How project design can help to integrate vRE into power systems

Taking advantage of first experiences

Conference on integrating variable Renewable Energy into power grids
Copenhagen, October 21, 2014

Achim Neumann
Senior Energy Economist
KfW Development Bank
KfW Development Bank and Renewable Energy
Around 70 offices worldwide

› We are the world's largest financier of renewable energies in developing countries

Energy Sector Commitments 2013

Total Energy Commitments (2013): **1,586 m€**
thereof Renewable Energy: **683 m€**

- Wind: 7%
- Solar: 6%
- Hydro: 8%
- Thermal PP/ Combined Heat and Power/ District Heating: 19%
- Demand Side Energy Efficiency: 11%
- Renewables - Mixed: 22%
- Electricity transmission/distribution: 27%
- Sector/ Research Programs: 0.3%

› Goal: Increase German ODA for RE and EE to at least 3.6 bn € annually until 2030
Experiences from the German power market
High shares of vRE in power generation

- In 2013 some 25% of power consumption provided by RE, 9% from wind power, 5% from PV

Wind power and PV Capacity

Annual peak load:
81.8 GW

PV: 36 GW
WP: 35 GW

Sources: BMWi; BDEW
Experiences from the German power market
High shares of vRE in power generation - Consequences

› Decreasing value of power during traditional peak hours and negative power prices
› Need for grid extension and technological enhancements of RE plants

Yesterday: Dromedary-like price curve
Today: Camel-like price curve
Different time frames of variations
Technical challenges and mitigation strategies

- **Short run variations and technical challenges**
 - Variations caused e.g. by flurries
 - Technical challenges: missing inertia caused by increasing share of inverter based feed-in (PV and wind power), displacing rotating masses
 - Harmonic waves
 - Reactive power
 - Short circuit power
 - Technical solutions to be applied at the RE power plant itself and to be taken into account in project design ➔ experience of wind power in Egypt

- **Medium to long run variations and potential mitigation measures**
 - Geographic diversity ➔ experience of Albania
 - Technological diversity ➔ experience of Morocco
 - Storage ➔ experience of CSP with thermal storage
 - DSM and backup of flexible generation capacity
Addressing short run variations and technical challenges
The experience of wind power in Egypt - Gabal el-Zayt

› **Context**
 › Enormous wind power potential ➔ 20% to be generated from wind and solar power by 2020
 › Displacement of rotating mass by inverter based feed-in could cause instability in a Transmission System, which is deficient anyway

› **Approach**
 › 200 MW wind farm at the gulf of el-Zayt + preparatory studies for another 200 MW
 › Starting point: **power network analysis**
 ➔ **Enhancement of grid code**
 (Threshold values for harmonics)
 ➔ **Requirements in the tender documents**
 (Technical norms for power inverters)

› **Future Approach**
 › Requirements for short circuit power
 › Ex post network analysis
 ➔ **Readjustments of power inverters**
Geographic diversity
The experience of Albania

› **Context**
 › Albania is heavily dependent on hydro power (90% capacity)
 › Supply shortages during dry periods - seasonal and yearly variations

› **Approach**
 › Construction of two 400 kV transmission lines
 › Albania - Montenegro (60% hydro): commissioning May 2011
 › 155 km TL + extensions of substations
 › 44 m€ development loan to Albania
 › Albania - Kosovo (Tirana - Prishtina): procurement completed
 › 240 km TL, 600 MW + extensions of substations
 › 42 m€ development loan to Albania + 33.5 m€ dev. loan to Kosovo

› **Impact**: Important contribution to the extension of the SEE power network and connection of Albania with the ENTSO-E network
Technological diversity
The experience of Morocco: wind, solar and hydro power

› Context
 › High solar radiation and abundant wind power potential
 › Target of the GoM to increase the RE share of installed capacity to 42% in 2020

| 2,000 MW Wind power | 2,000 MW Solar power (CSP + PV) | 2,000 MW Hydro power | Grid extension to integr. vRE |

› Approach
 › KfW contributes to the achievement of all these sub-goals

› Impact
 › Complementary technology mix to balance different variations
 › Avoidance of fossil fuel imports
Storage I - thermal storage
The experience of Ouarzazate CSP in Morocco (1/2)

› **Context:** Evening peak

› **Approach**
 › Largest solar power complex of the world, comprising
 3 CSP and 1 PV plant, target capacity (2017): some 560 MW
 › **Molten salt storage**
 › Noor I: 160 MW Parab. Trough; 3 h storage cap. (comm.: Oct 2015)
 › Noor II: 200 MW Parab. Trough; about 5 h storage capacity
 › Noor III: 150 MW Solar Tower; about 5 h storage capacity
 › KfW financing 769 m€ (total cost: 2.3 bn€)

› **Impact**
 › **Solar power generation even during night hours!**
 › „Adding thermal storage to a CSP facility was found to be an effective measure to mitigate the decline in the value of CSP with increasing penetrations“ (Berkeley Lab „mitigation report“)
 › LCOE of **CSP can compete** in some countries with alternative dispatchable power plants!
Storage I - thermal storage
The experience of Ouarzazate CSP in Morocco (2/2)

Cost estimations

- Generation costs for CSP with molten salt storage:
 - Parabolic trough: some 13 €ct / kWh
 - Solar tower: some 13.5 €ct / kWh (forecast)

- Storage costs (non-CSP) - depending on technology and site: 5 - 9 €ct / kWh

Features of Andasol-1 Storage

- Tank volume 2 x 14,000 m³
- Salt inventory 28,000 t
- \(\Delta T = 386° C - 292° C = 94 K \)
- Storage capacity 1,000 MWh = 7.5 h
- Estimated investment cost 30 - 50 € / kWh
Storage II - Pumped-Storage HPP
The example of Vrilo PS-HPP in Bosnia-Herzegovina

› **Context**
 › High share of hydro power in BH: 50% of installed capacity
 › High wind power potential
 › Several hydro and wind power engagements of KfW in BH

› **Approach**
 › 66 MW PS-HPP at the river Suica, providing 106 peak + 84 GWh run-of-river generation p.a.
 › Height diff. upper to lower basin 155 m, 4.5 km distance
 › 100 m€ loan agreement signed mid-2014 (total cost: 110 m€)

› **Impact**
 › Grid stabilization (frequency and voltage regulation)
 › Enabling the exploitation of the high wind power potential by providing reliable large-scale and long-run energy storage
Thank you for your attention

Achim Neumann
Senior Energy Economist
LGc2 - Competence Centre
Energy, Water and Agriculture

KfW Bankengruppe
Palmengartenstrasse 5-9
60325 Frankfurt am Main
Germany

Fon +49 69 7431 - 9365
Fax +49 69 7431 - 3609
achim.neumann@kfw.de
BACK-UP: Experiences from the German power market
Camel-like spot market results

- Price Chart EPEX Day-ahead: Trading Date: May 13, 2014; Delivery: May 14, 2014 (Wednesday)
BACK-UP: Experiences from the German power market
Spot market: merit order effect with high share of RE

- Wind + PV at noon on May 11, 2014: up to 67% of production...

Source: BCCONSULT
BACK-UP: Experiences from the German power market

Spot market: merit order effect with high share of RE

- … causing negative power prices on May 11, 2014
BACK-UP: Storage I - thermal storage
The experience of Ouarzazate CSP in Morocco

Solar Complex Ouarzazate: 4 plants, 3 technologies, 560 MW
→ the largest solar complex world wide

Next complexes of the Moroccan Solar Plan

„Noor I“
› 160 MW Parabolic Trough Plant with 3 hours storage capacity
› CAPEX: 633 m EUR
› KfW financing: 115 m EUR
› Start of construction June 2013
› Estimated commissioning October 2015

„Noor II“
› 200 MW Parabolic Trough Plant
› About 5 hours of storage capacity
› CAPEX ca. 1 bn EUR
› KfW: 330m EUR

„Noor III“
› 150 MW Solar Tower
› About 5 hours of storage capacity
› CAPEX ca. 0.7 bn EUR
› KfW: 324m EUR

„Midelt“
› Ca. 500 MW
› technologies to be decided

„Tata“
› Ca. 500 MW
› technologies to be decided
Demand is not only increasing, it is also fluctuating

- Demand is almost doubled in 2024; tripled in 2030!
- Differences between summer and winter (summer consumption tends to be higher)
- Evening-peak prevailing, noon-peak will develop strongly

<table>
<thead>
<tr>
<th>Time (24h)</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>1000</td>
</tr>
<tr>
<td>3-4</td>
<td>1500</td>
</tr>
<tr>
<td>5-6</td>
<td>2000</td>
</tr>
<tr>
<td>7-8</td>
<td>2500</td>
</tr>
<tr>
<td>9-10</td>
<td>3000</td>
</tr>
<tr>
<td>11-12</td>
<td>3500</td>
</tr>
<tr>
<td>13-14</td>
<td>4000</td>
</tr>
<tr>
<td>15-16</td>
<td>4500</td>
</tr>
<tr>
<td>17-18</td>
<td>5000</td>
</tr>
<tr>
<td>19-20</td>
<td>5500</td>
</tr>
<tr>
<td>21-22</td>
<td>6000</td>
</tr>
<tr>
<td>23-24</td>
<td>6500</td>
</tr>
</tbody>
</table>

Δ = 1400 MW
Δ = 2600 MW