Unlocking Commercial Financing for Renewable Energy in East Asia

Dr. Xiaodong Wang The World Bank EAP Renewable Energy Workshop Pattaya, April 2014

Structure of the Presentation

- **Conductive policies** are prerequisite for catalyzing renewable energy investments
- When to use public funds: overcome market barriers and risks
- How to select financing instruments: tailored to market barriers, segments, and local context
- How to most effectively design and implement financing instruments: lessons learned from case studies
- Conclusion

Conducive Policies: Pre-requisite for Catalyzing Private Investments in Renewable Energy

Renewable Energy: Mostly economically but not yet financially viable, **cost gap** between RE and fossil fuels is the No. 1 barrier

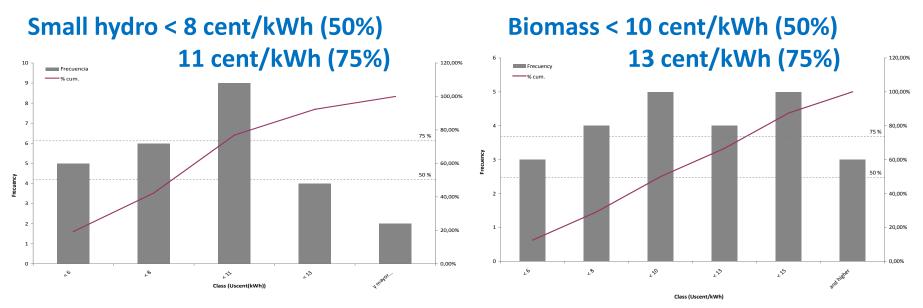
Three magic bullets for conducive renewable policies:

- Adequate tariff levels with long-term PPAs
 - Mandate Price -- Feed-in Tariff (FIT) or
 - Mandate Quantity Renewable Portfolio Standard (RPS) or
 - Competitive Tendering Mechanisms
 - Mutually exclusive: Choose one, but not three policies at the same time
 - Address affordability and minimize cost impacts on consumers
- Mandatory grid access
- Incremental cost pass-through

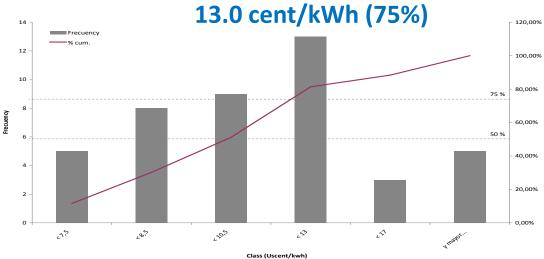
RPS, FIT, and Concession: Pros and Cons

	Pros	Cons
FIT (>50 countries with FIT)	 The most successful to scale up RE Highest price certainty to investors Most simple to administrate 	 Setting the tariff level is tricky Affordability issue needs to be addressed Coordination with grid expansion could be difficult
RPS (12 countries +35 US states with RPS)	• If enforced, can meet realistic RE targets	 Complex to design and administer Favor least-cost technologies Lack of price certainty
Concession (20 countries with bidding)	 Effective at reducing cost Conducive for grid planning at per-determined sites 	 Signed contracts may not be realized Favor least-cost technologies More complex than FIT, but simpler than RPS

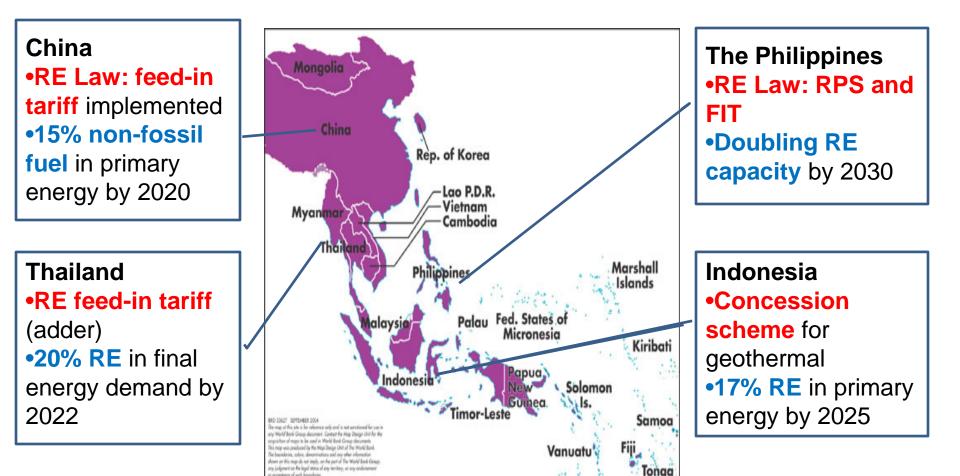
Feed-In Tariff Principles


• Objective:

balance between stimulating RE market (a reasonable rate of return) and minimizing cost impacts on consumers


Three methods of setting price

- Avoided cost of conventional generation: financial cost and economic cost
- Cost of RE plus reasonable profits: cost benchmark based on concession or existing project experience
- ✓ Average retail rate: net metering
- ✓ Concession as price finding mechanism
- Long-term contracts 15-20 years
- Guaranteed off-take
- Incremental cost pass-through
- **Differentiation** by technology, resource, and size
- **Periodical tariff adjustment**, but only for new projects


FIT: Global Benchmarks

Wind < 10.5 cent/kWh (50%)

Many EAP countries have adopted ambitious RE policies and targets

Feed-in Tariffs in East Asia

	China (varies by resources)	Thailand (varies by capacity)	Malaysia (varies by capacity)	Philippines
Mini/Micro Hydro		10-12 (< 200 kW)	7.1-7.4 (< 30 MW)	13.3 (run of river)
Biomass	11.5	8.3-9.0	8.3-9.5 (<30 MW)	14.9
Biogas		8.3-9.0	8.6-9.8 (<30 MW)	
Wind	7.8-9.4	19-22		19.2
Solar	15-16.7	29	30.6-34.1 (<12 kW)	21.8

Hybrid Approaches: RPS AND FIT

• Principles:

- Remove overlap as much as possible
- Apply RPS and FIT for different RE technologies or plant size:
 FIT covers small size projects and emerging technologies (solar PV) that are left out by RPS
- Emerging International experience:
 - Italy : FIT for small RE (< 1 MW) and solar PV + RPS</p>
 - UK : FIT for small RE (< 5 MW) up to 2% of supply + RPS
 - California: FIT for small RE (< 1.5 MW) up to 480 MW + RPS

Minimizing cost impacts on consumers

- **Germany:** periodically adjust down FIT levels
- China:
 - Concession as price finding mechanism to set up FIT
 - Wire charge to RE Fund: 0.25 cent/kWh
- Thailand and Malaysia:
 - FIT policy, but put a cap on consumer price increase
 - Thailand: no more than 0.27 cent/kWh allocating target for each RE technology, and reduced FIT for solar PV
 - Malaysia: no more than 1%
- The U.S.: Rate increase with States RPS policy < 1-1.5%, and rate reduction in some states

When to Use Public Financing Instruments ?

- With effective policies, commercial financing for gridconnected RE is the norm
- Public financing is needed to:
 - **Demonstrate RE technologies**, when policies not in place
 - Provide long-term tenure (e.g. long-term financing or risk guarantee): Mismatch between the short-term tenure and long-term payback:
 - Mitigate technology risks (risk guarantee): e.g. geothermal or CSP
 - Increase access to financing for SMEs (e.g. credit line, dedicated fund, mezzanine financing, equity financing) : Credit risks for SME developers (e.g. small hydro, biomass projects)
 - Overcome high upfront costs of RE consumer products: e.g. solar home systems and solar water heaters

Financing Instruments: Tailored to Market Segments, Barriers, and Local Context

- **Concessional Project Financing:** When sound policies not in place as an interim measure, or kick start new technologies. BUT limited funds cannot lead to large scale
- Credit Lines: Effective at increasing banks' capacity and confidence in RE investments, bundling small-scale RE projects (e.g. small hydro), and providing longer term tenure for RE projects; BUT supporting SMEs may be a challenge
- Risk Guarantees: Effective at increasing banks' confidence in the clients at margins of credit ratings, mitigating new technology risks (e.g. CSP) or resource risks (e.g. geothermal); BUT only reduce banks' perceived risks
- Dedicated Funds: Effective at increasing access to financing for SMEs, and when domestic banks are not ready for RE financing (e.g. IREDA); BUT leverage and scale-up key challenges
- RESCO Financing: Effective at aggregating small deals (e.g. roof-top solar PV); BUT not a magic bullet. Super-ESCO emerged as a viable model
- *Mezzanine Financing*: Effective at bridging the equity/debt gap for SMEs and start-ups (e.g. FIDEME, CAREC)
- **Equity Funds:** Effective at supporting **SMEs, RESCOs, new technologies**, **and start-ups** (e.g. GEEREF, Berkeley REAF)

Distributed RE Financing Mechanisms: Affordability and Delivery Models Essential

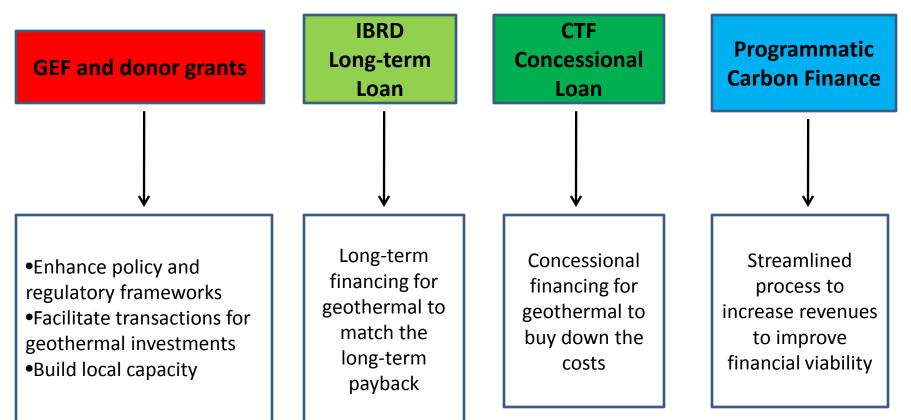
- Consumer credit model: Micro-finance institutions (MFI), financial institutions (FI), or utilities offer multi-year consumer credits for customers to overcome the high upfront cost barrier
 - MFIs for solar home systems in rural areas: Bangladesh, India, Sri Lanka
 - **FIs for RE appliances in urban areas**: green mortgage in the US
 - Utility On-bill financing: Solar water heaters in Tunisia, roof-top solar PV in the US
- Leasing model: Leasing company owns, installs, and maintains solar PV, and charges a monthly fee. At the end of the leasing agreement, ownership transfers to the customers
 - Off-grid SHS in rural areas: Laos by PESCOs and village energy managers
 - Distributed solar PV in urban areas: Solar City in the US, and Beijing Rooftop PV
- Fee-for Service model: RESCO owns and maintains SHS, and charges a monthly fees to customers: *Dominican Republic, and Argentina and Senegal under concession model*

Which Public Financing Instruments Maximize Financial Leverage ?

- Engaging domestic banks through credit lines and guarantees: high leverage of public funds and good prospects of sustainability
- *Mezzanine and equity funds*: High leverage of public funds, particularly double leverage from Fund-of-Funds
- Consumer financing: High leverage of public funds to provide low-interest rate, long-term consumer financing through utilities or financial institutions
- Technical Assistance (TA) to FIs, developers and govt.: critical with high pay-off, particularly when packaged with public financing instruments

Program Objectives Determine the Market Segments

Program Objectives:


- *Maximize greenhouse gas emission reductions:* Most cost effective to target at large-scale grid-connected RE
- Increase access to electrification: Target at off-grid RE

Financing SMEs remains the toughest market segment

 SMEs have their own unique constraints regardless of sector (i.e., lack of accounting, collateral, etc.)

Indonesia Geothermal Development Project

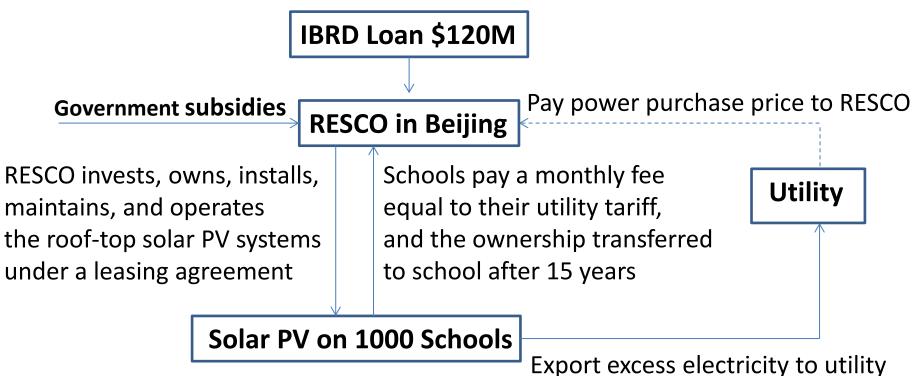
Combing financing sources to achieve bigger impacts

Turkey Renewable Energy Project

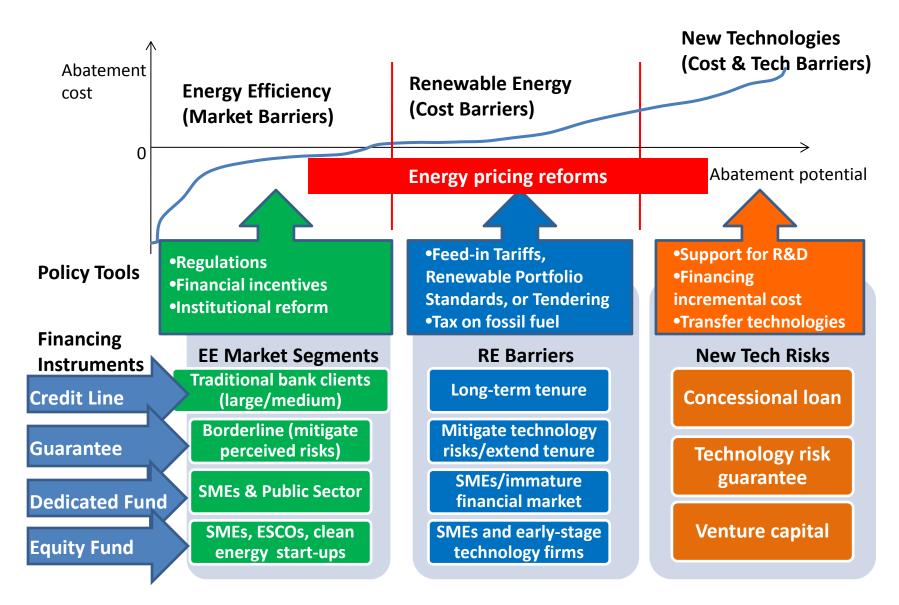
• Turkey Renewable Energy Project:

- WB loan (\$202M): **on-lend** to two local banks for RE investment
- Focus: small hydro

Achievements


- \$200M leveraged \$555M private investments, RE capacity of 620 MW and annual CO₂ emission reduction of 1.7 million tons
- Substantially increased financial institutions' interest in providing long-term financing to RE projects
- Resulted in the **first CTF project** in Turkey (IBRD \$500M and CTF \$100M)

Lessons learned


- Conductive policies (RE obligation) are an important pre-requisite for private investment in renewable energy
- Technical assistance to participating banks is critical
- Careful selection of PFIs is a key success factor
- Long-term financing to renewable energy development is essential
- Streamlined procedures shortened approval time and clarified responsibilities/accountabilities of all involved agencies
- High collateral requirements constrained small renewable developers from access to financing

Beijing Roof-Top Solar PV Scale-Up (Sunshine Schools) Project

- To demonstrate RESCO model for scaling up roof-top solar PV
- To install 100 MW roof-top solar PV in 1000 schools

Policy Tools Tailored to Technology Maturity and Costs Financing Instruments Tailored to Market Segments and Barriers

