

The Energy Innovation Center

@ Energy Division

Inter American Development Bank

Presentation Objectives

❖ Provide a brief overview of the emerging River Hydrokinetic Energy Sector

Industry origins, benefits of RHK technology, potential energy matrix contribution

Cross-section of the Leading RHK Technologies* -

Technology overview & development to date

Overview of **Primary Applications** for RHK technology

Downstream of dams & standalone application

Comments & Discussion!

What is 'Hydrokinetic' Energy?

Waves

Tides or Ocean
Currents

River Currents

Technologies that generate clean, renewable electricity from the movement of water – in the ocean or in river systems

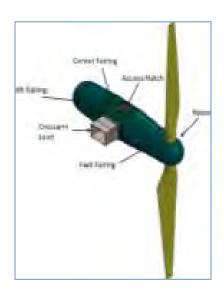
Marine Energy Overview

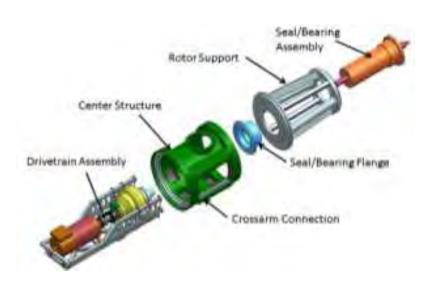
Past 5 years has seen considerable advancement towards commercialisation of the Marine Energy sector in the UK, France, Canada & other countries...

...Orkney, Scotland is a world leader with the first and largest test centre (EMEC) and 12 commercial seabed leases in place for projects up to 1.23GW in capacity

VATTENFALL 5

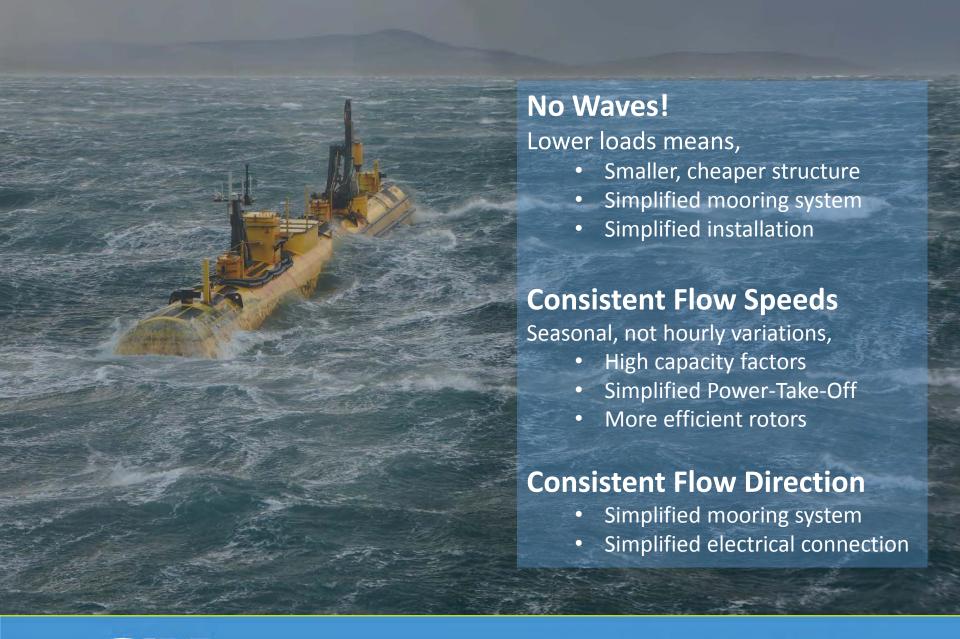
Tidal Techs Demonstrated in Real Ocean Conditions


Courtesy of the European Marine Energy Centre (www.emec.org.uk)

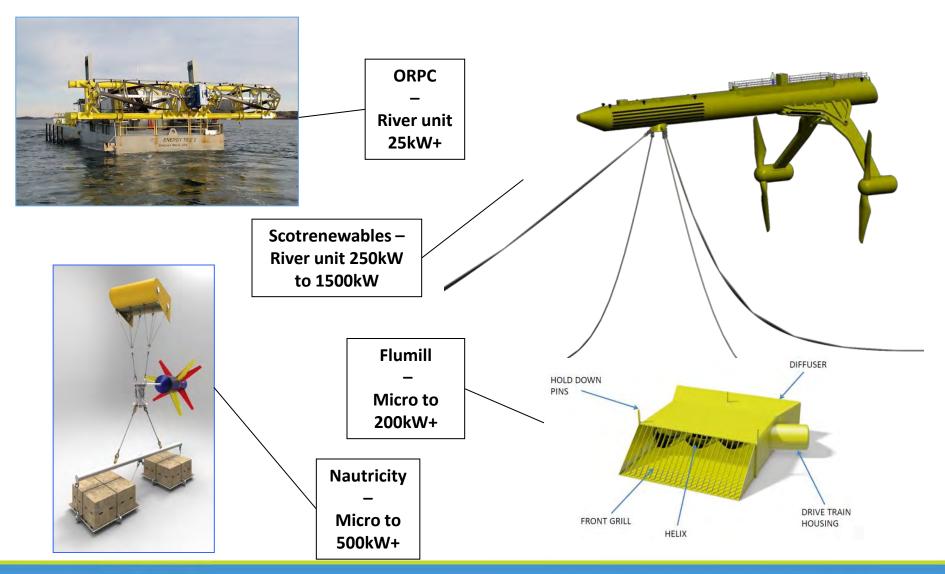


Generic RHK Overview

- All concepts; kinetic energy of moving water converted to rotational motion used to drive a generator – draw upon mature wind energy technology
- Subsystem converting rotational motion to electricity is Power Takeoff (PTO)


Moving water Rotors Rotor Shaft Gearbox Generator Power Export

Images from US DOE Marine & Hydrokinetic Overview, June 2013



www.iadb.org/eic

Ocean Tested Tidal Concepts Suited for River Application

There are also 'River Specific' Concepts

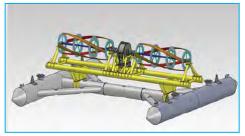
Tocardo

100kW+

RER Hydro

550kW @ 4.5m/s

Oceanflow Energy


20kW up to 100kW

Smart Hydropower

5kW (now) – up to 50kW (future)

Technology Links:

www.scotrenewables.com

www.orpc.co

www.flumill.com

www.nautricity.com

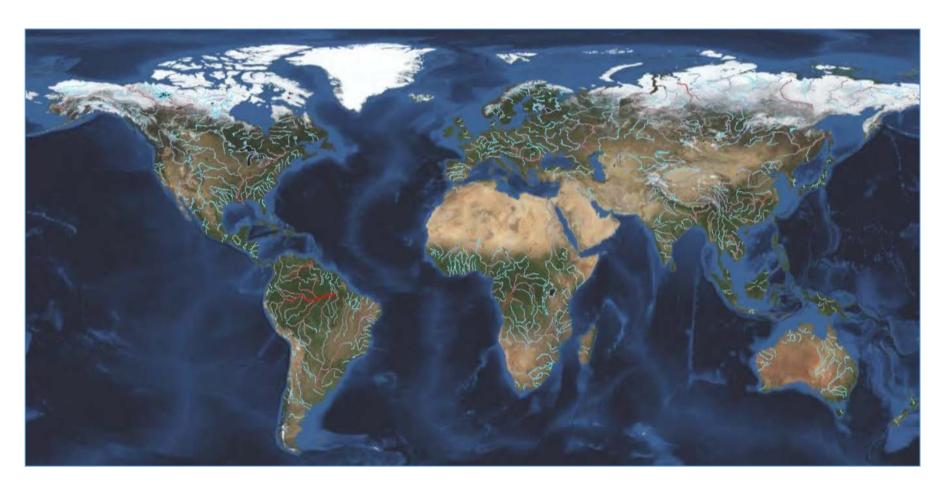
www.rerhydro.com

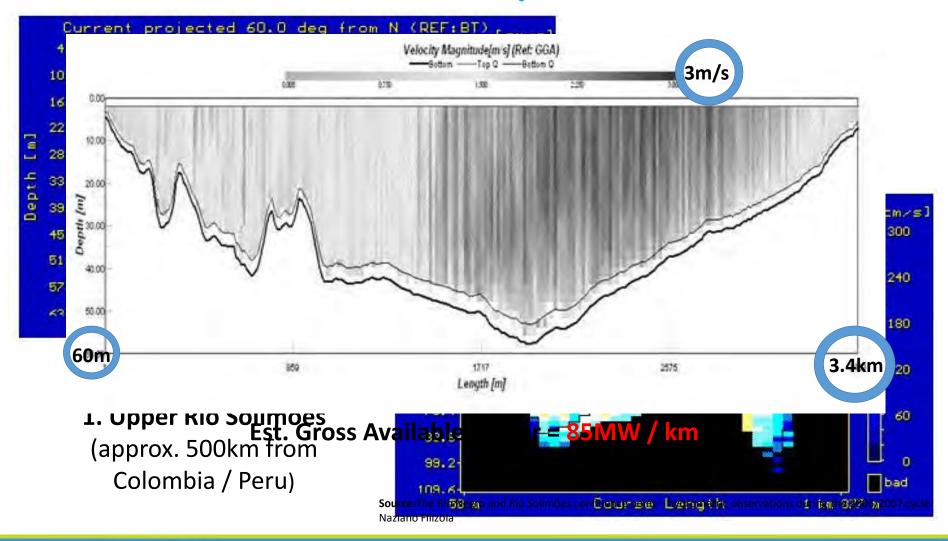
www.smart-hydro.de

http://www.oceanflowenergy.com/

http://www.tocardo.com/

www.theriteproject.com

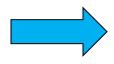



River Hydrokinetic Energy – A Global Resource

World Rivers >10km³ / year discharge

Amazon Basin – Sample Resource Data

RHK Advantages


Technology	Median Capacity Factor	Low GHG Emissions?	Baseload Power?	Modular Distributed Option?
Natural Gas	80%	X	1	X
CCGT	84.6%	X		X
Coal	84.6%	X	1	X
Nuclear	90%	1		X
Hydropower	50%	/		(Possible)
Adv. Geothermal	90%	\checkmark		X
Solar PV	21%	\checkmark	X	~
Offshore Wind	43%	/	X	X
Onshore Wind	40.4%	1	X	(Possible)
Diesel	90%	X	(not desirable)	\checkmark
River Hydrokinetic	Est. 65% - 95%	/	1	✓

Source (excl. RHK) : US EIA

What Does River Hydrokinetic Energy Offer?

- ❖ Very consistent resource close to demand centres many using expensive FF's
- ❖ Potential for extremely high capacity factors 65% 95% = competitive LCOE
- Leading technologies large scale prototypes already technically proven
- ❖ Add-on / Alternative to conventional dammed hydropower
- Clean reliable power for remote communities while maintaining vital transport links – creation & development of local supply chain

As with any emerging sector support is required in early stages – particularly, in the case of RHK, in financing of resource assessment & project enabling studies

Thanks for your attention!

John McGlynn – Marine Energy Specialist

@ IDB Energy Innovation Center

jmcglynn@iadb.org

Supplementary Appendix:

RHK Technology Information

Smart Hydro Power (Germany)

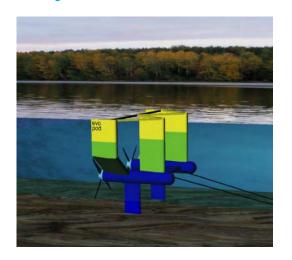
- Pico scale 'ducted' turbine 5kW per unit
- Snychronous PM generator, gearbox-less
- Power conditioning on-shore
- Floating unit can submerge in flood events
- Debris protection system

Parameter		Unit
Rated Power	5	kW
Rated Current Speed	2.7	m/s
Cut-in Current Speed	0.7	m/s
Shut-down Current Speed	3.5	m/s
Rotor Diameter	1	m
Maximum Rotor Speed	280	Rpm
Turbine Weight	0.38	Tonnes
Rotor Diameter	1	m
Turbine Dimensions (i.e. length, width)	2.5/ 1.8	m
Minimum Depth Requirement	2 / 1.6	m

Smart Hydro Power

Commercial Aspects:

- 5kW models installed / tested in Germany,
 Austria, Colombia, Brazil, Indonesia & Nigeria
- Upcoming projects in :
 - Nigeria array project (14 turbines)
 - Rio Madera, Brazil
 - Kalimantan, Indonesia
 - Huayabamba, Peru
- Concept is suitable for array application & scalable with potential for larger units in future



Ocean Flow Energy (Scotland)

- Generic hydrokinetic concept rivers, estuaries, open ocean
- Floating w/ submerged nacelle. Streamlined 'struts'
- Generator w/ gearbox
- Power conditioning done on-shore
- River unit initially potentially up to 100kW (twin rotor)
- Potential for array type unit with higher capacity

Parameter		Unit
Rated Power	100	kW
Rated Current Speed	2.8	m/s
Cut-in Current Speed	0.7	m/s
Maximum Rotor Speed	60	Rpm
Minimum Depth Requirement	5	m

Ocean Flow Energy

Commercial Aspects:

- 2 x 1kW models installed commerically
- 1 x 37kW model trialled in ocean in Scotland

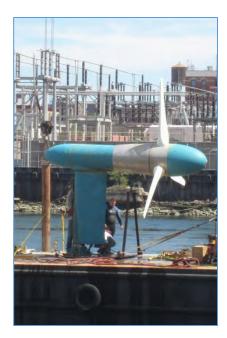
Other Points:

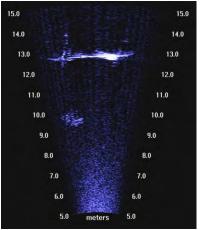
- Floating turbine copes passively with changes in river level
- Slow rotational speed at larger scale = reduced potential for harm to riverine life

Verdant Power (USA)

- 3-bladed bottom-mounted concept
- 35kW units installed array demonstrator, East River NYC
- Ongoing technology refinement process through 2015 testing of main components and proving of system longevity
- Future units up to 470kW

Parameter		Unit
Rated Power	56 – 470	kW
Rated Current Speed	2.0 - 3.0	m/s
Cut-in Current Speed	0.8 – 1.0	m/s
Shut-down Current Speed	3.0 – 4.0	m/s
Rotor Diameter	5 – 11	m
Maximum Rotor Speed	40 - 18	Rpm
Minimum Depth Requirement	10 - 22	m





Verdant Power

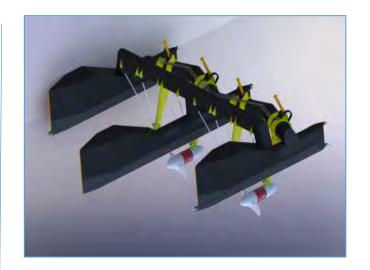
Commercial Aspects:

- License awarded to develop up to 1MW commercial project
- US FERC pilot license awarded & compliance achieved
- Demonstrated lack of fish impacts during monitoring program – see radar image right showing school of fish avoiding system
- \$700k USTDA funding to explore Turkey project feasibility

Tocardo (Netherlands)

- 'Flexible foundation' turbine can be mounted on variety of support structures – fixed, floating, existing
- Direct-drive PM , fixed pitch rotors
- Current offering 80kW potentially larger in future

Parameter	T100		Unit
Rated Power	42	98	kW
Rated Current Speed	2	4,5	m/s
Cut-in Current Speed	0,4	0,9	m/s
Shut-down Current Speed	2,6	6,8	m/s
Rotor Diameter	6,3	3,1	m
Maximum Rotor Speed	32	64	rpm
Turbine Weight	6,4 - 6,6		tonnes
Min. Depth Requirement	4		m

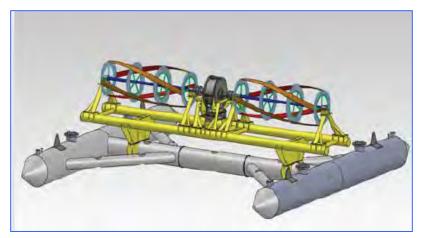

Tocardo

Commercial Aspects:

- Netherlands 80kW canal pilot project operational since 2008 – 20,000 hours
- Demonstrator river project in Nepal turbines
 to be installed Q2 2014

Other Points:

- Adaptable, scalable concept
- Low rotation speed. Fish passage tests carried out previously with positive results



Ocean Renewable Power Company (USA)

- 25kW River unit 2 x cross flow rotors
- On board direct drive generator, no gearbox
- Horizontal axis = suitable for shallow sites
- Submersible support structure designed for ease of deployment & retrieval

Parameter		Unit
Rated Power	25	kW
Rated Current Speed	2.25	m/s
Rotor Diameter	1.3	m
Maximum Rotor Speed (free Wheel)	90	rpm
Turbine Weight	10.5	Tonnes
Rotor Diameter	1.3	m
Minimum Depth Requirement	4	m

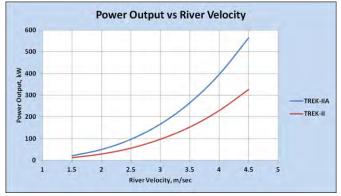
Ocean Renewable Power Company

Commercial Aspects:

- 150kW tidal version (very similar components to 'Rivgen') installed and tested in Maine
- 25kW 'Rivgen' will be installed in Alaska summer 2014

Other Points:

• Environmental monitoring survey carried out 2012 / 2013 – acoustic monitoring, marine life interaction, mammals, birds & other receptors..... "No observed negative effect"



RER Hydro (Canada)

- River-specific concept— 2 versions —nameplate
 capacity of 340kW & 550kW @ 4.5m/s
- Submerged, unidirectional, ducted turbine onshore power condtioning
- Installed / retrieved using crane barge
- Min depth 5.5m 6.5m, min speed 1.5m/s
- 2.5 year prototype test in St. Lawrence River,
 Montreal good success. 31,000 hours
 operation & 95% availability

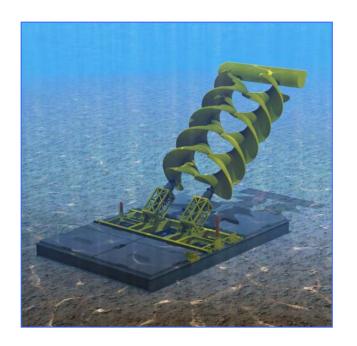
RER Hydro

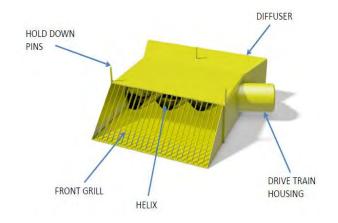
Commercial Aspects:

- 6 turbine demo project upcoming in Montreal
- Agreement in place with Boeing for global mkting & sales + technical input
- Currently investigating intl. project opportunities

Other Points:

 Rotational speed 60 – 90RPM. 3rd party Fish behavioral tests carried out during prototype testing with positive results.





Flumill (Scotland / Norway)

- Rotorless Helical concept high torque & slow rotation
- Bottom mounted, horizontally orientated
- Scalable, adaptable river concept 3kW to 200kW+

Parameter		Unit
Rated Power	200	kW
Rated Current Speed	2.5	m/s
Cut-in Current Speed	0.5	m/s
Rotor Diameter	2	m
Maximum Rotor Speed	50	Rpm
Minimum Depth Requirement	2.4	m

Flumill

Commercial Aspects:

- Previous offshore test at EMEC
- River unit has undergone 2 tests in Scotland
- Currently investigating intl. project opportunities for tidal and river units

Other Points:

• Low rotational speed & absence of exposed moving parts = low wildlife impact

Nautricity (Scotland)

- 7-bladed, rotor & stator contra-rotating, directdrive, passively cooled
- Semi-buoyant suited for offshore or river application
- Contra-rotation = suitability for lower current velocity

Parameter			Unit
Rated Power	25	500	kW
Rated Current Speed	2.3	2.3	m/s
Cut-in Current Speed	0.8	0.8	m/s
Rotor Diameter	3	14	m
Maximum Rotor Speed	204*	44*	Rpm
Minimum Depth Requirement	5	20	m

^{*} Combined rotor speed, each rotor rotates at half this speed

Nautricity

Commercial Aspects:

- Tested offshore in 4 Scottish locations incl.
 EMEC & also in Thames River
- Concept is scalable 1.5kW 500kW = wide
 range of application

Other Points:

- Mid water-column away from surface debris
- Experiences from consenting deployment in wide variety of UK sites

Scotrenewables (Scotland)

- Floating turbine, dual rotor w/ retractable legs –
 operational & transport / survival modes
- Designed for survivability but also ease of installation
- Highly accessible for ongoing O&M
- No problem with change in water level rotors maintained in most energetic part of column

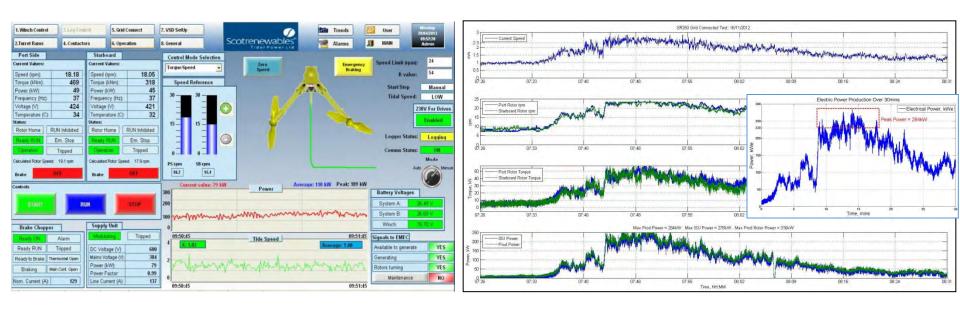
Parameter (River Turbine)		Unit
Rated Power	1000	kW
Rated Current Speed	2.2	m/s
Cut-in Current Speed	1	m/s
Rotor Diameter	18	m
Maximum Rotor Speed	15	rpm
Turbine Weight	300	Tonnes
Turbine Dimensions (i.e. length)	Hull length = 50m	m
Minimum Depth Requirement	26	m

Scotrenewables Concept Overview

Scotrenewables

Commercial Aspects:

- Tested extensively & successfully at 'full' 250kW scale at EMEC during 2.5 year period & since 2002 at smaller scale 2MW tidal turbine (world's largest!) to be constructed during 2014
- High applicability for rivers at large scale commercial units up to 1.5MW
- Tidal demo projects in UK
- Advanced plans to develop high-profile river demo project in Brazil


Other Points:

 Environmental monitoring program as part of EMEC testing & commercial project development – positive results with zero negative impact shown on bird and mammal populations

Scotrenewables 250kW Testing

http://www.youtube.com/watch?v=oYuCH42atCY&feature=youtu.be

