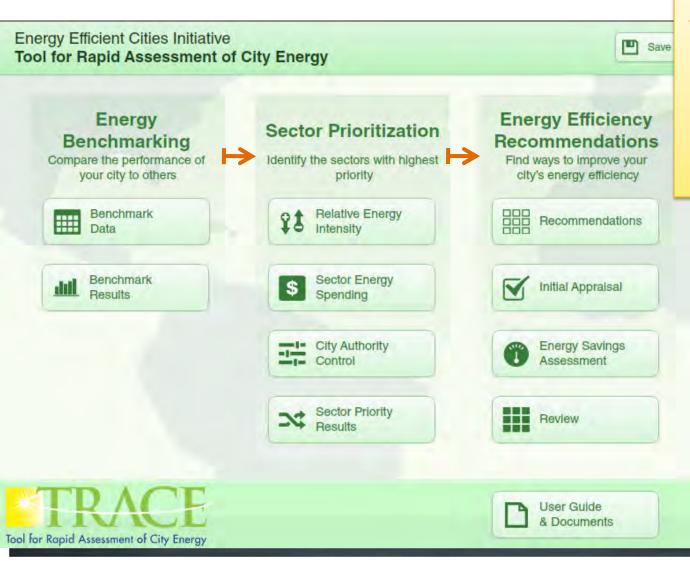


A Decision Support Tool for Evaluating Energy Efficiency Opportunities in Cities

Strong Demand from Cities

- Strong desire to reduce energy costs through EE improvements
- A lack of decision-support tool to identify major EE interventions across urban sectors
- Desire to learn from peer cities' and international best practices


Key Advantages of TRACE

- Cross-sectoral
- Focuses on areas under the control of the city authority
- Relatively low data requirements, low cost, intuitive and quick to implement
- Strong ownership of cities

TRACE helps cities identify under-performing sectors, evaluate improvement and cost-saving potentials, and prioritize sectors and EE interventions.

TRACE Benchmarking | Entering the data

Ан	ome	Benchmark Data			RACE has a simple user Iterface for entering data
tabs on t	he left to access each sector.		rided should be entered here. Go th ad source of the data. If a proxy has arce		
Ga	Data Point	Year	Source	Proxy	
V	Electricity Consumed per km o	of Lit Roads [kWhe/km]			
9	39783	2010	Gaziantep Metro Municipality		
G	Percentage of City Roads Lit [85	%]	Gaziantep Metro Municipality		
U	03	2010	Gazantep werb wondpanty		
	Electricity Consumed per Ligh	t Pole [kWhe/pole]			
0	1591	2010	Gaziantep Metro Municipality		
G.					
6					
_					

Visual depiction of how a city compares with peer cities

Home Home	e		Benchi	mark	Re	sul	ts						+	Exp	ort	1		Save	
	Sector and a Key Performan city in the table to remove i																	click	on
(Ch)	Select a KPI		Ele	ectrici	ity C	onsu	Ime	d pei	r Lig	ht P	ole (l	kWh	e/po	le]					
	Electricity Consumed per km of Lit Roads	>	2000 -			Та	rge	et c	ity	,									P
	Percentage of City Roads Lit	>	1200 -		K	-													н
	Electricity Consumed per Light Pole	>	800 - 400 -							h									N
			0	QUE	GA1	NYC	CAP CAP	AN	SKO	JAB	CEB	HO H	MYS	AN	SUR	ALL	NUM	POK	
			Select		0	Z	0	⊻ City			Cities			Q Value			P	đ	
0				•	3				e Tov	vn				1069					ŀ
Lighting								Kanı Kath	pur Iman	du				749 738					-
					1			Skop	oje					733					

TRACE Prioritization | Sector Results

Comprehensive sector prioritization with quantified potential benefits

# Hom	10	Sector Priori	lization		Export	E Save
	on the answers to the sector pr created: CA Control and City-	Contraction of the second s	s, two separate list	s of sectors	0	6 of 8 selected
City Auth	ority Sector Ranking					
Rank	Sector	REI%	Spending (US \$)	CA Control		Check to Select
1	Potable Water	86.1	20,046,760	0.80	13,819,468	V
2	Municipal Buildings	54.8	13,836,029	1.00	7,586,851	
3	Solid Waste	48.2	500,000	0.75	180,803	•
4	Wastewater	5.0	1,194,840	0.90	53,767	
City Wide	Sector Ranking					
Rank	Sector	REI%	Spending (US \$)	CA Control		Check to Select
1	Public Transportation	40.6	53,775,872	0.55	12,015,546	V
2	Private Vehicles	36.5	199,442,747	0.15	10,930,996	Ø
3	Street Lighting	51.2	12,999,355	0.90	5,998,875	V
4	Power	31.5	538,517,487	0.01	1,701,657	

A matrix of recommendations based on savings potential, first cost, and speed of	First	Home Remarks and Energy Efficiency. The cher ay based on Speed of Implementation	tions fre		Export Save Save Back To Review Final List					
implementation		by speed of mentation	1 year	✓ 1-2 years	E] > 2 years				
	Wh/annum	> \$1,000,000 Municipal Offices Audit & Retrofit Progr Municipal Residential (Public Housing	am I	First Cost \$100,000 - \$1,000,000 Improve Efficiency of Pumps and Motors Improve Performance of System Network 2-Stroke Engine Replacement or Retrofi		< \$100,0	100			
	Potential kwh/ >200,000 k	Municipal Hospitals Audit & Retrofit Pro	g	Street Lights Audit and Retrofit Program Public Spaces Lighting Audit and Retrofit						
	Savings 0,000 - 200,000			Active Leak Detection and Pressure Man EE Sorting and Transfer Facilities Traffic Restraint Measures Travel Planning		ildings Benchma Waste Compost				
	Energy = 100,000 kWh/annum 100			Water Meter Program Municipal Schools Audit & Retrofit Progr Traffic Signals Audit and Retrofit Program			intenance Audit a Audit and Retrofi			

Recommendations | More information

- 59 recommendations in total
- Mix of strategic programs and specific sector activities
- 191 case studies with hyperlinks to other resources and tools
- Fach recommendation 'rated' on three attributes: *Energy* Savings Potential, First Cost, Speed of implementation
- 23 "technical" recommendations include energy savings calculators

02 ACTIVE LEAK DETECTION & PRESSURE MANAGEMENT PROGRAM

DESCRIPTION	ATTRIBUTES
Develop a leak detection and pressure management program to minimise losses along the following systems:	Energy Savings Potential
Extraction works and pipelines	100,000-200,000 kWh/annum
 Long distance water transmission mains Distribution networks 	First Cost
Sewage pumping mains District cooling networks	US\$100,000-1,000,000
Irrigation networks	Speed of Implementation
It is anticipated that most systems would already be subject to passive leak detection, i.e. identifying leaks through visual observation, but that provides limited information and	1-2 years
benefits. This recommendation therefore focuses on a pro-active and more thorough leak detection program to locate and repair leaks. The following techniques could be used:	Co-Benefits
Ground microphones Digital leak noise correlator	Reduced carbon emissions
 Digital roles correlator Acoustic logger Demand management valves, meters and zoning 	Efficient water use
Mobile leak detection programs Basic acoustic sounding techniques	Enhanced public health & safety
In addition excess pressure can be reduced by installing:	Increased employment opportunities
Flow modulating valves on gravity networks	Financial savings
 Pump controls and/or pressure sensors to modulate a pump's relative performance to suit the daily variation in flow demand, thus maintaining maximum efficiency and minimum energy use. 	Security of supply
A leakage detection program can facilitate the provision of minimal pressures and encourage, through less wastage, a more sustainable use of water resources. In sewerage systems, identification and elimination of leaks can also significantly reduce risk of ground contamination. Pressure management can cost-effectively reduce treatment and pumping costs by minimizing the required delivery pressure and leakage. It is particularly suited to pumped mains and may require estimates of how demand changes over the day. Appropriately rated pressure reducing valves will in turn reduce the flow through leaks and the total flow that must be delivered by the pump upstream at the source/treatment works. This solution may be particularly appropriate in gravity flow networks. The key advantage of pressure management over leak detection is the immediate effectiveness. It is most appropriate where the network is expansive and features multiple small leaks that would be difficult and expensive to locate and repair.	

IMPLEMENTATION OPTIONS

TRACE Status of TRACE Usage

Country	City	Status
Bosnia and Herzegovina	Sarajevo	Completed
Brazil	Belo Horizonte	Completed
Brazil	Rio de Janaeiro	Ongoing
Ethiopia	Addis Ababa	Ongoing
Georgia	Tblisi	Completed
Ghana	Accra	Ongoing
Indonesia	Surabaya	Completed
Кепуа	Nairobi	Ongoing
Kosovo	Pristina	Completed
Macedonia	Skopje	Completed
Philippines	Cebu	Completed
Philippines	Quezon City	Completed
Serbia	Belgrade	Completed
Sri Lanka	Culombo	Just Started
Turkey	Gazientep	Completed
Vietnam	Da Nang	Completed

TO GET MODEL | Download from ESMAP Website http://esmap.org/TRACE

TRAINING | E-learning course available at: <u>http://einstitute.worldbank.org/ei/course/trace-how-use-tool-</u> <u>rapid-assessment-city-energy</u>

ADDITIONAL SUPPORT | ESMAP Staff

For additional support, contact: Pedzi Makumbe, Energy Specialist 202.473.9371

PMAKUMBE@WORLDBANK.ORG

Thank You.

The World Bank | 1818 H Street, NW | Washington DC, USA www.esmap.com | esmap@worldbank.org

Clients	City mayors and municipal bodies						
Benchmarking KPIs ICO S 28 KPIS spread across 6 sectors							
KPI Data Base	93 cities; 1500 data points with a minimum 8 data points per KPI						
Sector Prioritization	Relative energy intensity, energy expenditure, city authority control or influence						
EE Recommendations	59 recommendations spread across 6 sectors and CA management						
Decision-Making Attributes	Energy savings potential, upfront capital cost, speed of implementation						
Case Studies	191 cases spread across 6 sectors						
Basic Training	Essential as it requires experts' participation						
Duration	~3 months						
Deployment	Sarajevo (Bosnia Herzegovina), Belo Horizonte (Brazil), Addis Ababa (Ethiopia), Tbilisi (Georgia), Accra (Ghana), Nairobi (Kenya), Kosovo, Skopje (Macedonia), Belgrade (Serbia), Gaziantep (Turkey), Da Nang (Vietnam), Cebu and Quezon (Philippines), Surabaya (Indonesia),						

