Model for Electricity Technology Assessments (META)

Model for Electricity Technology Assessments (META)

Interactive Technology Assessment Tool For the Energy Sector Management Assistance Program (ESMAP)

Developed by Chubu Electric Power Company with assistance from Economic Consulting Associates Ltd

Model version 1.3 Last updated: 07-Jun-12

World Bank Washington D.C., June 2012

CHUBU ELECTRIC POWER ECONOMIC CONSULTING ASSOCIATES LIMITED

Overview What is META?

How is it structured?

- How do I use it?
- What are the other (advanced) details?

Model for Electricity Technology Assessments (META)

Interactive Technology Assessment Tool For the Energy Sector Management Assistance Program (ESMAP)

Developed by Chubu Electric Power Company with assistance from Economic Consulting Associates Ltd

1.3

CHUBU

Model version

Last updated: 07-Jun-12

What is META? How is it structured? How do I use it? What about the other details?

3 (C) 2012. CHUBU Electric Power, Economic Consulting Associates Ltd,

Objectives of the META model

Model for Electricity Technology Assessments (META)

ESMAP

Interactive Technology Assessment Tool For the Energy Sector Management Assistance Program (ESMAP)

el version 1. updated: 07-Jun-1

Objectives- Expand on and augment the ETOAG document

Widely accessible

- Downloadable from the internet
- A dynamic tool
- Interactive
 - **User-modifiable**
 - Data can be updated (e.g., annually)

Scope – time and place

<image>

Model for Electricity Technology Assessments (META)

Covers 3 country types:

- Large Developed Country (proxied with USA data)
- Middle Income Country (proxied with Romania data)
- Developing Country (proxied with India data)
- Across 3 present and future years:
 - 2010 base year
 - Projections for 2015 and 2020

Scope technologies

<section-header><section-header><section-header><section-header><text><text><text>

Generation technologies (>50):

Conventional

- Steam-fired, gas-fired, nuclear, etc
- Advanced conventional technologies

Non-conventional

- Renewable generation technologies
- Energy storage technologies
- Carbon Capture and Storage (CCS)

Transmission technologies

- Multiple voltage levels
- Overhead, underground

Distribution technology

Other features

<section-header><section-header><section-header><section-header><text><text><text>

7

Incorporates environmental costs

- CO₂, NOx, SO₂, PM
- User can customise emissions control equipment
 - Equipment cost, abatement rates
 - **By-product net revenues**
 - Costs adjusted for seismic zones
 - Can adjust for technology improvements over time

Uncertainty Analysis Module

Wide target user groups

Two types of users:

1. General user

- Interested in 'the bottom line'
- Happy to use the default inputs
- 2. Advanced user
 - Very knowledgeable about electricity
 - Has good data of their own
 - Wants to look at the details
 - Might want to change the default inputs

Updating the model

Current inputs can be changed

- Simply make changes in the input screens
- Over time the default inputs can be updated
 - Change data in DATABASE sheets
- All data are in <u>real</u> terms
 - (e.g., 2010 dollars)

What is META? How is it structured? How do I use it? What about the other details?

10 (C) 2012. CHUBU Electric Power, Economic Consulting Associates Ltd,

Basic model structure

Key Inputs

				Camitat course	CEM	214 2 1	fast and	stant performance	
Technologymed	Place	Topica	Fant	Unit	Fined	Variable	Facilities	Parts	Auditory
	especite	enposity	104	CAUPITRE COST	NOT NOT	08.M 02.91		net fuel	fewer
		19 COX						employed up	13.2mpbion
	1022		0305	1122	432-017				2
	ALC: N	7476	years.	030/8/10	TE CALVES	US/KAT	Manufilda		-
San in a san analy in all	0.000	205	34	120.50	0.005	30	Gassline	13%	2
listel annemics (min)	01		1.12	653.14	6.505		Dieset	100	- 22
Diesel moentor/ismail)		100	28	421.47	6.105		Diesel	44%	100
liesel generator (large)	25	825	- 26	251.91	7.00%	11	Diesei	47%	
as penerator (small)	01	305	20	1.048.50	7.005	4.0	Natural and	11%	10
los semerator (Targe)	3	12%	- 21	441.00	7.005	31	Natural cas	41%	- C (6)
licito gas turbine	8.35	30%	20	954.19	3.155		Natural gas.	32%	25.
uel (ell (seal)	0.025	30%	122	4.180.54	3.78%		Natural size	48%	100
wei cell (large)	1	425	28	1455.94	4355		Natural pas	42%	
DiVGas Combustion Turbine (E-cype)	255	32%	25	255.06	1,22%	2.347	Natural gas	55%	156
DiVGas Combustion Turbine (F-type)	250	20%	25	540.49	1.20%	0.347	Natural gas	30N	154
DiVillas Combined Cycle (CCGT, E-type)	450	82%	25	930.25	1,77%	0.311	Natural gas	52%	25
U/Gas Combined Cicle (CCGT, F-type)	650	80%	25	#15.55	1.77%	0.311	Natural gas.	545	2%
VGas Combined Cycle (CCGT, G-type)	800	80%	25	757.87	1.77%	0.311	Natural gas	59%	23
loal Subcritical	300	90%	30	1.527.53	1.30%	0.425	Coal - Bituminous	37%	55
cal Supervision	500	80%	- 30	1.582.87	1305	0.425	Coal - Bituminous	43%	- 5%
Coal Ultra Supercritical	500	875	30	1,813,46	1,30%	-0.425	Coal - Bituminous	43%	5%
cal Supercritical with CCS	508	825	30	2,080.06	1.60%	0.905	Coal - Bituminous	33%	22%
aut NCC without CDS	508	82%	- 31	2.049.81	1.80%	0.547	Caal-Bitumisous	42%	22%
Casi IOCC with CES	500	80%		2.520.17	1.15%	0.904	Ceel - Bituminous	20%	11%
and CFR budevelocial)	300	30%	- 16	1,250,80	2.50%	0.0	Casi - fitumianus	87%	- 556

Generation technologies

- Conventional
- Non-conventional

54 technologies

Delivery technologies

- Transmission
 - Overhead, underground, substations
- Distribution network

Key Inputs

Design basis

Capital costs

O&M costs

For Generation, Transmission & Distribution

Fuel characteristics and costs

Inputs for Generation								Gente Options (election.
for the base year (2023), based on befoult in Description of this obset: Input sheet - Contains information pes	un for a la villing the	ope develope design, per	formare	v ce and costs (of each per	eration te	hrology	Replace all Sex data with suggested default data from the database	
				Capital costs	06.00	Loosts -	fuel a	and glant performance	
Technologytype	Place expecte	Typical coposity factor	Part	Usit capital cost	Fixed OBM rem	Variable O&M cost	Ensitives	Plant's net fuel efficiency Cor	Audillary Fewer oumption
	MTW.	30%	years	uts/kw	h capes	USC/KM7			
Gesoline generator (micre)	0.0005	32%	- 38	122.50	0.90%	3.0	Gaseline	13%	25
Gasoline generator (mini)	1000	205	30	120.53	0.00%	3.0	Gascline	18%	- 25
Diesel generator (mini)	0.1	825	- 28	653.34	6.50N	3.0	Diesel	38%	- 25
Diesel generator (smalt)	1	30%	- 28	421.A2	6.30%	2.5	Diesel	46%	- 25
Diesel generator (large)	25	40%	21	351.91	7.00N	11	Diesei	47%	
Gas generator (smail)	1.0	30%	- 21	L068.50	7,10%	. 4,5	Natural gas	00%	
Gas genelator (large)	- 5	10%	28	01.139	7.00%	3.4	Natural gas	43%	- 25
Micro gas turbine	8.55	30%	20	994.19	3.155		Natural gas	32%	25
Fuel (small)	-0.025	825	21	4.180.54	3.78%		Natural gas	486	- 45
Fuel cell (large)	1.4	42%	- 28	1455.94	4.35%		Natural gas	1.44%	
DiVGas Combustion Turbine (E-type)	155	32%	25	755.06	1.22%	8.147	WATTAN BIRD	55%	15
OI/Gas Combustion Turbine (F-type)	250	20%	25	\$40.49	1.20%	0.947	Natural gas	30%	18
Di Villas combines cecte (CCGT, E-fiple)	450	80%	25	930.25	1,77%	0.311	Natural ges	50%	- 22
Orytaas completes cicle (CCGT, F-type)	650	25	25	415.55	177%	0.311	resturn: gas	SHS	- 25
Usy uas completes cicle (CCGT, G-type)	800	80%	23	1111	1.77%	9.311	reacuran gas	59%	2
CONTRACTOR	300	20%	34	1.527.53	130%	0.425	Coal - Brumisous	376	- 55
cosi superovoca	500	80%	- 30	1.582.87	1305	0.425	Coar - Brumieous	43%	- 55
cal orda supercrisical	500	822	30	1.813.46	1.205	9,425	COBI- BITUMINOUS	42%	20
coal Supermitical with CCS	500	80%	30	2,080.06	1.60%	0.905	Colei - Brtuminous	51%	12%
Cell RCC williest CL3	500	825		2.549.51	1.80%	0.547	LOBI- BILIMISOUS	42%	22%
LEAF RUCE WITH CLS	500	125	31	2320.07	1.35%	0.804	CORT - DISUMINOUS	21%	19%

Externality costs

• CO₂, NOx, SO₂, PM

Commodity costs and forecasts

Key Results

are MUA

cates that no option has been selecte

Energy costs

Delivery costs

Externality costs

Delivered energy costs

COMPARISONS among technologies

What is META? How is it structured? How do I use it? What about the other details?

16 (C) 2012. CHUBU Electric Power, Economic Consulting Associates Ltd,

Start: MUST Enable Macros

3 ways to change the live inputs

Electric Power

18 (C) 2012. CHUBU Electric Power, Economic Consulting Associates Ltd,

General users

First stop: OPTIONS_Selection 1

Would focus on 2 screens:

OPTIONS_Selection

OPTIONS_Results

User can:

- Select options
- Compare results
- Change options
- Compare again

OPTIONS_ Selection screen

hear '				
open. Defines the nerthdom that you are toying to a	the shifting lost the s	encodential research to mean 11	the conception between the same second lines	and the transitioner
Define 'solution options' by clicking on a 'to	efine Option' button and solar	ting technologies. You can de	fine up to 5 different options for	comparison.
The results for each option are shown belo	w. Detailed inputs and full out	out comparison tables are ava	stable on the relevant sheets in t	he model.
Problem definition				
Additional peak load that needs to be met	500 MV	Country type:	Romania	1
Load faster on additional load	20	Anakaistaar	2040	1
tond labor of state one role.		an arthur tear.	12200	1
Solution options				
Solution options	Option 1	Option 2	Oution 3	Option 4
Solution options	Optice 1	Option 2	Option 3	Option 4
Solution options Clear all porces	Option 1 Define Option 1	Option 2 Define Option 2	Option 3 Define Option 3	Option 4 Define Option
Solution options Clear all occups Generation option:	Option 1 Define Option 1 OII/Gas Combined Cycle	Option 2 Define Option 2 Coal Suboritical (200 MW/)	Option 3 Define Option 3 Pumped storage hydro (500	Option 4 Define Option Coal CPB (suboritical)
Clear at orrest	Option 1 Define Option 1 OI//Gas Cerribinod Cycle (CCST, 5-type) (480 MW)	Option 2 Define Option 2 Coal Suboritical (300 MW)	Option 3 Define Option 3 Pumped storage hydro (500 MW)	Option 4 Define Option Ceal CFB (subcritical) MW)
Clear bit Clear bit notices Generation option: Plant life	Civice 1 Define Option 1 CiViCas Combined Cycle (CCST, E-type) (400 MW) 25 years Systems	Option 2 Define Option 2 Cost Subcritical (300 MW/) 30 years	Option 3 Define Option 3 Pumped storage hydro (500 WW) 40 years	Option 4 Define Option Coal CFB (subcritical) MAY 30 years
Cherries Cherries Constration explore: Plant life Trust top	Option 1 Define Option 1 Oli/Gas Combined Cycle (CCCT, E-type) (400 MW) 25 years Natural gas son	Oprilon 2 Derine Option 2 Coal Suboritical (200 MW) 30 years Coal - Ignite 195	Option 5 Detine Option 3 Pumped storage hydro (500 MW) 40 years Bettery (off-peak grid electric) why	Option 4 Define Option Coal CRE (suboritical) MW) 30 years Coal - Ignite YM
Cherati cherati notion Generation estion: Plant life Teal Spe Teal Money of plant Transmission estion:	Option 1 Define Option 1 Oli/Gas Combined Cyclic (COTT, E-type) (400 MW) 23 years Natural gas 505 USAV Understroamd	Oprison 2 Define Option 2 Coal Subortical (300 MW) 30 years Coal - Ignite 175 400W Orienteed	Option 3 Define Option 3 Pumped storage hydro (500 MW) 40 years Battery (off-peak grid electrici 725	Option 4 Define Option Coal CRB (subcritical) M(A) 30 years Coal - Tignite 576 2004 Opertward
Cherrish Cherrish Cherrish Ceneration eation: Plant life Tuel type Falet filoenty of plant Transmission option:	Optice 1 Define Option 1 Of/Gas Combined Cycle (CCCT, Cryse) (460 MW) 25 years Natural gas 50% LIBNU Underground Taxorenscon Inne, double	Option 2 Define Option 2 Coal Subortical (300 MW) 30 yeers Coal - lighte 175 400W Orienteed Transmission lane, single	Option 3 Define Option 3 Pumped storage hydro (500 WW) 40 years Battery (off-peak grid electric) 225K Overhead transmission ine, single creat	Optices 4 Define Option Coal OfB (subortical) MW) 30 years Coal - Ignite 576 2004 Overhead tancnision (see, doe
Clear bit Instruction options Generation extion: Plantlife Tratifice Trate filtommy of plant Transmission option:	Option 1 Define Option 1 Off/Gas Combined Cycle (COTT, E-type) (400 MW) 23 years Netwol gas 20% LIBW Underground transpression Ime, double ensult	Oprion 2 Define Option 2 Coal Subortical (366 MW) 30 years Coal - Ignite 37- 1970 Overhead trainimizion line, targle omut	Option 3 Define Option 3 Pumped storage hydro (300 MW) Abstery (off-pesk grid electrici 20% Coverhead transmission ine, single crivit	Option 4 Define Option Coal Offi (suboritical) MM) 30 years Coal - Tapita 2004 Overhead transmission lave, doe orout
Cheerati Cheerati Constant Plant Infe Plant Infe	Option 1 Define Option 1 CI(/Gas Cembined Cydle (CGT, E-type) (400 MW) 25 years Netwollger 50% 113W Underground transmission Inne, double circuit 100 km	Option 2 Define Option 2 Coal Subortical (300 MM) 30 years Coal-Sprate 17% 300v Onertread transmission line, angle orbut as tum	Option 3 Define Option 3 Runged storage hydro (500 MM) A yrear Battery (off-peak gnd electric) zpik 225K Overhead transisson inne, single crossit 130 km	Option 4 Define Option Coal OfB (suboritize) MM) SO persis Coal - Tignite S76 S2004 Overhead transmission line, doe oncut Loo km

Mission Control

A one-stop shop

Allows the user to define different technology options:

Select a generation technology

Specify delivery technologies

Grid, mini-grid, off-grid

Define key variables

User can define up to 5 options

Model then gives comparison of results for all 5

OPTIONS_ Selection screen

Designed to be user-friendly:

Pop-up boxes

Drop-down menus

User-inputs

6							Resto	re default value
•	Oli/Gas Combustio	on Turbine (E-	ype)	•			the se	elected technolo
			C.	Default values				Default values
0	Installed capacity (M	1W)	140	150	Construction tin	ne (years)	0	0
0	Capacity factor (%)		25%	10%	🕜 Contingency - P	roject (%)	20%	20%
0	Plant efficiency (%)		35%	35%	🕜 Contingency - P	rocess (%)	0%	0%
0	Auxiliary power cons	sumption (%)	1.0%	1%	Seismic zone		Zone 2	-
0	Fuel type		Natural gas	T	Externality cost (\$/tonne):	s CO2	10	\$0
	Fuel heating value (I	LHV)	37.26	37 kJ / unit of	sale	SOx	120	\$ 120
	Fuel price		10.35	10.35 US\$/mmbtu	i i i i i i i i i i i i i i i i i i i	NOx	330	\$ 330
0	By-product costs /	Fly ash	0	\$0		PM	2,240	\$ 2,240
	,	Bottom ash	0	\$0	Installed enviro control technolo	nmental gies:	Not applicable	
		Gypsum	0	\$0		5	SCR installed and i	included in base
2	Transmission to	chnology	ontion		3 Distribution	technolo	av option	
0	400kV Overhead	transmission li	ne, single circuit	•	2 Distribution n	etwork	31 of con	
Ĩ	, Transmission line len	igth (km):	100	100	Oistribution loa	d factor (%)	: 70%	70%
0	400/220kV Transm	nission substa	tion	•	Oistribution loss	arate (%):	8.00%	8.00%
	Substation output (N	٩٧A):	1,000	1,000				
							Insert optio	on 1

ic Power

OPTIONS_ Selection screen

Allows easy comparison of technologies

Shows results for user's options side-by-side

Allows easy comparison of costs

	Define Option 1	Define Option 2	Define Option 3
	Option 1	Option 2	Option 3
Cost comparison	Oil/Gas Combustion Turbine (E- type), operating at 25% CF	Coal Supercritical with CCS, operating at 80% CF	PWR (VVER), operating at 85% CF
Energy cost	14.62 USc/kWh	6.49 USc/kWh	3.82 USc/kWh
including environmental costs of:	0.57 USc/kWh	0.96 USc/kWh	-
Transmission cost	0.69 USc/kWh	0.06 USc/kWh	no transmission
Substation cost	0.82 USc/kWh	0.07 USc/kWh	no substn.
Distribution cost	3.18 USc/kWh	3.18 USc/kWh	no distn.
Total delivered energy cost (USc/kWh)	19.31 USc/kWh	9.80 USc/kWh	3.82 USc/kWh
Summary of key inputs	Option 1	Option 2	Option 3
Generation technology	Oil/Gas Combustion Turbine (E-	Coal Supercritical with CCS	PWR (VVER)
	type)		
Plant capacity	140.0 MW	500.0 MW	1,200.0 MW
Capacity factor (%)	25%	80%	85%
Plant efficiency (%)	35%	33%	33%
Auxiliary power consumption (%)	1%	13%	4%
Fuel type	Natural gas	Coal - Bituminous	Uranium (enriched)
Fuel heating value:	37.26 MJ/m3	15,816 MJ/T	3,900 GJ/kg

Quick glossary

Sheet name conventions:

Sheet identifiers	Example
INPUTS_	INPUTS_Gen
CALCULATIONS_	CALCULATIONS_TxDx
_Results	GEN_Results
DATABASE_	DATABASE_Environmental
OPTIONS_	OPTIONS_Selection

Gen is Generation

TxDx is Transmission and Distribution

What is META? How is it structured? How do I use it? What about the other details?

24 (C) 2012. CHUBU Electric Power, Economic Consulting Associates Ltd,

Advanced users

Would want to look at the details

Might want to enter data directly into the input sheets 2

 Might want to change the default inputs in the database sheets 3

sheets

DATABASE Store the default data for each base country:

- Generation technologies
- **Transmission and distribution** technologies
- **Commodity and fuel prices**
- Other input data

Uncertainty analysis module

Monte Carlo simulation tool

Uses an Excel add-in called @risk

User must buy a separate licence for @risk

Hands-on = training =

Afternoon session:

hands-on training in detailed use of the model

Model for Electricity Technology Assessments (META)

Model for Electricity Technology Assessments (META)

Interactive Technology Assessment Tool For the Energy Sector Management Assistance Program (ESMAP)

Developed by Chubu Electric Power Company with assistance from Economic Consulting Associates Ltd

Model version 1.3 Last updated: 07-Jun-12

World Bank Washington D.C., June 2012

CHUBU ELECTRIC POWER ECONOMIC CONSULTING ASSOCIATES LIMITED

