

Geothermal Applications Geothermal Cooling

Dr. Horst Kreuter, CEO

Renewable Energy Training Programm, 10 July 2012, ESMAP – IFC, Washington DC, USA

Outline

 2 Principles of Cooling Technology 3 District Cooling 4 Geology and Geothermal for Cooling Purposes 5 Geothermal Cooling and District Cooling 6 Geothermal Cooling – Example from Qatar 7 Conclusion 	1	Cooling Demand: Worldwide, Energy, Costs
 4 Geology and Geothermal for Cooling Purposes 5 Geothermal Cooling and District Cooling 6 Geothermal Cooling – Example from Qatar 	2	Principles of Cooling Technology
 5 Geothermal Cooling and District Cooling 6 Geothermal Cooling – Example from Qatar 	3	District Cooling
6 Geothermal Cooling – Example from Qatar	4	Geology and Geothermal for Cooling Purposes
	5	Geothermal Cooling and District Cooling
7 Conclusion	6	Geothermal Cooling – Example from Qatar
	7	Conclusion

Cooling Demand USA 2010

- Residential cooling energy consumption: 315 billion kWh
- Commercial cooling energy consumption: 164 billion kWh
- Together 12 % of total U.S. electricity consumption
- 9.2 Cent / kWh

U.S. Electricity Consumption 2010

Cooling Demand USA Projection

EIA projection to 2035 Residential Cooling Demand

Cooling Demand USA Projection

EIA projection to 2035 Commercial Cooling Demand

Cooling Demand Europe Projection

Increasing electricity demand in Europe for cooling

Existing Cooling Technologies

- Air-cooled chillers
- Water-cooled chillers
- Evaporative-cooled chillers
- Dry fluid coolers

Cooling energy mostly produced by fossil fuels

- CO₂ emissions
- Negative environmental impact

Principles of Cooling Technology

- Functional principle based on the evaporation cycle of a binary system:
 - Evaporation of cooling agent
 - Refrigerant bound in vaporous high pressure to a sorption agent or solvent
 - Sorption agent is replenished to evaporation process after thermal expulsion
 - Transfer of cooling energy to end consumer via pipeline network
- Absorption chiller: evaporation cycle NH₃/water or water/Li-Br
- Adsorption chiller: evaporaton cycle solid agent, e.g. Si-gel/water

Scheme of cooling processes

Physical cooling effect of refrigerant evaporation

Chiller Type	Compression Type	Energy Source	Cooling Agent
Compression	Mechanical	Electric power	Halons, clorinated
	Compression		CHC, clor free
			hydrocarbons
Adsorption	Thermal	Heat energy	Li-Br/water or
	absorption loop	t=85°C – 150°C	ammonia/water as
			absorption agent
Absorption	Thermal	Heat energy	Water with solid as
	adsorption of	t=55°C – 95°C	adsorption agent
	water steam		(e.g.silica-gel)

Absorption chiller – Advantages

- NH₃/water \rightarrow T_{in} -60 °C
- Water/Li-Br \rightarrow T_{in} +5 °C
- Noise reduced
- Cost-effective
- Reliable in power supply
- Energy efficient
- Can easily be operated by geothermal energy

Absorption chiller – Operating mode

- Driven by hot water with broad temperature range
- Zero ozone depletion potential
- No halons, no oil changes
- Low power consumption
- Noice-reduced
- Stable cooling supply
- Easy in maintenance

Heat energy (Adsorption) Adsorption phase Desorption phase Driving energy Heat energy (Desorption) (Condensation)

Source: modified after www.de.wikipedia.org

- Fluctuations are avoided by use of geothermal energy
- Use with small localized chillers.

Absorption cooling – Cooling circuit

Modified after http://www.eurocooling.com/public_html/articleseagroup.htm

Geology and Geothermal for Cooling Purposes

Principles of Geothermal Production

- Water-bearing sediments with high porosity and permeability, e. g. karstic voids, fractured and jointed carbonates
- Water temperatures between 70°C to 120°C required
- Desired production rates between 50 l/s and 75 l/s
- Two-well system: injection and production well

Principles of district cooling

- Cooling production in a central unit driven by primary energy
- Distribution to consumer via network of insulated pipelines
- Cooling storage system: cooling stored as chilled water or ice

Principles of District Cooling

- Local resources can be combined to different cooling sources. Cold water may be extracted from
 - Oceans
 - Lakes
 - Rivers
 - Ground water
- Use of surplus heat
 - Conversion of surplus heat into cooling
 - Recycling in district networks
- High-efficiency chillers necessary
- District Cooling fulfills the objectives of the EU energy policy: sustainability, competitiveness and supply security.
- Principles: http://www.youtube.com/watch?v=smirXWp6KTg

Geothermal District Cooling

- Geothermal meets the temperature requirements of absorption and adsorption technology → cooling efficiency
- Evaporation cycle can be driven by thermal water extracted fom deep geothermal energy reservoirs
- Heat is transferred on heat exchanger that is coupled with an evaporating cooling unit.
- Centralized cooling station supplies district buildings
- No fossil fuels will be consumed
- No CO_2 emissions from combustion processes \rightarrow geothermal source

Geothermal District Heating Europe

- 212 geothermal district heating installations operating in Europe 2011
- Almost 1.7 GWth installed capacity

Geothermal District Cooling - Motivation

Geothermal Cooling – Example from Qatar

CO₂ emissions per capita (2007) among the Middle East countries

Data source: Worldbank (2010)

Geological Setting

- Qatar part of stable Arabian interior platform
- Dominated by ~ 10 km thick sedimentary sequences deposited since Paleocene (Alsharan and Nairn, 1994)
- Predominantly carbonates, evaporites, bitumen-rich black shales
- Structure dominated by NNE-SSW trending Qatar South Fars Arch
- Thorough oil and gas exploration onand offshore
- Main production horizons within Jurassic and Cretaceous sediments

modified after Alsharan and Nairn (1997)

Geological cross-section

- Geothermal gradient between 30°C/km to 40°C/km
- Aquifers in Jurassic and/or Cretaceous sediments expected
- High salinity concentrations expected
- Good production rates expected

Qatar host of 2022 FIFA World Cup

Chance to take responsibility for climate ← and environmental protection

Strengthen Qatar's position in the discussion on sustainable games

Chance to a fundamental change in Qatar's energy policy: Switching from fossil fuel to RES.

Qatar and Geothermal District Cooling

- 63% of Qatar's domestic energy production is used for domestic district cooling, totally driven by fossil fuels \rightarrow high CO₂ footprint to residentials
- Rising cooling demand requires sustainable source of energy production for Qatar
- Operating geothermal energy necessarily requires detailed hydrogeological and geological feasibility studies
- Qatar offers a prospective country for installing geothermal energy
- Suitable temperature regime is expected in the subsurface
- Geothermal saves fossil reserves, improves CO₂ footprint
- RES strengthens Qatar's position in the discussion on climate change among the GCC

Conclusion

- District cooling with natural sources offers environmental saving alternative and preserves fossil resources
- Geothermal district cooling uses the geothermal source and transfers heat to a high-efficient chiller
- Adequate chilling technology: ad-/absorption chillers
- Less CO₂ emissions
- Less investments
- Less operating costs

Contact

GeoThermal Engineering GmbH

Baischstraße 7 76133 Karlsruhe Germany

Phone: +49 721 570 446 80 Fax: +49 721 570 446 89 Email: info@geo-t.de Web: www.geo-t.de

Thank you for your attention!

Dr. Horst Kreuter, CEO

Renewable Energy Training Programm, 10 July 2012, ESMAP – IFC, Washington DC, USA