#### Phases of geothermal development

Presented by Dr. Ólafur G. Flóvenz, general director of ISOR – Iceland GeoSurvey at Renewable energy training program Module 3 - geothermal energy



### Total cost per energy unit





#### Project development

- Step 1: Gathering and evaluation of existing data
- Step 2A: Surface exploration
- Step 2B: Exploration drilling
- Step 3: Pre-feasibility report
- Step 4: Environmental assessment
- Step 5: Drilling and testing of confirmation wells
- Step 6: Feasibility report
- Step 7: Design, construction, production drilling.
- Step 8: Testing, commissioning, training
- Step 9: Operation



# Project Development - Time frame: Geothermal Power Plant

| Step | Step/Year                                 | 1 | 2 | 2 |   | 3 | 2 | 1 | ۳, | 5 | e | 5 | 7 | 3 | 3 |
|------|-------------------------------------------|---|---|---|---|---|---|---|----|---|---|---|---|---|---|
| 1    | Reconissance - licensing                  |   |   |   |   |   |   |   |    |   |   |   |   |   |   |
| 2A   | Surface exploration                       |   |   |   |   |   |   |   |    |   |   |   |   |   |   |
| 2B   | Exploration drilling                      |   |   |   |   |   |   |   |    |   |   |   |   |   |   |
| 3    | Prefeasibiliy report                      |   |   |   | X |   |   |   |    |   |   |   |   |   |   |
| 4    | Environmental assessment                  |   |   |   |   |   |   |   |    |   |   |   |   |   |   |
| 5    | Drilling of confirmation/production wells |   |   |   |   |   |   |   |    |   |   |   |   |   |   |
| 6    | Feasibility report                        |   |   |   |   |   |   | X |    |   |   |   |   |   |   |
| 7    | Design and construction of power plant    |   |   |   |   |   |   |   |    |   |   |   |   |   |   |
| 8    | Testing, commissioning, training          |   |   |   |   |   |   |   |    |   |   |   |   |   |   |
| 9    | Operation                                 |   |   |   |   |   |   |   |    |   |   |   |   |   |   |



### Geothermal Power Plant Exploration and Construction Cost



ICELAN

### Step 1: Reconnaissance Gather and evaluate existing data

- Information on geothermal field & possible market for energy
- Chemical analyses
- Gathering of maps, reports and literature
- Outline which data are missing
- Site visit for first estimate
- Recommendations for further exploration
- Licenses, environmental, social and legal aspects







#### After Step 1:

- We have generated a broad picture of the existing data.
- We have an idea about the possible type and size of the reservoir.
- We know who are the possible customers.
- We have some ideas about financial matters.
- We know the legal and regulatory framework.
- We have idea of the environmental and social impact.
- In view of our knowledge we decide if to proceed to step 2 or abandon the project.



#### Step 2A: Surface exploration

- Geological- geothermal and structural mapping.
- Chemical analyses and interpretation.
- Geophysical surface exploration.
- Prepare and collect data for environmental impact assessment.
- Prepare, design, site and finance exploration wells.







#### After step 2A:

- We have a conceptual model of the field, including estimate of possible reservoir temperature, flow of geothermal fluid, chemical composition of the fluid and rough estimate of the possible size of the system.
- We might use volumetric methods to roughly assess the possible energy output.
- Based on the results we either go for step 2B or stop the project.





#### Step 2B: Exploration drilling

Drilling of 1 -3 wells to testing the results of the surface exploration.

Might be slim or relatively shallow wells.

Revision of the results of the surface exploration and possibly additional geophysical exploration.





#### Step 3: Pre-feasibility report

A conceptual model based on surface data and drilling

- Evaluation of field capacity
- Basic process design
- Treatment of the geothermal fluid
- Preliminary cost estimate
- Environmental & social evaluation
- Recommendations for next step
  - EIA
  - Financing
  - Exploitation license



### Environmental Impact and Conceptual design of the Power Plant

- Environmental and Social Impact Study for the Power Plant
- Design of production- and reinjection wells.
- Update evaluation of field capacity

- Update on basic process design
- o Update on the fluid treatment
- o Recommended field operation









#### Drilling and testing of confirmation wells

- Location of additional wells, are based on pre-feasibility report
- Design of confirmation wells a test procedure for each well
- o Drilling, testing and evaluation of test results



# Feasibility report (bankable) - Exploitation license

- Update on field capacity
- Process design
- All main equipment specified
- Investment and Operational cost
- Environmental Impact for the project
- Recommendations for next step
- Process of licenses completed



Volumetric assessment, using the Monte Carlo method

| Statistical sizes                         | Values [MWe]<br>(30 y.) | Values [MWe]<br>(50 y.) | Values [MWe]<br>(100 y.) |
|-------------------------------------------|-------------------------|-------------------------|--------------------------|
| Most probable value (with 7% probability) | 275-290                 | 165-175                 | 85-90                    |
| 90% confidence interval                   | 170-460                 | 100-270                 | 50-140                   |
| Mean                                      | 300                     | 180                     | 90                       |
| Median                                    | 300                     | 180                     | 90                       |
| Standard deviation                        | 80                      | 50                      | 20                       |



# Detailed design, construction, drilling, supervision

- Detail design based on concept design
- Supervision of detail design
- Tender documents for civil construction
- Production Drilling
- Supervision of drilling

- Manufacturing, delivery and installation of equipment
- Civil construction
- Supervision of construction



## Operation



#### **Financing of Geothermal Projects** Geothermal Project Cost estimate for a 70 MW<sub>e</sub> Power Plant in Kenya

| Project Identification, Desktop review, inception Report  |               |
|-----------------------------------------------------------|---------------|
| and Licensing                                             | \$50,000      |
| Detailed Surface Exploration                              | \$500,000     |
| Pre-feasibility Study                                     | \$10,000      |
| Exploration Drilling well testing pads and roads (3Wells) | \$9,120,000   |
| Appraisal Drilling and testing (6 WELLS)                  | \$17,400,000  |
| Feasibility Study                                         | \$100,000     |
| Design and tender documents                               | \$1,300,000   |
| Environmental Impact Assessment (EIA)                     | \$100,000     |
| Production Drilling and Testing                           | \$40,600,000  |
| Power station & Transmission Construction and             |               |
| supervision                                               | \$100,000,000 |
| TOTALS                                                    | \$169 180 000 |
| TUTALS                                                    | \$105,100,000 |
| COST PER MWe                                              | \$2,416,857   |

#### Notice that by far most of the cost is for production drilling and plant construction



# The end