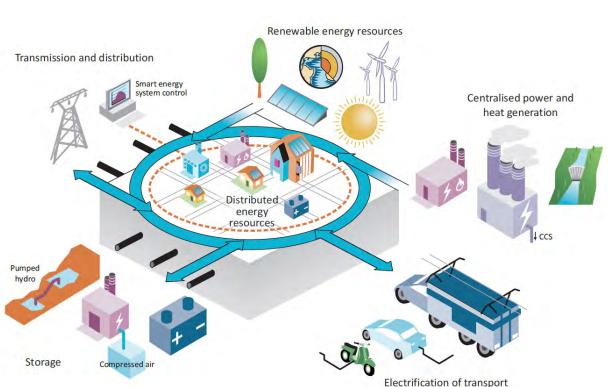


Technology and Policy for the Built Environment - Vital for Sustainable Cities


Conference on Energy Efficiency in Cities

Marc LaFrance, IEA Mexico City, 18 June 2014

ETP 2016 - Urban Focus

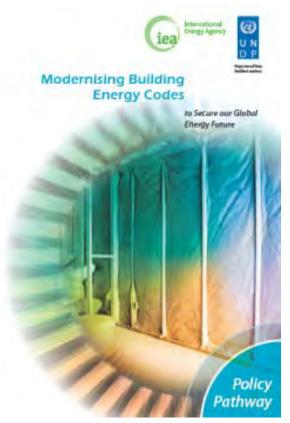
 Building on IEA capacity: From macro energy systems integration to urban energy systems analysis

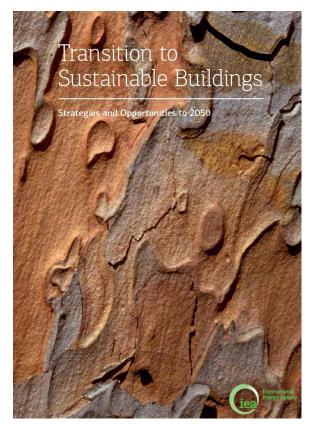
Importance of Buildings Sector

www.iea.org

- Largest end-use sector
- 1/3 carbon emissions
- 50% of electricity
- Major portion of GDP

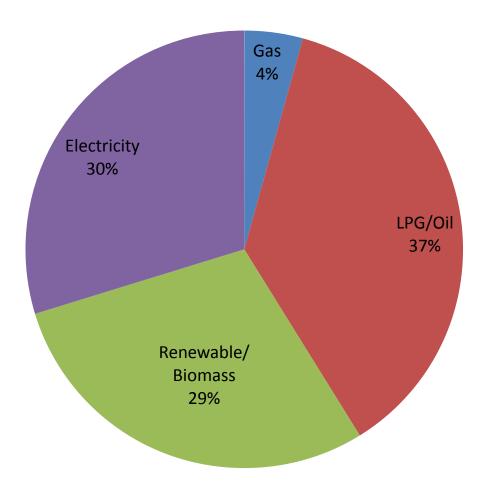
- Opportunities/challenges:
 - 75% 90% of OECD building stock still in service by 2050
 - Large population growth in developing world will drive new floor area that needs to be efficient (2.5 billion more by 2050)


2013 BUILDING PUBLICATIONS


Technology Roadmap
Energy efficient building envelopes

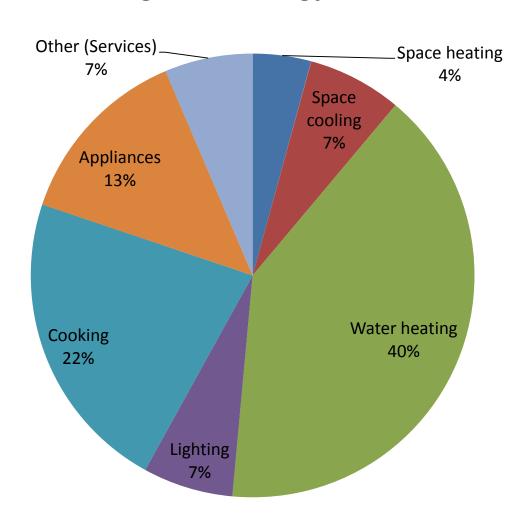
Dec 2013

Aug 2013



Jun 2013

Key Energy Policy Tool – Analysis and Data


Mexico Building's Energy Supply

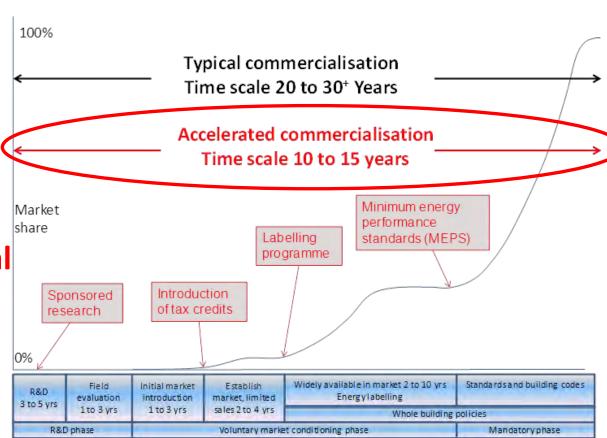
Key Energy Policy Tool – Analysis and Data

Building's Final Energy in Mexico

Priority Recommendations

www.iea.org

	ASEAN	Brazil	China	European Union	India	Mexico	Russia	South Africa	United States
Technology									
Advanced envelope – cold climate									
Reduced cooling loads – hot climates									
Heat pumps									
Solar thermal									
More efficient use of biomass									
Policy									
Building codes with supporting infrastructure									
Appliance and equipment standard									
Deep renovation of existing buildings									
Zero-energy new buildings					_				

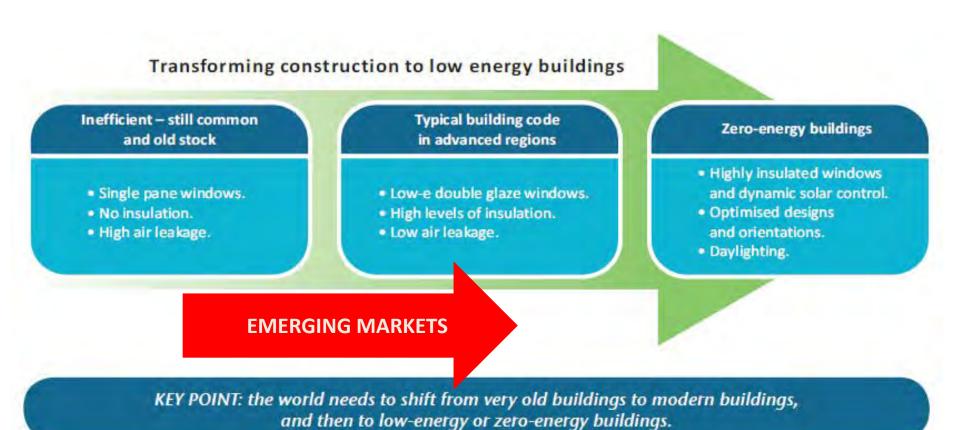

Note: Recommendations limited to top two for technology and policy, all items could be relevant for most countries. Red indicates immediate priority, while gold indicates second priority.

Integrated Policies – Systems and Components

www.iea.org

- Promote integrated policy packages
- Deep renovation critical in mature markets
- Building codes critical in emerging markets
- Systems level performance supported by advanced components

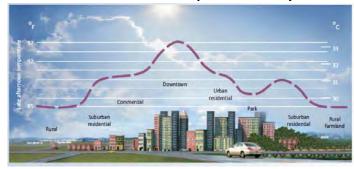
Policies Need to Be Tailored to Climate, Culture and Typical Building Practices


Average Monthly Data (Base 21° C) (Example with Limited Data)

	Heating Degree Days	Cooling Degree Days	Climate Type		
Mexico City	134	20	Heating		
Ciudad Juarez	146	112	Mixed		
Cancun	7	143	Cooling		

Note: Sample data over last 36 months, would want 30 year data. Base temperature would vary and most likely be higher for cooling degree days. Source: weather underground

Transformation to Low-Energy Buildings



Key Technologies for Mexico

www.iea.org

- Reflective surfaces for hot climate (advanced envelope)
- Low cost solar thermal for hot water
- Air sealing for buildings when heating or cooling is used
- Efficient equipment (benchmarking, labeling and standards)

Urban Heat Island Impact – Beyond Efficiency

Source: LBNL, Heat Island Group

Evacuated Tube Collector

Source: Sustainability Victoria

Blower Door Test

Source: ORNL

Dynamic solar control (more R&D needed)

www.iea.org

- Lower cost, more economic viable dynamic exterior shading for global markets
- Dynamic glazings large investment recently, on cusp of market viability for non-niche applications

Source: Sage Electrochromics

Advanced Building Envelope Integration for Hot Climates

www.iea.org

- Advanced envelopes insulation, reflective walls, roofs, insulated low-e glass, exterior shading, air sealing, and radiant barriers
- Small capacity cooling equipment if needed
- More R&D needed for more affordable heat pump water heaters (HPWH)
- Fully integrated system may not need any cooling at all, HPWH's may be sufficient to handle daily sensible heat and latent (humidity) loads

Source: Heat Pump & Thermal Storage Technology Center of Japan

Policies – Integrated Across Levels of Government

www.iea.org

National/State Level

- R&D, manufacturing standards, education, etc
- Whole building performance metrics and certificates
- Targets and goals for performance
- Investment funds/incentives to avoid increased supply and electricity capacity
- Building codes

Local/city level

- Public purchasing programmes
- Public housing/ government buildings
- Building code enforcement
- Voluntary "energy efficient" development and refurbishment zones
- Revolving investment funds
- Building codes

Building Codes – Infrastructure and Support to Enable Enforcement

www.iea.ora

- Long term policy strategy to enable local/regional manufacturing of energy efficient products
- **Product performance metrics and** rating tools
- Availability of commodity based products to allow for cost effective applications
- **Education for all market players**

Thermal Chamber Source: Fraunhofer, IBP

Policy Assessment for Construction

www.iea.org

IEA Assessment Based on Key Criteria – Mexico Needs to Conduct its Own Self Assessment

Level of test and labelling infrastructure	ASEAN	Brazil	China	European Union	India	Japan/ Korea	Mexico	Middle East	Australia/ New Zealand	Russia	South Africa	United States/ Canada
Governance	L	М	Н	Н	М	М	М	L	M	L	М	M
Energy prices	L	M	M	Н	M	H	L	L	M	L	M	M
Infrastructure and human capacity	М	L	М	Н	М	Н	М	L	М	М	М	н
Commodity of efficient materials	L.	М	Н	Н	М	Н	M	L	М	М	L	н
Voluntary programmes	L	L	L	M	L	L	Ĺ	L	L	L	L	L
Mandatory building codes	L	L	М	Ĥ	L	М	м	L	М	М	M	Н

Note: H: high, M: medium, L: low

Source: See IEA Energy Efficient Building Envelope Technology Roadmap

Contact Data

www.iea.org

International Energy Agency

9, rue de la Federation757 Paris Cedex 15, France

P Marc LaFrance, CEM

Energy Analyst Buildings Sector, Sustainable Energy Policy and Technology Directorate marc.lafrance@iea.org, +33 (0)1 40 57 67 38

Buildings Webinar Series (May/June 2014) — www.iea.org/workshops

Download Envelope Roadmap – free

http://www.iea.org/publications/freepublications/publication/name,45205,en.html

Download Building Code Policy Pathway – free

http://www.iea.org/publications/freepublications/publication/PP7_Building_Codes_2013_WEB.pdf

IEA Bookstore – Buildings Book – discounts to non-profits, partners, and bulk orders

http://www.iea.org/W/bookshop/add.aspx?id=457