

Stratos Tavoulareas & Marcelino Madrigal

April 25, 2014

Background

- Technical and Economic Assessment of Off-Grid, Mini-Grid and Grid Electrification Technologies (Dec. 2007)
- Study of Equipment Prices in the Power Sector (Dec. 2009)
 - > expand the list of generation technologies
 - expand the list of T&D technologies
 - take into account positive and negative externalities of power generations

<u>Model for Electricity Technology</u> <u>Assessments</u> (META)

The purpose of META

• The main purpose of META is to provide information and a tool that allows users to evaluate electricity options

• META provides

- A guide to the technologies, as well as capital, fuel and operating costs for each technology
- Generic estimates of the levelized cost per kWh of generating electricity and of electricity transmission and distribution
- Screening curve showing levelized cost per kWh for a range of capacity factors from 10% to 90%.
- Includes environmental externalities in the estimation of power generation costs

Typical Applications

- Develop inputs to power system planning models
- Technology screening; narrow down list of options to be analyzed in more detail
- Assess the impact of key parameters on technology competitiveness (e.g., discount rate; fuel price; environmental externalities)

What is META?

- Compares 54 electricity generation technologies
- Includes transmission, distribution and energy storage
- Includes environmental externalities
- Assesses levelized costs of electricity
- User-modifiable to suit local (sitespecific) conditions
- United States, Romania and India as representative countries
- Has been customized for Haiti and Jamaica
- Work initiated to customize it for Morocco

Grid and off-grid applications

Renewable Energy Generation Technology options

Generating	Off-grid			Mini-grid				Grid-connected				
types	10W	10	00W 1	kW	10kW	/ 100	DkW 1	MW	10MV	V 100	DMW 1	GW
Solar PV		•				•			•			
Wind			on-s	hore		on-sho	re				on-sł	ore ore
PV-Wind Hybrids		•										
Concentrated Solar Power										•	with without s	storage storage
Geothermal							binary		bi	nary	dual flusł	
Biomass MSW												
Biogas Landfill Gas												
Hydro			pico		r	nicro		mini		large	pumped	storage
Energy Storage							NaS	lead	d acid ba	attery		

Thermal Power Generation and Nuclear Generation Technology Options

Generating	Off-grid	Mini-grid	Grid-connected		
types	10W 100W 1kW	10kW 100kW 1MW	10MW 100MW 1GW		
Reciprocating engine	gasoline generator	• ga	diesel generator s generator		
Micro gas turbine					
Fuel cell					
Gas turbine		(simple cycle		
Coal fired		supercritical with CCS	S, w/o CCS and USC		
IGCC			with CCS, w/o CCS		
Coal CFB			subcritical Supercritica		
Oil/Gas Steam			oil 🔴 gas		
Nuclear			PWR PHWR ABWR		

Power delivery technology options

• Transmission technologies include a range of transmission voltages and substation voltages.

Country	Transmission voltage							
	300 ~ 500kV	200kV ~	100kV ~					
India	400kV	220kV	132kV					
Romania	400kV	220kV	110kV					
USA	345, 500kV	230kV	138kV					

• Average distribution costs per kWh for each country are estimated.

META | How it works

Results | Delivered Energy Costs

Assumed CO2 price = US\$23/tCO2e

Results | Screening Curves

Screening Curves allows the user to analyze the variation in cost as the capacity factor changes.

Customizing META

SPECIFICATION OF KEY INPUT VARIABLES

- Plant size and operating life
- Discount rate
- Opportunity cost of capital
- Seismic zone
- Capacity factor
- Plant Efficiency
- Auxiliary power consumption
- Fuel type, heating value and price
- Construction time
- Environmental technology installed
- The cost of environmental externalities
- Length and type of transmission line

Customizing META

DETAILED SPECIFICATION OF INPUTS

- Capital and O&M costs
- Commodity and labor prices
- Projected fuel prices
- T&D losses
- Interest during construction
- Emission factors
- "Learning curve" (technology development over time)
- Transmission line impedance
- Transmission line load factor

Using META

TO GET MODEL or TRAINING | Contact: Bipul Singh: <u>bsingh2@worldbank.org</u>

Tool and user guide can also be downloaded from www.esmap.org

For additional support, contact: BIPUL SINGH, ENERGY ECONOMIST 202.458.2135

BSINGH2@WORLDBANK.ORG

Thank You.

The World Bank | 1818 H Street, NW | Washington DC, USA www.esmap.com | esmap@worldbank.org

