

PRESENTATION BY SOREN KROHN WIND POWER CONSULTANT MARCH 14, 2012

PUBLIC PROCUREMENT OF WIND ENERGY PROGRAMS LESSONS LEARNED

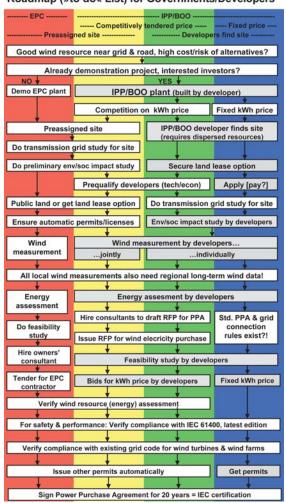
Perspective of Presentation

KEY VANTAGE POINTS:

- Point of view of Government of ..., or its national utility
- What the TTL can do in terms of regulatory framework, stuff the Transaction Advisor will take as a fact
- Primarily about procurement of IPP/BOO projects, not EPC

- ... i.e. <u>not</u> about how to build a wind farm (the developer/bidder does that in a BOO project)
- ... but about how to make successful wind IPP projects i.e. obtain minimum tariff and minimum risk

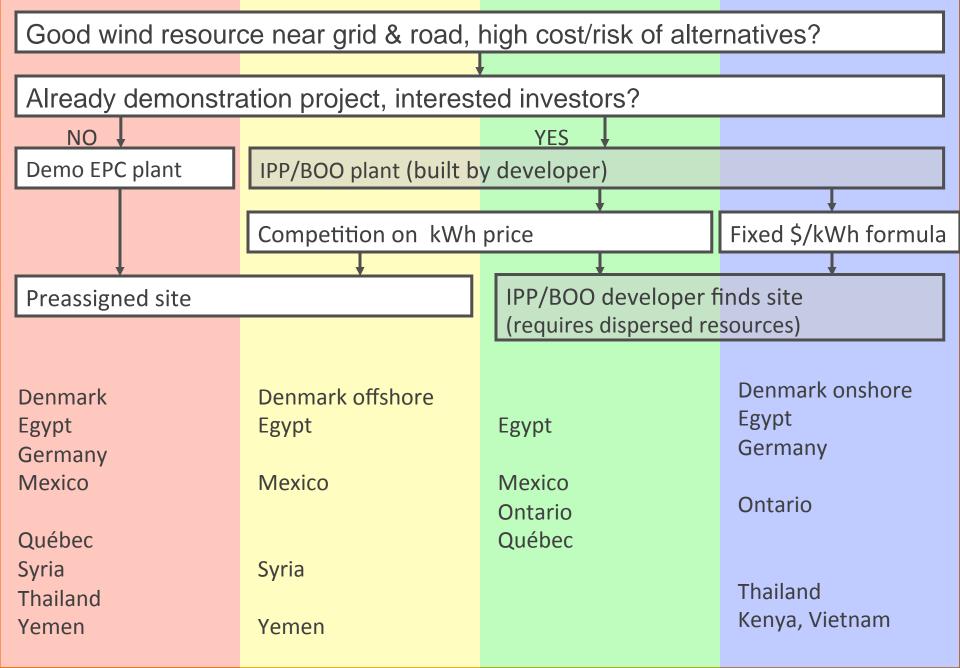
Public Procurement of Wind Energy Programs


PRESENTATION CONTENT

- RE policy considerations
- Choice of procurement model & tariff scheme interlinked
- Tariff scheme affects capacity factor & grid use
- Key steps in procurement process depending on scheme
- Essential technical requirements for IPPs
- Importance of ESIAs
- Local content requirements

Roadmap variants: (white - govt. action) (grey - developer action)

Roadmap (»to do« List) for Governments/Developers



- Who does what steps...
 i.e. government or developer?
 ...depends on
 tariff scheme & siting scheme
 and their interaction
- 1 EPC (demo project) red
- 2 Competitive tenders on preselected sites – yellow
- 3 Competitive tenders on sites found by developers – green
- 4 Feed-in tariff schemes blue
- 5 Negotiated deals (depends...)

Roadmap (»to do« List) for Governments 1

Choice of Tariff Scheme in a Developing Country

IMPORTANT POLICY CONSIDERATIONS PART 1

Competitive Bidding

Market determines price

... minimizes rent (no windfall profits for developers)

... allows choice between preselected or dev. selected sites

... allows transmission planning & optimization (MA, QC examples)

... not a problem who pays for transmission and other elements

... transparent scheme, no need for special tax incentives etc.

Feed-in Tariff (FIT)

Market determines MW volume

... hard to estimate efficient pricing model in advance

... developers select sites, not suitable w/concentrated resource

... puts pressure on transmission planning, grid congestion queue?

... must plan who pays for any cost element including grid

... incentives important, zoning issues critical, corruption prone

Choice of Tariff Scheme in a Developing Country

IMPORTANT POLICY CONSIDERATIONS PART 2

Competitive Bidding 2

... incomplete regulation (e.g. grid code) can be solved ad hoc by »regulation by contract«

... public land lease can be integrated in process and can be non-exclusive (QC example)

... permitting process (must be) integrated in RFP and quasi-automatic

... MW volume is controlled

Feed-in Tariff (FIT) 2

... requires complete and transparent regulatory scheme

... competition for scarce physical resources (transmission grid, public land leases)

... competition for regulatory resources (permits) –resource lock-up by unqualified bidders

... if tariff scheme is profitable queuing or quasi-market rationing develops

Choice of Tariff Scheme

IMPORTANT POLICY CONSIDERATIONS PART 3

Predetermined sites

- Stepwise development, no prior experience with wind IPP
- Control volume and transmission grid expansion
- Wind resources well mapped and good resources highly concentrated (e.g. Egypt)
- Requires thorough predevelopment, i.e. <u>preliminary</u> resource measurements, site selection, ESIA, logistics survey
- Often used to separate markets

Developers find sites

- Prior experience with wind IPPs, regulatory framework OK
- Transmission grid planning & costing procedure in place
- Wind resource large and dispersed
- Developers take care of predevelopment, sufficient regulatory & administrative capacity available
- Open to all qualified developers

Standard Tariff Scheme in Wind PPAs

APPLIES TO ALL TARIFF SYSTEM TYPES

- 20 year term (certified technical lifetime)
- Payment for energy only, (even if no variable costs!)
- Hard currency unless local long-term capital market
- Single tariff (regardless of peak/off-peak)
- No indexation, except for O&M (local wages + imported spare parts)
- Priority dispatch, i.e. take-or-pay contract
- Compensate generator fully for planned as well as unplanned grid interruption
- If predetermined site, compensate for unplanned...
 - ... EIA issues, e.g. birds (change of law)
 - ... upstream »wind theft«

Tariff Schemes and Bid Criteria Create Incentives

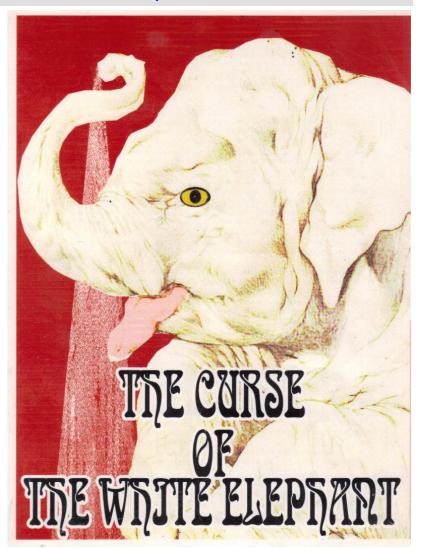
TARIFF DETERMINES OPTIMAL CAPACITY FACTOR & EFFICIENCY OF TRANSMISSION GRID USE

Table 1. Wind Energy Royalty Scheme (Nominal Rules)									
Full load hours/year	= Capacity factor	Marginal royalty rate	Maximum cumulative						
MWh/MW/year	MWh/MW/8760	for tranche	royalty at top end of						
			interval						
			Full load hours/year						
< 2500	<28.5%	0%	0						
2500-3000	28.5%-34%	10%	50						
3000-3500	34%-40%	20%	150						
3500-4000	40%-45.7%	40%	350						
4000-4500	45.7%-51.4%	60%	650						
>4500	>51.4%	80%	•••						

Table 3. Wind Turbine Selection for a Site in an IPP/BOO tender 8													
		Rotor	Hub		Full load		Turbine	Project					
		diam	height		hours	Capacity factor	price	investment	Investment				
Type	kW	m	m	MWh/year	MWh/MW	MWh/MW/8760	M EGP	M EGP	EGP/MWh/yr				
V90-3.000	3000	90	80	7,088.58	2,363	27.0%	18.5	22.2	3,132				
V90-3.000	3000	90	90	7,496.98	2,499	28.5%	19.5	23.4	3,121				
V112-3.000	3000	112	94	10,383.68	3,461	39.5%	27.2	32.64	3,143				
V90-1.800	1800	90	80	6,046.65	3,359	38.3%	15.5	18.6	3,076				

Table 4. Wind Turbine Selection for a Site Under Royalty Scheme											
		Rotor	Hub		Full load		Turbine	Project			
		diam	height		hours	Capacity factor	price	investment	Investment		
Туре	kW	m	m	MWh/year	MWh/MW	MWh/MW/8760	M EGP	M EGP	EGP/MWh/yr		
V90-3.000	3000	90	80	7,088.58	2,363	27.0%	18.5	22.2	3,132		
V90-3.000	3000	90	90	7,496.98	2,499	28.5%	19.5	23.4	3,121		
V112-3.000	3000	112	94	10,383.68	3,319	37.9%	27.2	32.64	3,278		
V90-1.800	1800	90	80	6,046.65	3,237	37.0%	15.5	18.6	3,192		

General Approach to Technical Requirements


GENERAL POLICY CONSIDERATIONS — REGARDLESS OF TYPE OF IPP/BOO SCHEME

Minimize technical requirements

 Experienced developers know how to build wind farms efficiently

Use wind industry best practice standards

 Don't apply loose norms to attract competition; serious developers & manufacturers are attracted by solid norms that keep out non-serious actors



Technical Problem Example: Improper O&M

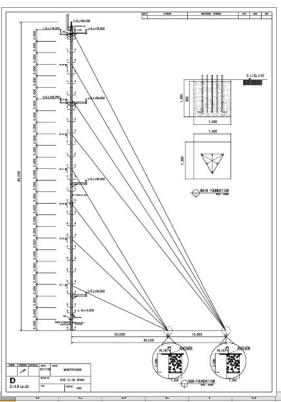
MET MAST WITH LOOSE GUY WIRES & TILTED ANEMOMETERS, AL MOKHA, YEMEN

Wind Resource Assessment Requirements

ESSENTIAL TECHNICAL REQUIREMENTS TO REDUCE PROJECT RISK

- Wind Resource Risk must be carried by the developer, in order to incentivize efficient site selection, site layout, technology choice, and proper O&M
- Very limited scope for government or RFP employer to measure site wind resource (but plenty of scope for long-term regional measurements by government)
- Demand bankable measurements, i.e. instruments mounted in accordance with IEC 61400-12-1, MEASNET calibrated First Class instruments with redundancy, post campaign calibration, 95% data recovery, GSM or satellite data collection, full mast documentation & O&M history log, verification by accredited consultant, WAsP software modeling, experienced modeler...
 - + Sufficient duration depending on long-term data quality & number of masts depending on site topography complexity. Need WB standard TOR!

Correct Meteorology Mast Example


 $80\,\text{M}$ meteorology mast with satellite communication, Gulf of Suez , Egypt

Mast and its O&M Documentation + Raw Data

ESSENTIAL TECHNICAL REQUIREMENTS TO REDUCE PROJECT RISK

DEUTSCHER KALIBRIERDIENST DKD

Kalibrierlaboratorium / Calibration laboratory Akkreditiert durch die / accredited by the Akkreditierungsstelle des Deutschen Kalibrierdienstes

Deutsche WindGuard Wind Tunnel Services GmbH Varel

Developer Americanous DKD-K- 36801

Kalibrierschein Calibration Certificate

Gegenstand

Fabrikat/Serien-N

Kalibrierzeichen Calibration label

09/6646 DKD-K-36801 10/2009

Cup Anemometer Thies Clima

D-37083 Göttinger 4.3350.00.000

Body: 0609292 Wilmers Messtechnik

Auftraggeber D-22089 Hamburg Auftragsnumme

Datum der Kalibrierung 26.10.2009

Dieser Kalbrierschein dokumentiert die Roedführung auf retionale Normale zur Darstellung der Ernheten in Übereinstrung mit dem Infornationalen Ernhetensystem (SI) oer DKD ist Unterzeichner der muß- lateralen Übereinkommen der European co-operation for Contention (EA) und der International Laboratory Acciedation Cooperation (LAC) zur gegenseitigen Aneitkernung der Kalibierscheiten. Für die Einhaltung einer angemessenen Frist zur Wederholung der Kalibrierung ist der Benutzer verantwortlich.

This calibration continues documents the

This calbration conflictors obcuments the fraceability to material structure, which realise the units of measurement according to the international System of Units (SI). The GVO is signatury to the multivariety agreements of the European cooperation for Accreditation (EA) and of the International Laboratory Accreditation Cooperation (IAC) for the mutual recognition of calbration certification.

centricates. The user is obliged to have the object

Dieser Kathrierschein darf nur vollständig und unveränded weitenverbreitet werden. Auszüge oder Änzlerungen bedürfen der Genehmigung sowohl der Akkrediterungsstelle des DKD als auch des ausstellenden Kallbrierts Kallbrierscheine ohne Unterschrift und Stempel haben keine Güttigkeit. This calibration conflicate may not be reproduced other than in full except

the WindGuard Wind Tunnel Services GmbH Oldenburger Str. 65 26316 Varel : Tel. ++49 (0)4451 9515 0

	Α			-	-		-	H			K	
1	Date	Time	Mean WS	Max, WS	Min, WS	St, Dev, WS	Mean WS	Max, WS	Min, WS	St, Dev, WS	Mean T1	St
2	,		40m-(m/s)	40m-(m/s)	40m-(m/s)	40m-(m/s)	10m-(m/s)	10m-(m/s)	10m-(m/s)	10m-(m/s)	o C	0
3	22/08/00	13.20	9,89	12,89	6,85	1,19	9,24	12,53	6,14	1,1	24,95	
4	22/08/00	13.30	10,27	13,31	7,42	0,9	9,48	12,53	6,62	0,95	24,65	
5	22/08/00	13.40	10,51	12,84	7,8	0,81	9,76	12,05	7,33	0,86	24,45	
6	22/08/00	13.50	10,7	13,12	7,89	0,86	9,96	12,48	6,95	1,1	24,45	
7	22/08/00	14.00	10,65	12,51	8,08	0,67	9,96	12,86	7,1	1	24,35	
8	22/08/00	14.10	10,7	12,74	7,99	0,76	9,81	13,53	6,24	1,14	24,25	
9	22/08/00	14.20	10,18	13,08	6,8	1	9,67	12,91	5,57	1,24	22,75	
10	22/08/00	14.30	10,75	13,46	7,56	1	9,91	13,24	7,05	1,24	23,45	
11	22/08/00	14.40	9,94	12,89	7,37	0,76	9	12,15	5,91	0,95	24,15	
12	22/08/00	14.50	9,75	12,22	5,71	0,95	8,91	12,29	6,29	1,05	24,25	
13	22/08/00	15.00	10,51	12,46	8,18	0,76	9,53	12,34	6,48	1,05	24,15	
14	22/00/00	45.40	10.22	12.51	7.54	1.05	0.53	12.1	740	0.01	24.05	

Shoubak (Fujalj 40 GTZ)(Alt. 1274 a.s.l)

CTZ /TERNA and measuring system at Fujalj at 40m height.

4.3129.00.012A

03100133 X

			JTM & Geo	
UTME	aropean ide	na .	Gong	raphin
	н	14		N N

C Ammonii

Data Logger System Monitor Anemo 3: 90.0 Hz

- Missing data of 40m sensor during 2002 till 26/9/2002
- Amenometer (SN: 1290012) at 40 m height was replaced with a 1200038) on 26/6/2002 at 16:00 o'clock.

- when it replaced with other anemometer.
 The tower was lowered on August 3, 2004 at 9:30 AM to anernometer at 40 m height. It was erected again on the sam

Turbine Technology Requirements: No Prototypes

ESSENTIAL TECHNICAL REQUIREMENTS TO REDUCE PROJECT, HEALTH & SAFETY RISKS

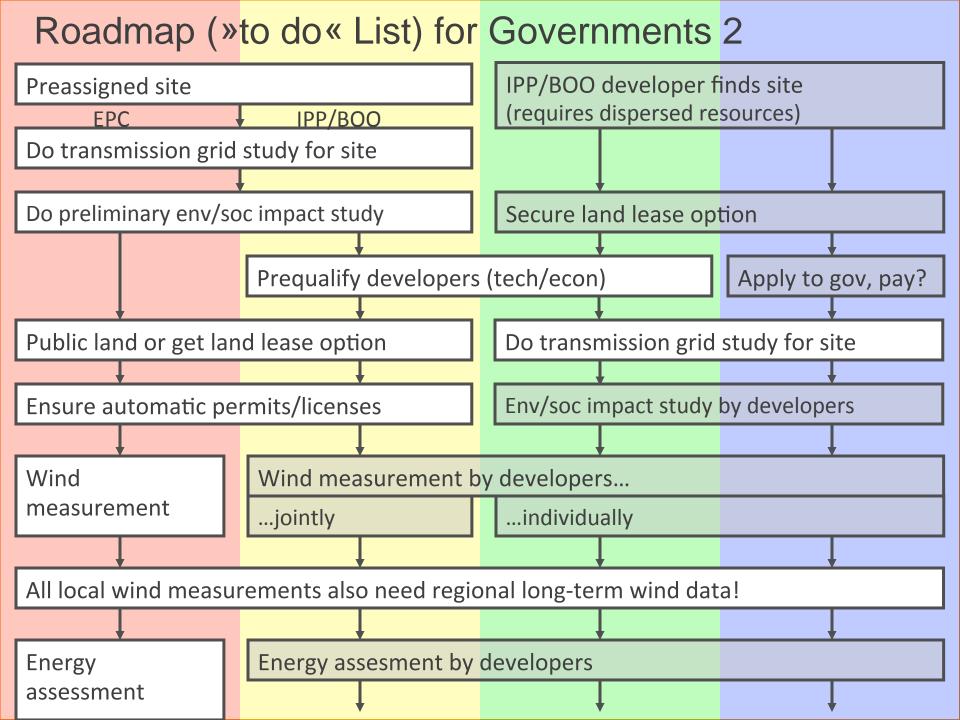
- Turbines must be fully production certified by an accredited entity in accordance with IEC 61400-1 latest edition as fit for purpose in the site environment
- Turbine must be certified to meet known climate requirements that exceed the standard classes, e.g. fully operational at ambient temperatures of 45°C or -30°C, at mean wind speeds above class I, typhoons, earthquakes
- Turbine model must have been used in at least two commercial wind farms of at least 20 MW each for at least 1-2 years with an availability rate of at least 95%
- Turbine must be compliant with grid code requirements (from major markets, say, Germany, Spain, Denmark)

Turbine Certification Requirement Example

DUST PROTECTION, AIR-CONDITIONED KIOSK FOR ELECTRONICS (MAX 45°C), EGYPT

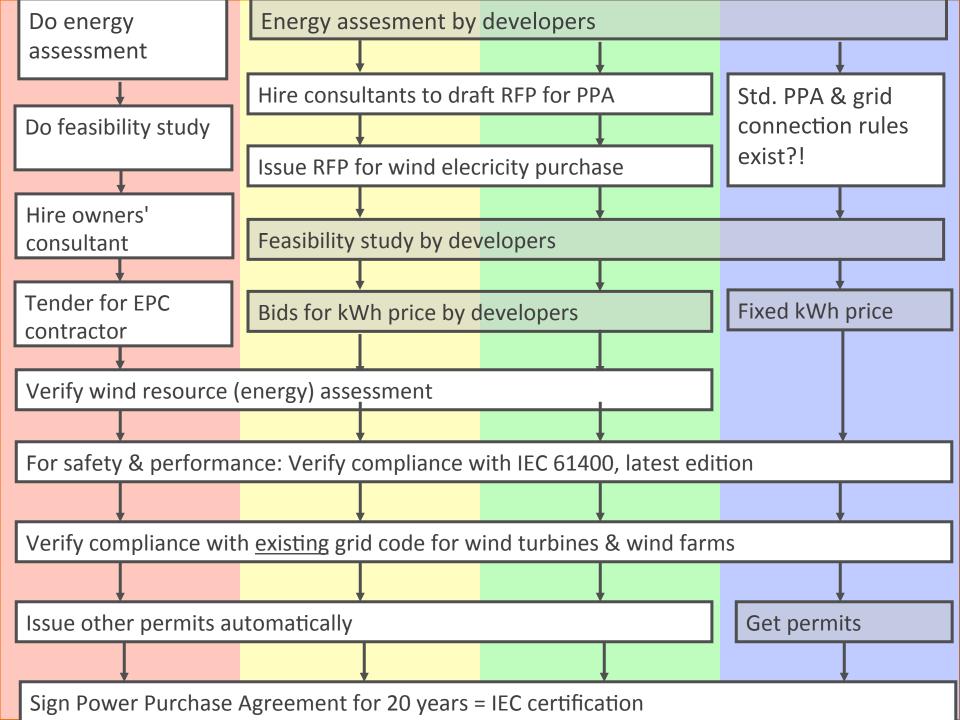
Wind Farm Performance Requirement Examples

ESSENTIAL TECHNICAL REQUIREMENTS TO REDUCE PROJECT RISK AND STABILIZE GRID


- Guaranteed availability (SCADA access to all turbines to know availability rate)
- Guaranteed wind farm power curve (Upstream meteorology mast to verify performance)

...both sanctioned by liquidated damages

- Maximum ramp rate, e.g. 10 MW/min
- Ability to curtail production 0-100% by remote control
- Grid code requirements, e.g. fault ride though, voltage, frequency, reactive power control, harmonics


Examples of Importance of ESIA Before Bidding

FOR COMPETITIVELY TENDERED PROJECTS ON PRESELECTED SITES

- Property rights and localization of residences must be determined before bidding.
 - ... if not: Project had to be moved after winning bidder had been selected.
- Full bird study (both spring and autumn) with <u>operational</u> recommendations (turbine free zones, bird corridors, shutdown on demand) required if in critical zone.
 ... if not: Bids were not comparable since bidders planned
 - siting differently and accounted differently for expected energy losses. Rebid required.

Local Content Requirements

Typical issues — why it rarely happens (except in Morocco now)

- All countries want to do this and base it on exports(!)
- Requires a critical mass of about 1000 MW
- Requires that all orders go to a single manufacturer
- Requires a stable, long pipeline of orders, min. 5 years
- Time horizon beyond 2-3 years requires bid price indexationRotor blades: Require specialized equipment, raw materials importedForget generators and gearboxes (regional volume needed)
- ISO 9000 series certification of supply chain required
- Foundations, roads, electrical works: Locally procured anyway
- Towers: Economic to manufacture locally anyway (>100 MW)

LA VENTA II, OAXACA, MEXICO

SOREN KROHN, WIND POWER CONSULTANT SK@SKPOWER.NET

+1-202-468-2902

