Geothermal gas management at Hellisheidi Power Plant

Hólmfrídur Sigurdardóttir Head of Environmental Affairs, Orkuveita Reykjavíkur – Reykjavik Energy (OR) III GGDP Roundtable

26 April 2016

Benefits of geothermal in Iceland

Economic, environmental, social ...

- Households and companies
 - Affordable electricity and heating
 - Public health
- Economic
 - In 2010 Iceland's total economic benefit from geothermal was calculated to be about \$600 million
- Environmental
 - Reduced carbon footprint by
 ≈ 4 million tons CO₂ equivalent

Not without challenges

Geothermal energy and geothermal gas emissions

- Emissions
 - CO₂, H₂S
 - $\hspace{0.1in} H_2, \hspace{0.1in} N_2, \hspace{0.1in} CH_4, \hspace{0.1in} Ar$
 - Environmentally significant
 - Greenhouse gases, corrosive, toxic, flammable, foul smell
- Origin
 - Magmatic
 - Meteoric/precipitation
 - Water rock reactions

Geothermal power plants by the Hengill central volcano Nesjavellir Hellisheidi

Commissioning 1990-2005 120 MW_e and 400 MW_{th} H₂S: \approx 9,000 tons CO₂: \approx 16,000 tons 30 km. from the Capital area

Commissioning 2006-2011 303 MW_e and 133 MW_{th} H₂S: \approx 11,000 tons CO₂: \approx 40,000 tons 20 km from the Capital area

Social acceptance

Geothermal utilization met its most serious challenge for decades

- In 2006 complaints and demands for cleaning the H₂S gas from the Hellisheidi Power Plant
- Plans were for new power plants in the Hengill area
 - Declared in EIAs the H₂S would be abated
- In 2007 a team of experts began the development of injecting H_2S into the basaltic bedrock

Complaints reflected in regulation

Icelandic regulation 514/2010 on atmospheric concentration of H₂S

- Stricter than WHO guidelines
- Requires the geothermal industry in Iceland to reduce atmospheric concentration
- Power companies obliged to conduct measurements in cooperation with authorities

Guidelines/ regulation on atmospheric H ₂ S concentration	Averaging period	Value µg/m³
WHO Air quality guidelines, 2 nd Edition	24 hour	150
Icelandic regulation 514/2010	24 hour	50*
	3 hour	150
	1 year	5

* Allowed instances of surpassing limit is 3 times per year

United front against the challenge

- The largest environmental challenge OR was facing
- Formal collaboration between lceland's three largest geothermal companies
 - OR
 - Landsvirkjun
 - HS Orka
- OR rightfully was in the driver's seat

Methods to reduce H_2S

For 20 years OR examined the possibility of reducing emissions of H_2S gas or since before the commissioning of Nesjavellir Power Plant

- Chemical methods
- Biological methods
- Physical methods
- Steam hood ejectors or chimneys

Traditional methods

Pressure on OR to resolve to off-the-shelve solutions

Chemical and biological methods produce sulfur or sulfuric acid

- Market for sulfur and sulfuric acid is not lucrative
- Would have to be disposed of into sulfur deposits
 - Requires special attention, ground water and biota in the vicinity
 - Flammability

OR's main stressing point:

 Traditional methods don't solve the problem but merely relocate it

Methods to reduce H_2S

For 20 years OR examined the possibility of reducing emissions of H_2S gas or since before the commissioning of Nesjavellir Power Plant

- Chemical methods
- Biological methods
- Physical methods
- Steam hood ejectors or chimneys

During the debate scientists had been working...

CO₂ abatement and subsurface sequestration

SUNNUDAGUR 15. JANÚAR 2000 FRÉTTIR Íslendingar geta orðið frumkvöðlar í bindingu koltvíoxíðs

Einn fremsti vísindamaður heims í rannsóknum á umhverfisbreytingum, Wallace B. Broecker, fjallaði í fyrirlestri um glímuna við loftslagsbreytingar. Andri Karl kynnti sér hvernig mannkynið getur tekist á við hlýnun loftslags og hvernig Íslendingar geta komið að beirri baráttu.

allace B. Bruecker er prófessor i jarðefnafræði við Columbia háskólann í New York hér á landi fyrir atbeina ardvisindastofnunar Hückila İs lands og Ólafs Ragnars Grímssonar, forseta Islands, sem ákveðið hefur að beita sér fyrir því að visindamenn, fræðimenn og forystumenn í listum, menningu og al öðamálum sæki Ísland heim og aldi hér fyrirlestra undir samheitina Nýir straumar. Fyrsti fyr-irlesturinn för fram fyrir fulla blai í Öskju, Náttúruvísindahúsi Háskóla Íslands, á föstudag og i ivarpi sagdist forsetinn m.s. sér staklega ánægður með að fá til landsins gamlan vin til að hefja (vrirlestraröð sina. Fyririestur Broeckers Galladi

um glimuna við loftslagsbreytinour, hvornio manakynik optur tekist á við hlýrun loftslags af vildum gróðurhúsaáhrifa og hvern

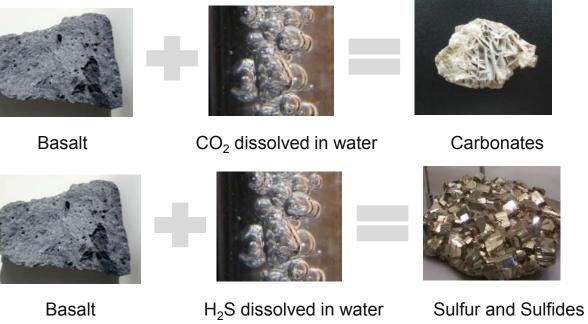
Fullt var út úr dyrum í Öskju á föstudag þegar Wallace S. Broecker hélt fyrirlestur sinn. Meðal gesta voru forseti Íslands, Ólafur Ragnar Grímsson, og Kristín Ingölfsdóttir, rektor HÍ.

25 milljarðar tonna koltvíoxíð-

car fylkinga

egar hi sem

- In 2006 Wallace Broecker was invited • to Iceland by the President to give a talk on climate change
 - Removing CO₂ from the air and sequestering it in the subsurface
- CarbFix initiated in 2007 ٠
 - International experts investigate the feasibility of CO₂ sequestration in basalt
- Hellisheidi was an ideal laboratory
 - Stream of CO₂ and ample basalt


OR's pilot stations at Hellisheidi

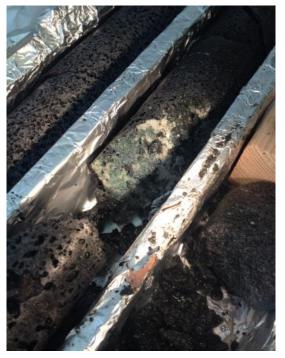
-capture, transporting and re-injection 2007-2012

CarbFix and SulFix

Same basic processes

Carbonates

CarbFix boosts SulFix


- An international group of scientists and PhD students
- Collaboration between OR, University of Iceland and universities in USA and Europe
- The findings of the CarbFix Project, methodology and technical equipment have been utilized directly in the SulFix project

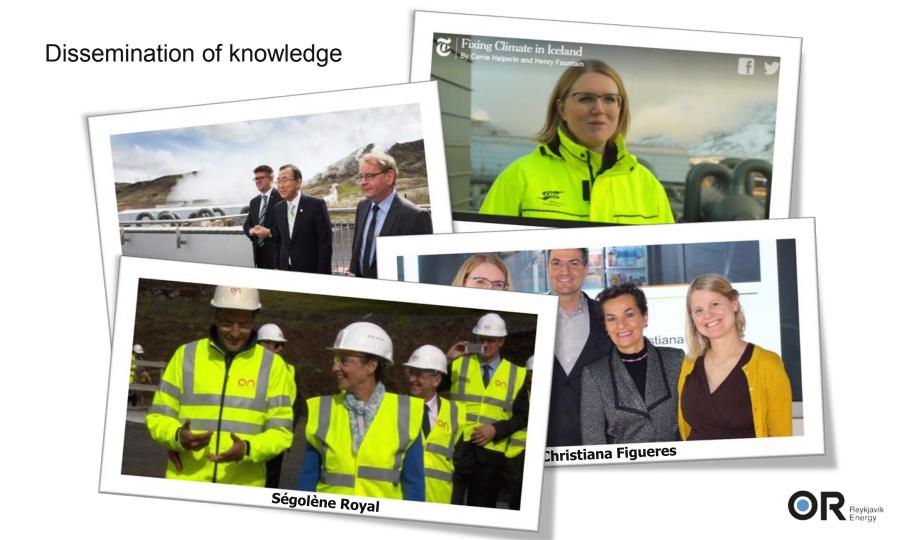
CarbFix feasibility manifested

Important results in October 2014

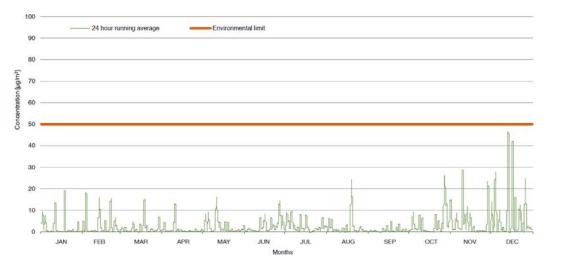
- ≈ 90% sequestration in mineral form within a year from re-injection
- Theory confirmed
- The project receives attention in the scientific community
- A boost for the ongoing SulFix project

Calcite from a core of ~420 m depth. The green color is calcite marked by tracer.

SulFix


Re-injection in full scale in June 2014

- Stable operation from beginning
- Re-injection of H₂S precipitates in the basaltic rock forming pyrite
- $\approx 2,500$ tons H₂S re-injected in 2015
- $\approx 25\%$ of the H₂S emissions
- 75-80% sequestration in mineral form within six months from re-injection confirmed in 2016



Doubling of capacity in 2016

The daily concentration of H₂S in Reykjavik 2015

Year	Number of times environmental limits surpassed
2012	2
2013	1
2014	2
2015	0

* Allowed instances of surpassing limit is 3 times per year

Innovations past and present

- Challenges foster opportunities
- Current challenges have brought innovative solutions
 - Scientists
 - Engineers
 - Tradesmen and –women
 - Workers
 - <u>Managers</u>

Lessons learned and implications

Approaching

- Near zero gas emission geothermal power plants
- Acceptance, image and respect
- Diverse use of geothermal gases instead of re-injecting them
- A global alternative?

Photo: www.nasa.gov

