for Malawi

Country context

- Country status tool
 - \Rightarrow Level of food security
 - \Rightarrow Energy needs and priorities
- Bioenergy feedstock options
 - NR Module
 - \Rightarrow Which type of feedstock is available
 - \Rightarrow How much is available
- Technology pathway
 - Energy End Use Options Module
 - \Rightarrow Which options are viable
 - \Rightarrow Which options are preferable

Opening the .xlsm file and Introduction

Structure

22

COUNTRY OVERVIEW

COUNTRY: Malawi	< <back Start</back 	NEXT >> Net Trade Position for key food crops
BEFS Rapid Appraisal for the country	Enter data into v	rhite cells Grey cells are calculated

		POPULATIO	N				
Parameter (unit)		Value	Year	User-defined value	Year	Paran	n et er (
Total population (1000 inhab)		15,381	2011			GDP per capita (cu	rrent U
Rural population (%)		80%				GDP/capita, PPP (c	urrent
Urban population (%)		20%				GDP/capita, PPP (c	onst. 2
Population density (inhab/km ²)		163.1				Agriculture, value a	added (
	Source:	FAO, 2013: FA	OSTAT				

LAND COVER / LAND USE

Parameter	1000 ha	% of land area	Year	User-defined value	Year
Country area	11,848		2011		
Land area	9,428	100%	2011		
Agricultural area	5,580	59.19%	2011		
Arable land	3,600	38.18%	2011		
Permanent crops	130	1.38%	2011		
Forest area	3,204	33.98%	2011		
	Source:	FAO, 2013: I	AOSTAT		

FOOD SUPPLY AND KEY FOOD SECURITY CROPS

				Share in total food supply
1	Maize 👻	1,15	58	50.0%
2	Potato 💌	19	5	8.4%
3	Cassava 🚽	13	5	5.8%
	Subtotal	1,48	38	64.2%
Total food supply		2,318		100%
Source:	Food balance sheet, FAOSTAT		Year:	2009

Parameter (unit)	Value	Year	User-defined value	Year
P per capita (current US\$)	363.64	2011		
P/capita, PPP (current int. \$)	889.74	2011		
0P/capita, PPP (const. 2005, int. \$)	784.97	2011		
riculture, value added (% of GDP)	30.17	2011		

SOCIO-ECONOMIC INDICATORS

Source: The World Bank, 2013: WDI

FOOD SECURITY AND ENERGY USE

Parameter (unit)	Value	Year	User-defined value	Year
Undernourished population (%)	23.1	2011		
Poverty headcount ratio at national poverty line (% of pop.)	50.7	2010		
Energy use (kg of oil eq. per capita)	0.0	2010		
Electricity consumption (kWh/capita)	0.0	2010		
Access to electricity (% of population)	8.70	2010		
Source:	The World Bank, 1	2013: WDI		

AGRICULTURAL TRADE - KEY CASH CROPS

				Export value (1000 US\$)		Share in total value of exports
1	Tobacco	Ŧ	144,676	874,904	6,047	69.6%
2	Теа	-	49,999	120,787	2,416	9.6%
3	Coffee	-	901	5,271	5,850	0.4%
Subtotal				1,000,962		80%
Total value of export of agricultural commodities				1,256,639		
ource: FAOSTAT, Trade				Year:	20	109

Malawi: Energy balance

Sector	Energy demand by fuel (TJ/year)								
	Biomass	Petroleum	Electricity (hydro, thermal)	Coal	Total (%)				
Households	127,394	672	1,798	5	83.4%				
Industry	9,664	3,130	2,010	3,481	11.7%				
Transport	270	5,640	35	15	3.8%				
Service	452	558	477	174	1.1%				
Total (%)	88.5%	6.4%	2.8%	2.4%					
Source: Malawi BE	Source: Malawi BEST (2009)								

- Biomass is the most important energy source
 - fuelwood, charcoal and crop residues
- Households use the largest share of energy

Malawi Country Status - Summary

Population:

- 15.3 million, 80% rural 50% below national poverty line
- Agriculture/GDP 30% of GDP
- Access to electricity 8.7% of total population 2% of rural population
- Main staple crops (% of daily calorie intake)
 - Maize (50%), Potato (8.4%), Cassava (5.8%)
- Main export crops (% of agri. Exports)
 - Tobacco (69%), Tea (9.6%), Coffee (0.4%)
- Agricultural production
 - Mainly small-holders (tobacco outgrowers)
 - Subsistance farming
- Energy supply
 - traditional biomass
 - does not meet the demand (imports)

Malawi Case Study: the flow of BEFS Rapid Appraisal for Malawi

• Country context

- Energy needs and priorities
- \Rightarrow Rural electrification is one of the priorities
- Energy End Use Options: Rural electrification
 - SVO and gasification, combustion
- Feedstock options
 - Oilseed crops: **sunflower** and **soybean**

Structure

Country Status

Review of key indicators and trends: Agriculture, Energy, Environment, etc.

COUNTRY: Malawi Sax Crops Component NEXT>> NEXT>> NEXT>> NEXT>> DEFS Rapid Appraisal for the country Image: Next>> Next>> Next>> Defs rapid uppraisal for the country Image: Next>> Next>> Next>> Subset to assess the potential for additional production of crops that can be used as feedstock for liquid biofuels: straight vegetable oil, biodiesel and ethanol. Restock for production of straight vegetable oil and biodiesel include oilseed crops: coconut, jatropha, oil palm, rapeseed, soybean and sunflower. Restock for production of ethanol include sugar and starchy crops: barley, cassava, maize, sugarbeet, sugarcane, sorghum and wheat. Up to four crops can be analysed at the same time, irrespective of the biofuel type.

Select the crops (crop 1 - crop 4) you want to analyse from the dropdown lists below:

Results from NR Module Crops

Cro	ps – available for bioenergy	sunflower	soybean	
	Intensification (t/year)	8,470	91,844	
	Change of crops (t/year)	54,942		
	Extensification: possibility for expansion of arable land un	clear at this level of analysis		
	TOTAL (t/year)	63,412	91,844	
	Allocated for SVO (t/year)	31,706	45,922	
	Allocated for biodiesel (t/year)	31,706	45,922	

Energy End Use Options Module

Disclaimer

FAO declines all responsibility for errors or deficiencies in the database or software or in the documentation accompanying it, for program maintenance and upgrading as well as for any damage that may arise from them. FAO also declines any responsibility for updating the data and assumes no responsibility for errors and omissions in the data provided. Users are, however, kindly asked to report any errors or deficiencies in this product to FAO. The choices of calculation made in this tool are those of the author(s) and do not necessarily reflect the views and choices of the Food and Agriculture Organization of the United Nations.

© FAO, 2014

Results

For 3 capacity levels: 10kW, 40 kW, 100 kW

- Techno-economic results
 - Potential number of plants
 - Area required for feedstock supply
 - Total investment
 - Production costs and comparison with alternative el.source
 - Share of production costs (feedstock, transport, labor)
- Socio-economic results
 - Number of jobs created
 - Number of households supplied
- Financial analysis results
 - Net Present Value
 - Internal Rate of Return

NEXT >> Summary of Results Comparative

33

Techno-economic results

Comparative alternative

- 100 kW diesel generator
- Placed at the consumption site no investment in the distribution network

- 3 capacity levels:10kW, 40kW, 100kW
- based on the feedstock available for bioenergy – calculated in the Crops tool

Socio-economic results

Total Number of Households Supplied

36

Results of financial analysis

Internal Rate of Return (%)						
	10 kW	40 kW	100 kW			
Sunflower	196%	389%	437%			
Soybeans	Not feasible	Not feasible	Not feasible			

Summary of results - Comparison among feedstock-

Feedstock	Feedstock availability (kW installed capacity)	Households supplied	Jobs created	Financially viable	Competitive with diesel generator
Soybean	8,900	5,825	1,869-2,670	-	-/+
Sunflower	14,260	9,322	2,982-4,278	+	+

NEXT >> Summary of Results by Feedstock

Summary of results for sunflower

Capacity	Total investment (USD)	Possible number of plants	Area required for feedstock supply	Households supplied	Jobs created	Financially viable	Competitive with diesel generator
10 kW	8,990	1,426	13 (ha)	7	3	+	+
40 kW	30,429	356	52 (ha)	26	9	++	+
100 kW	73,307	142	129 (ha)	65	21	+++	+

BEFS

39

Results for SVO from sunflower

Job creation includes labor required to produce and distribute electricity only. Biomass collection is excluded

Results of financial analysis for sunflower

Comparative alternative

- 100 kW diesel generator
- Placed at the consumption site no investment in the distribution network

Total investment - sunflower

 SVO generator and distribution network

Results of financial analysis for sunflower

Concluding remarks

- Understand the context, needs, constraints and investigate, based on the local evidence, potential viable solutions
- Central role for **smallholder inclusion** to ensure targeting poverty reduction
- What bioenergy option against which energy need, considering a broader energy mix
- Integration is key: Integrate food and energy systems

• How would you use BEFS RA tools in the implementation of your programmes and projects?

All tools and manuals are available from: http://www.fao.org/energy/befs/rapid-appraisal/en/

Thank you for your attention!

http://www.fao.org/energy/befs/en/

Contacts BEFS-Support@fao.org

Ana.Kojakovic@fao.org