peter calthorpe

urbanism in the age of climate change

Global CO2 by Country

Global CO2 Per Capita

The US emits 5x the world average of 4.5 metric tons per capita.

CO₂ Energy Emissions per Capita

World – 4.4 tons

CO₂ Emissions per Capita

California – 10.4 tons

Global CO2 by Income 2010

Global CO2 2050 Goal

Upper Income 60%

Sweden- 4.8 France- 5.6 Norway- 7.9 California 2011- 10.4 California 2050-3.3

McKinsey Abatement Strategies

Source: McKinsey analysis

Abatement benefit

\$ per tCO.e

New Climate Economy project analysis.87

USA – Low Density Sprawl

Vision California

Trend

Blueprints

Three Urban Types: SF Bay Area

San Ramon

Sprawl

San Francisco Urban

Rockridge Compact

San Ramon -Sprawl

San Francisco -Urban

Comparing Neighborhoods

California Rapid Fire Scenarios Land Use Mix for Growth Increment (2005-2050)

Business As Usual

Growing Smart

Greenhouse Gas Emissions Annual in 2050

Equal to Emissions offset of a forest covering more than 1/2 of California.

AI v CI/C2

Land Consumed For New Growth to 2050 (mi²)

More land than Delaware and Rhode Island combined

Business As Usual Growing Smart

CALTHORPEASSOCIATES urban designers, planners, architects AI v CI/C2

Infrastructure Cost for New Growth Capital Costs for New Growth to 2050

\$4,000 Saved per New Housing Unit : \$710 Million/Year

*Includes local roads, waste water and sanitary sewer, water supply, and parks & recreation

CALTHORPEASSOCIATES

Growing Smart

Business As Usual

Revenues from New Growth City Tax and Fee Revenue from New Growth to 2050

\$2.7 Billion/Year in Additional Revenue to Cities

www.livinginplainfield.com

AI v CI/C2

*Includes City revenues from Vehicle License Fees, Property Tax, and Sales Tax

CALTHORPEASSOCIATES urban designers, planners, architects

Growing Smart

Business As Usual

AI v CI/C2

Vehicle Miles Traveled (VMT) Miles Per Household in 2050

10,500 Fewer Miles Per Household

Flickr: trash-photography

Business As Usual Growing Smart

CALTHORPEASSOCIATES urban designers, planners, architects

Cumulative to 2050

Would Power ALL Homes in California for 20 Years

Business As Usual Growing Smart

Flickr: arbyreed

Residential Water Use Cumulative to 2050

Water Savings Could Fill the San Francisco Bay 15 Times

Business As Usual Growing Smart

CALTHORPEASSOCIATES

AI v C2

AI v CI/C2

Respiratory Health Costs Total Annual in 2035

Saves \$1.66 billion annually by 2035

Business As Usual Growing Smart

Based on Analysis of Vision CA Results by TIAX, LLC

Flickr: Lance Page

CALTHORPEASSOCIATES URBAN DESIGNERS, PLANNERS, ARCHITECTS

Activity-Related Health Indicators

Annual Household Costs Per Household Annual in 2050

\$10,500 Savings Per Household in 2050

Flickr: Diablo_Solar

Business As Usual Growing Smart

AI v C2

CALTHORPEASSOCIATES urban designers, planners, architects

California 2050 GHG Emissions

CO₂e MMT

Los Angeles Regional Plan

Mobility

Transit Systems

Growth that Supports Transit

Mexico – Low Income Sprawl

Legend

Modeling Framework Regional location

Modeling Framework Urban configuration

Density

Place type definition 16 Possible combinations

URBAN CONFIGURATION

X 3 socioeconomic strata= 48 typologies

Metrics analysis

LAND CONSUMPTION

ENERGY CONSUMPTION

GHG EMISSIONS

WATER CONSUMPTION

COSTS PER HOUSEHOLD

PUBLIC TRANSPORT

PRIVATE TRANSPORT

Scenario definition

Metrics analysis

	LAND CONSUMPTION	INFRASTRUCTURE COSTS	ENERGY CONSUMPTION	WATER CONSUMPTION	TRAVELED KM (private)	TRAVEL TIME (public & private)	COSTS PER HOUSEHOLD (annualized)	GHG EMISSIONS (annualized)
TREND	640 km² (similar in size to Puebla)	\$ 33,070 mill.	4,160 Quad. Btu	52,450 mill.m ²	42,000 mill. vehicle km traveled	13,200 person hours traveled	\$ 7,022 annual/household	26 mill. Ton CO,
MODERATE	255 km ² (similar in size to Toluca)	\$ 11,338 mill.	4,140 Quad. Bru	52,200 mill m ³	8% less wehicle km traveled	15% less person hours traveled	\$ 6,601 annual/household	24 mill. Ton CO,
VISION	140 km ² (similar in size to Queretaro)	\$ 6,983 mill. \$ 6,983 mill. \$ 26,094 mill. 17 lines subway (line 12)	4,120 Quad. Btu	45,900 mill m ³	13% less wehicle km traveled	23% less person hours traveled	\$ 6,342 annual/household	23 mill. Ton CO,

China – High Density Sprawl

Congestion in big cities (Beijing, Shenzhen, Chongqing, Shanghai) 大城市的</u>拥堵问题严重

> CALTHORPEASSOCIATES URBAN DESIGNERS, PLANNERS, ARCHITECTS

COST OF MORTALITY FROM OUTDOOR PM_{2.5} EXPOSURE AS % OF GDP (MEDIAN ESTIMATES), 2010, 15 LARGEST CO₂ EMITTERS

China – Superblocks

Current and Proposed Plan Comparison 现有规划与新版规划对比

Open Space 开放空间

Yuelai Eco-City Phase 1 悦来生态城市

MALUAN BAY 马銮湾概念方案 _{Xiamen, China}

August 25 2014

-1, AN 191

MASTER PLAN 中心区规划边界

KUNMING

呈贡新城

ZHUHAI

aliante leza

P

Develop Neighborhoods that Promote Walking 建设步行优先的邻里社区

Shorten street crossings and emphasize pedestrian safety and convenience

缩短街道穿行距离,保证行人安全和方便

Encourage ground-level activity and create places to relax along primary pedestrian routes 鼓励步行,为主要步行路沿街提供丰富的城市生活和休闲场所

Prioritize Bicycle Networks 优先发展自行车网络

Design streets that emphasize bike safety and convenience 设计道路时突出自行车的安全和便捷

Create auto-free streets and greenways to encourage non-motorized travel 建设慢行道网络,鼓励使用非机动车

Create Dense Networks of Streets and Paths

创建密集的街道网络

Create dense street networks that enhance walking, bicycling, and vehicle traffic flow

创建密集的街道网络来改善步行、自行车和机动车出行

Disperse high traffic volumes over narrow, parallel routes

将交通流分散至宽度较小的互相平行的道路上, 而非集中在较少的主干道

Support High Quality Transit 支持高质量的 公共交通服务

Ensure frequent and direct transit service

确保频繁、直接的公共交通服务

Locate transit stations within walking distance of homes, jobs, and services

在住宅、工作和服务场所步行可达的距离内设置公交站点

Zone for Mixed Use Neighborhoods 建设多功能混合的 邻里社区

Balance of housing and services through zoning codes 通过控规指标来实现住宅与服务的最佳平衡

Provide a variety of accessible parks and open space 提供各类有良好可达性的公园和开放空间

Match Density to Transit Capacity 将土地开发强度和 公共交通承载力相匹配

Match density to the maximum peak-hour capacity of a transit system 将开发密度和公交系统高峰小时的最大运送能力相匹配

In key employment areas, zone for mixed-use districts that combine everyday uses 在主要就业区规划多功能的混合利用区,满足日常所需

Create Compact Regions with Short Commutes 确保紧凑型发展,提倡短程通勤

Create Energy Efficient Buildings & Community Systems to Reduce Carbon Emissions

建设节能建筑和社区系统降低碳排放

Employ climate-responsive design and conservation features in all new buildings 将环保设计以及节能技术应用到每一座新建筑中

Create district cogeneration systems 建造地区性热点联产系统来发电并回收建筑余热

Provide ecological water and waste recycling 建造社区尺度废水垃圾循环系统

Employ local renewable energy sources 尽可能使用可再生能源

RUNOFF CISTERNS

SHADING ON SOUTH _____

METHANE

SOUTH-FACING

WATER COLLECTION / IRRIGATION

BETTER GROWTH BETTER CLIMATE

The New Climate Economy Report

THE GLOBAL REPORT

TOD在中国

Fransit Oriented Development in China

面向低碳城市的土地使用与交通规划设计指南 A Manual of Land-use and Transportation for Low Carbon Cities

美] 彼得・卡尔索普 杨保军 张 泉 等著

